基于离散夹钳与多点模具的板材柔性拉形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,拉形工艺主要用于生产飞机蒙皮件,由于其材料利用率很低,生产成本相对较高,制约了它在其他工业领域中的应用。然而拉形工艺具有回弹小、成形精度高等优点,使得其能够适应许多领域对多品种、小批量工件生产的需求。为了提高拉形生产中材料的利用率,同时拓宽拉形工艺的应用领域,亟需一种新技术,板材柔性拉形工艺正是在这种需求下孕育而生的。板材柔性拉形技术是通过离散夹钳与多点模具的相互配合来实现的,该技术将离散夹钳柔性自协调的工作特点与多点模具型面的可重构性融为一体,可以实现拉形工艺的高度柔性化,提高了生产效率,降低了生产成本,能够快速响应钣金日益膨胀的产品个性化要求,迅速提升塑性加工领域中板类件的先进制造水平。板材离散夹钳柔性拉形是一种新型的拉形技术,通过全液压驱动技术来实现多个夹钳的柔性自协调工作,取代了传统拉形工艺中夹钳的整体运动模式。即夹料时,多个夹钳平直排列,夹紧板材两端;拉形过程中,多个夹钳可以根据模具形状的变化自动调整钳口的拉伸量和转角,实现板材被夹持边缘与拉形模端面的曲率变化相一致,这样有助于板材更容易贴合模具,减小拉形工艺余量,提高材料利用率。本文采用LS-DYNA软件对板材柔性拉形工艺进行了数值模拟,研究了夹钳结构与过渡区长度对拉形件成形效果的影响,探讨了拉形过程中回弹与接触力等问题,并进行了相关实验验证。
     本文研究主要内容与结论如下:
     1.板材离散夹钳柔性拉形工艺和成形装置的研究
     研究了板材离散夹钳柔性拉形方法与传统板材拉形方法的区别和联系,指明板材离散夹钳柔性拉形的技术特点。采用解析法对板材柔性拉形过程进行了力学分析,推导出板材柔性拉形过程中应力、应变、厚度减薄和拉力的计算公式。详细阐述了板材离散夹钳柔性拉形实验装置的设备组成、工作原理和结构特点等,并指出该设备区别于传统拉形机的技术特点,不仅可以降低设备造价,还可以提高材料利用率。
     2.板材柔性拉形有限元模型的建立
     基于金属板材塑性成形的相关理论,建立了板材柔性拉形的有限元模型,采用动态显式算法模拟板材柔性拉形过程,静力隐式算法进行拉形件回弹过程分析。详细阐述了板材柔性拉形有限元模型建立过程中单元选择、网格化分、约束条件、接触与摩擦处理等若干问题,并对不同材料的本构关系进行了分析,板材采用双线性等向强化弹塑性模型,聚氨酯弹性垫采用超弹性材料模型,模具和夹钳定义为刚体模型,为板材柔性拉形数值模拟研究奠定了基础。
     3.夹钳离散数量与夹钳形状的数值模拟研究
     以球形件为研究对象,采用有限元法对板材柔性拉形工艺过程进行了数值模拟,探讨了夹钳离散数量对工件应力与应变分布、板厚变化、工件夹持面形状以及板料流动趋势的影响,结果表明:整体平夹钳拉形的工件应力与应变分布不均匀,板厚减薄严重,而离散夹钳拉形的工件应力与应变分布相对均匀,并且夹钳的离散数量越多,工件应力与应变分布愈加均匀化,工件夹持面的弯曲弧度越与模具曲率相接近,工件的成形质量也越好。分析了夹钳形状对工件应力与应变分布、板厚变化以及工件夹持面形状的影响,结果显示:圆形夹钳拉形时可以明显改善工件过渡区的应力、应变与板厚的分布状态,能够防止工件产生拉裂现象;圆形夹钳拉形时工件夹持面的弯曲弧度与模具的曲率更加接近,工件成形质量比较好,并对相关的数值模拟结果进行了实验验证。
     4.不同过渡区长度的数值模拟研究
     利用有限元软件对不同过渡区长度的球形件与鞍形件拉形进行了数值模拟,研究了整体平夹钳与离散夹钳两种拉形方式对工件贴模效果、成形缺陷及材料利用率的影响,结果显示:整体平夹钳需要较长的过渡区才能成形,导致球形件在过渡区产生多条皱纹,鞍形件会在成形区产生单一皱纹;而离散夹钳拉形只需较短的过渡区即可成形,工件表面光滑,没有皱纹,可以减小拉形工艺余量,提高材料利用率。并且离散夹钳拉形件的压痕深度明显小于整体平夹钳拉形件的压痕,只需较薄的弹性垫就能够抑制工件的表面缺陷,减小了工件的成形误差。研究了变形量、板材厚度与过渡区长度对球形件和鞍形件厚度变化的影响,结果显示:其他条件相同时,曲率半径越大,工件减薄率越小;板材厚度越大,工件减薄率越小;过渡区长度越大,工件减薄率越小。采用整体平夹钳拉形机和离散夹钳拉形机对球形件进行了拉形实验,实验结果与模拟结果基本吻合。
     5.回弹的数值模拟及模具型面修正回弹方法的研究
     采用显式-隐式算法对球形件在整体平夹钳与离散夹钳两种拉形方式下的回弹现象进行了研究,分析了夹持方式、过渡区长度、拉伸量、板材厚度、材料性能等因素对工件回弹量与形状误差的影响。结果表明:整体平夹钳拉形的工件比离散夹钳拉形的工件回弹大,成形误差也大;工件的回弹量和平均形状误差随着过渡区长度的增加而逐渐增大;回弹量随着预拉伸量的等量增加而逐渐减小,相应的平均形状误差也逐渐减小,当预拉伸量超过1%以后,回弹量和形状误差几乎不受影响,优先选用预拉伸量为1%;随着板材厚度的增加,回弹量下降的趋势逐渐变缓,形状误差逐渐减小;材料的弹性模量越大,工件卸载后回弹量就越小,平均形状误差也越小。提出了修正回弹误差的多点模具型面补偿计算方法,并通过数值模拟和实验对模具型面补偿方法进行了应用,验证了多点模具型面修正补偿方法的可行性和实用性。
     6.板材与夹钳以及板材与冲头之间接触力的数值模拟研究
     通过有限元方法对不同材质、不同板厚的柱形件、球形件以及鞍形件拉形过程进行了模拟,探讨了板材与夹钳之间接触力的分布规律,结果表明:材料的弹性模量和屈服强度越大,板材的变形抗力就越大,拉形时板材与夹钳之间的接触力就越大。板材的厚度对接触力的影响比较大,板材越厚,变形越不容易,拉形时板材与夹钳之间的接触力就越大。还探讨了拉形过程中冲头与板材的接触受力状态,通过模拟不同材料、不同板厚和不同变形量的球形件成形过程,研究了板材与冲头之间接触力的变化情况,结果显示:冲头接触力随着板材弹性模量和屈服强度的增大而增大;对于相同尺寸、相同材料的板材,板材越厚,冲头接触力就越大;目标曲率半径越大,冲头接触力则越小。
Stretch forming technology is mainly used in manufacturing of aircrafts skin and due to its low material utilization and relatively high cost,application of stretch forming technology is limited in other industry field. However, stretch forming technology has the advantages of small springback and high precision of formed parts,which make it still applicable in many other fields that have small demands and variant products.To solve the problem of low material utilization and to broaden the application range for stretch forming technology,a new technology is needed. To meet this need, a flexible stretch forming technology is developed for fabricating sheet metals. Flexible stretch forming technology is realized by interaction of the discrete-gripper with multi-point die. This technology combines self-coordination of the discrete-gripper with reconfigurability of the multi-point die, which can meet the demand in high flexibility, high productivity and low cost, respond swiftly to the increasingly demands of individualized products, quickly improve the ability level of fabricating sheet metals in plastic processing field.
     The discrete-gripper flexible stretch forming technology is a new technology for forming sheet metals. With the hydraulic drive, the multiple grippers can work in a self-coordination mode, instead of the mode that gripper moving as a whole in traditional stretch forming process. In clamping process, the multiple grippers are arranged in a line and hold tightly at both sides of the sheet metal; during the stretching forming, the multiple grippers, based on the variation of the die configuration, can automatically adjust displacements and rotations of each gripper jaws correspondingly to make the clamped edges curvatures in accordance with the die-face. So this process can make the sheet metal easily attach the die with less stretching margin and have high material utilization. In this study, numerical simulations on sheet metal flexible stretch forming process were performed by LS-DYNA software, the influences of gripper structure and transition zone length to the quality of formed parts were investigated, springback and contact force were discussed and relative verification experiments were carried out. The main contents and conclusions of this study are as follows:
     1. Research on sheet metal discrete-gripper flexible stretch forming process and its forming device
     The difference and connection between discrete-gripper flexible stretch forming process and current sheet metal stretch forming process was studied, and the technical features of discrete-gripper flexible stretch forming process were pointed out. Mechanics analysis of flexible stretch forming process was done by using analytical method with derived equations for computing the stress, strain, tensile force and thickness reduction in stretching process. The composition, working principle and structural characteristics of discrete-gripper flexible stretch forming device were elaborated and the technical advantages compare with traditional stretch forming equipment were given, for example, lower equipment building cost and higher material utilization.
     2. Building finite element model of flexible stretch forming process
     Based on relative theories of sheet metal plastic forming, the finite element model of flexible stretch forming process was established, and dynamic explicit algorithm was chosen for numerically simulating its stretching process and static implicit algorithm for analyzing the springback of formed parts. Problems in establishing the finite element model of flexible stretch forming process such as element selection, meshing, constraint conditions,contact and friction were elaborately discussed. Constitutive relationships of different materials were analyzed, in which sheet metal is taken as bilinear isotropic hardening elastoplastic model, polyurethane elastic cushion is taken as hyper-elastic material model and the die along with grippers is taken as rigid model, these results are foundation of numerical simulations in flexible stretch forming process.
     3. Numerical simulations on the quantity and configuration of discrete grippers
     Taken spherical parts as investigating objects, numerical simulations on flexible stretching process by finite element method were done. And the influences of discrete gripper’s quantity to the stress, strain distributions, thickness reduction, shape of clamped parts sides, and material flow in sheet metal were studied. The results show: with the flat integral-gripper, the stress and strain distributions of formed parts are uneven, and accompany with serious thickness reduction; while, with the discrete-gripper, the stress and strain distributions are relatively even, moreover, the more the grippers, the more even the stress and strain distributions are, the closer the curvatures of the parts clamped sides approach the die and the better quality the formed parts has. The influences to the configuration of grippers on the parts stress and strain distributions, thickness reduction and the shape of clamped sides of the parts were analyzed, and the results show that the circular grippers can not only improve the distributions of stress, strain and thickness within the transition zones, but also prevent the parts crack. With the circular grippers, the curvatures of clamped sides of parts are closer to the die and the forming quality of the parts is better. Relative experiments were done to verify the simulation results.
     4. Numerical simulations on different transition zone length
     By means of finite element method, numerical simulations were done for flexible stretching process of spherical parts and saddle parts with different transition lengths, and the influences of both flat integral-gripper and discrete-gripper on sheet metal attaching die, forming defects and material utilization were studied. The results show: the flat integral-gripper need a long transition length for forming, which can cause multiple wrinkles in the transition zones of spherical parts and single wrinkle in the forming areas of saddle parts; the discrete -gripper need a relatively shorter transition length and the formed parts have smooth surface with no wrinkle, so the process margin is reduced and the material utilization is improved. Moreover, the dimpling of the discrete-gripper on the formed parts are less deep than that of the flat integral-gripper, and the surface defects of formed parts can be prevented by using a thinner elastic cushion accompany with decreased forming errors. The impacts of deformation quantity, thickness of sheet metal, and the influence of transition zone length on the thicknesses of the spherical and saddle parts were investigated. Obviously, when other conditions are same, the results are: the greater the curvature, the smaller the maximum thinning rate of the parts thickness is; the thicker the sheet metal, the smaller the maximum thinning rate; the longer the transition zone, the smaller the maximum thinning rate. Verification experiments were done by using both the flat integral-gripper and discrete-gripper forming machines to form spherical parts, and the experimental results are basically agree with the simulated results.
     5. Research on springback simulation and the method of correcting springback by die surface compensation
     The springback of spherical parts in both flat integral-gripper and discrete-gripper stretch forming processes were investigated by using explicit-implicit algorithm, and the impacts to springback quantity and shape errors caused by clamping mode, length of transition zone, stretching increment and materials were studied. The results show: springback and forming errors in the flat integral-gripper stretch forming mode are bigger than that in the discrete-gripper stretch forming mode; springback quantity and average shape error of formed parts are gradually increasing as the length of transition zone increase; springback gradually become smaller as the magnitude of pre-strecth increasing, and the corresponding average shape error is slowly reduced. Once the magnitude of pre-stretch exceeds1%, it has no influence on springback and the shape error, so 1% of pre-stretch is a priority; as sheet metal gets thicker, springback is reduced and the shape error is also gradually reduced; the greater the elastic modulus of the material, the smaller the springback of the formed parts gets after unloading, and the less the average shape error is. A method for correcting springback by multi-point stretching die surface compensation was presented, and this method was practiced by numerical simulation and experiment, which validates the feasibility and practicability of the method.
     6. Numerical simulations on the contact forces between sheet metal, grippers and punch
     Numerical simulations were performed for cylindrical, spherical and saddle parts of different materials and different thicknesses by using finite element method. The distribution of contact force between sheet metal and grippers was studied. The results show: the greater the elastic modulus and the yield strength of the material, the greater the deformation resistance of the sheet metal has, and the bigger the contact force is needed between sheet metal and grippers in stretching process. The thickness of sheet metal has a relative bigger influence on contact force: the thicker the sheet metal is, the more difficult it is for the material to deform, and the bigger the contact force is needed between sheet metal and grippers. The situation of contact force between sheet metal and punch was analyzed by simulating the stretching process of forming spherical parts with different materials, different thicknesses and different deformation. The results are: the contact force applied to the punch tends to increase as the material elastic modulus and yield strength increase; given the same dimensions of the same material, the thicker the sheet metal, the greater the contact force; the bigger the target curvature of the parts, the smaller the contact force.
引文
[1]钟志华,李光耀.薄板冲压成形过程的计算机仿真与应用[M].北京:北京理工大学出版社,1998.
    [2]常荣福.飞机钣金零件制造技术[M].北京:国防工业出版社,1992.
    [3]崔令江.汽车覆盖件冲压成形技术[M].北京:机械工业出版社,2003.
    [4]赵军,马瑞.板材成形新技术及其发展趋势[J].金属成形工艺,2006,20(6):1-9.
    [5]郎利辉,刘宝胜,曾元松.钛合金板材成形技术及其在航空领域中的应用[J].航空制造技术,2009, 10:28-31.
    [6] Honda Motor Co .,Ltd .Honda Worldwide [EB/OL].(2005-1-12) [2006-12-30].http :/ / world.honda.com/ news/ 2005/ 4050112.html.
    [7] A. Attanasio,E. Ceretti,C. Giardini. Optimization of tool path in two points incremental forming [J]. Journal of Materials Processing Technology,2006,177:409-412.
    [8] J. G. Shin,C. H. Ryu,J. H. Lee,et al. User-friendly advanced line heating automation for accurate plate forming [J]. Journal of Ship Production,2003,19 (1):8-15.
    [9] M. Z. Li,Z. Y. Cai,C. G. Liu,et al. Recent developments in multi-point forming technology [A].Proceedings of the 8th International Conference on Technology of Plasticity[C],Verona,Italy,October,2005,707-708.
    [10] S. P. Staff. The Development of Roto Peening [J].Shot peener,2003,16(4):13-15.
    [11]李国祥.喷丸成形[M].北京:国防工业出版社,1982.
    [12] Metal Improvement Company, Inc. Shot peening applications (8th edition) [M]. USA, 2001.
    [13]曾元松,黄遐,李志强.先进喷丸成形技术及其应用与发展[J].塑性工程学报,2006,13(3):23-29.
    [14] S. Ramati, G. Levasseur, S. Kennerknecht. Single piece wing skin utilization via advanced peen forming technology[C]. Proceedings of the 7th international conference on shot peening (ICSP-7), Warsaw, Poland, 2000:207-213.
    [15] F. Wüstefeld, W. Linnemann, S. Kittel. Towards peen forming process automation[C]. Proceedings of the 8th international conference on shot peening (ICSP-8), Garmisch-Partenkirchen, Germany, 2002:44-52.
    [16] A. Friese, J. Lohmar, F. W. stefeld. Current applications of advanced peen forming implementation[C]. Proceedings of the 8th international conference on shot peening (ICSP-8), Garmisch-Partenkirchen, Germany, 2002:53-62.
    [17] A. Friese. World’s largest shot peening machine installed at airbus plant [N]. Metal Finishing News, 2004,(5) :189-220.
    [18] R. Kopp, J. Schulze. Optimising the double-sided simultaneous shot peen forming[C]. Proceedings of the 8th international conference on shot peening (ICSP-8), Garmisch-Partenkirchen, Germany, 2002:227-233.
    [19] L. Hackel, F. Harris. Contour forming of metels by laser peening[P].USA,WO01/05549A2. 6,2002.
    [20]周建忠,张兴权,王广龙,等.金属板料激光喷丸成形新技术[J].中国工程科学,2005,7(11):94-97.
    [21]张兴权,张永康,周建忠,等.窄条激光喷丸成形有限元分析[J].航空学报,2009,30(4):744-750.
    [22]胡凯征,吴建军,王涛,等.基于温度场的喷丸成形数值模拟及参数优化[J].中国机械工程,2007,18(3):292-295.
    [23] N. R. Tao, M. L. Sui, J. Lu, et al. Surface nanocry stallization of iron induced by ultrasonic shot peening [J]. Non-structured materials, 1999.11(4):433-440.
    [24] Y. S. Todaka, et al. Comparison of nanocry stalline surface layer in steels formed by air blast and ultrasonic shot peening [J]. Materials Transactions, 2004.45(2):376-379.
    [25] H. Soyama, D. Odhiambo, K. Saito. Cavitation shotless peening for improvement of fatigue strength of carbonized steel[C]. Proceedings of the 8th international conference on shot peening (ICSP-8), Garmisch-Partenkirchen, Germany, 2002: 435-440.
    [26] Y. S. Zeng. Finite element simulation of shot peen forming[C]. Proceedings of the 8th international conference on shot peening (ICSP-8), Garmisch-Partenkirchen, Germany, 2002:554-560.
    [27] S. Jochen, S. Volker, V. Otmar. Finite element simulation of shot peening-A method to evaluate the influence of peening parameters on surface characteristics[C]. Proceedings of the 8th international conference on shot peening (ICSP-8), Garmisch-Partenkirchen, Germany, 2002. 507-515.
    [28] S. A. Meguid, G. Shagal, J. C. Stranart. 3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model[C]. International Journal of Impact Engineering, 2002(27):119-134.
    [29] T. Wang, J. Platts. Finite element impact modeling for shot peen forming[C]. Proceedings of the 8th international conference on shot peening (ICSP-8), Garmisch-Partenkirchen, Germany, 2002: 540-546.
    [30] P. O. Hara. Peen forming-A developmenting technique[C]. Proceedings of the 8th international conference on shot peening (ICSP-8), Garmisch -Partenkirchen, Germany, 2002: 215-226.
    [31]康小明.喷丸成形的数值模拟研究[D].博士学位论文,西安:西北工业大学, 1999.
    [32] L. V. Grasty. Shot peen forming sheet metal: finite element predition of deformed shape [J]. Journal of Engineering Manufacture, 1996, 210: 361-366.
    [33] P. L. Blackwell, M. D. Griffiths, et al. A computer modeling capability for shot peen forming [J]. Metal Finishing News, 2004, 5(3): 12-14.
    [34]裴继斌.船用钢板激光弯曲成形机理及成形规律的研究[D].大连:大连理工大学博士学位论文,2008.
    [35] Y. Namba. Laser forming in space[C]. Proceeding of the International Conference on lasers’85, Osaka, Japan, 1986: 403-407.
    [36] K. Scully. Laser line heating [J].Ship Production,1987, 3(4): 237-246.
    [37] G. Yu, K. Masubuchi, T. Maekawa, N. M. Patrikalakis. Thermomechanics of laser forming of metalplates[R]. Massachusetts Institute of Technology (MIT) Fabrication Memorandum 99-1. November 1, 1999.
    [38] M. Geiger,F. Vollertsen.The mechanism of laser forming [J]. CIRP Annuals,1993,42 (1):301-304.
    [39] H. Frackiewicz, W. Kalita. Laser forming of sheet [P].German:0317830 A2, 1988.
    [40] S. P. Edwardson. A study into the 2D and 3D laser forming of metallic components[D].The University of Liverpool, Liverpool, UK, 2004.
    [41] J. Bao, Y. L. Yao. Analysis and prediction of edge effects in laser bending [J]. Journal of Manufacturing Science and Engineering, Feb. 2001, 123: 53-61.
    [42] Y. C. Hsiao, H. Shimizu, L. Firth, W. Maher, K. Masabuchi. Finite element modeling of laser forming[C]. In proceedings of the international congress on applications of lasers and electro-optics, (ICALE097), (San Diego, U.S.A, 1997), Section A: 31-40.
    [43] K. C. Lee, J. Lin. Transient deformation of thin metal sheets during pulsed laser forming [J].Optics & Laser Technology, 2002, 34: 639-648.
    [44]李纬民,李春科,刘助柏.板料成形新工艺——激光弯曲[J].锻压技术,1993(6):29-31.
    [45]季忠.板料激光弯曲成形及其数值模拟[D].西安:西北工业大学博士学位论文,1997.
    [46]王秀凤,J. Takacs,G. Krallics.薄板激光弯曲机理的研究[J].锻压技术,2001(4):29-30.
    [47]刘顺洪,周龙早.激光诱发热应力成形的研究[J].激光技术,2001,25(4):258-262.
    [48]汪骥.水火弯板自动化加工工艺的关键技术研究[D].大连:大连理工大学博士学位论文,2006.
    [49] M. Ishiyama, Y. Tango, Y. Nakamura. Studies of plate bending for practical use by computer aided line heating system (in Japanese)[J]. Journal of the Society of Naval Architects of Japan, 1998, 6(183): 335-342.
    [50] Y. Tango, M. Ishiyama, S. Nagahara, et al. Automated line heating for plate forming by IHI-ALPHA system and its application to construction of actual vessels-system outline and application record to date (in Japanese)[J]. Journal of the Society of Naval Architects of Japan, 2003, 6(193):85-89.
    [51] J. Sawamura, N. Osawa, K. Hashimoto, et al. Study on heat transfer phenomena between the combustion flow field and the heating plate during line heating process (2nd Report, in Japanese)[J]. Journal of the Society of Naval Architects of Japan, 2000, 11(188): 479-488.
    [52] T. Terasaki, K. Yamaguehi, T. Nomoto, et al. Study on transverse shrinkage and angular distortion generated by line heating (in Japanese) [J]. Journal of the Society of Naval Architects of Japan. 2003,6(193):65-74.
    [53] J. G. Shin, J. H. Lee, S. K. Park. A numerical thermoplastic analysis of line heating processes for saddle-type shells with the application of an artificial neural network [J]. Journal of Ship Production, 1999, 15(1):10-20.
    [54] J. G. Shin, J. H. Lee. Nondimensionalized relationship between heating conditions and residual deformations in the line heating process [J]. Journal of Ship Research, 2002, 46(4): 229-238.
    [55]董大栓.水火弯板成形规律及加工参数的确定研究[D].上海:上海交通大学博士学位论文,2002.
    [56]刘玉君,赵洪福,王桂荣.水火弯板影响成型因素的实验定性分析[J].大连理工大学学报,1994, 34(1):45-49.
    [57]刘玉君,纪卓尚.实船板水火加工成型数据库系统[J].中国海洋平台,1996(3):127-131.
    [58]大连理工大学,大连新船重工有限责任公司.曲面钢板水火成形机器人[P].中国,实用新型专利,01250852.9,2001.
    [59]广州广船国际股份有限公司.一种水火弯板机[P].中国,实用新型专利,200620056651.3, 2006.
    [60]广东工业大学.一种水火弯板机多轴运动控制系统[P].中国,发明专利,200810198914.9, 2008.
    [61]广东工业大学.应用于水火弯板机数控系统三维立体成形的加工方法[P].中国,发明专利,200810198916.7,2009.
    [62]上海船舶工艺研究所.一种数控板材热应力曲面成型机[P].中国,发明专利,200710043037.2,2008.
    [63]大连理工大学.悬臂式水火加工机器人[P].中国,发明专利,200710011138.1,2007.
    [64] S.Matsubara.Incremental backward bulge forming of a sheet metal with a hemispherical head tool[J].Journal of the Japan Society for Technology of Plasticity,1994,406(35):1311-1316.
    [65]松原茂夫.数值制御逐次成形法[J].塑性と加工,1994,35(11):1258-1263.
    [66] H. Iseki, O. Kumon. Forming limit of incremental sheet metal stretch forming using spherical roller [J]. Journal of the Japan Society for Technology of Plasticity, 1994, 406(35):1336-1341.
    [67] H. Iseki, T. Shinioura, K. Sato. Practical development of press-molding machine with small punching tool[C]. Advanced technology of plasticity-Proceeding of 5th international conference on technology of plasticity, 1996, 2:935-938.
    [68] J. Jeswiet, E. Hagan. Forming parameters for incremental forming of aluminium alloysheet metal [J]. Proceedings of the Institution of Mechanical Engineers B, Journal of Engineering Manufacture, 2002, 216:1367-1371.
    [69] J. Jesweit, F. Micari, G. Hirt, et al. Asymmetric single point incremental forming of sheet metal[J].CIRP Annals-Manufacturing Technology,2005,54(2):623-649.
    [70] T. J. Kim, D. Y. Yang. Improvement of formability for the incremental sheet metal forming process[J]. International Journal of Mechanical Sciences, 2000, (42): 271-286.
    [71] G. Ambrogioa, L. Filice, F. Micari. A force measuring based strategy for failure prevention in incremental forming [J]. Journal of Materials Processing Technology, 2006, 177:413-416.
    [72]王仲仁,方漪等.数控增量点成形的机理分析[C].第六届全国锻压年会论文,北京,1995:227-230.
    [73]戴昆,苑世剑,王仲仁,等.轴对称件多道次数控点成形过程的理论分析[J].塑性工程学报,1998, 2:26-32.
    [74]莫健华,刘杰,黄树槐.汽车大型覆盖件的数字化成形技术[J].塑性工程学报,2001,8(2):14-16.
    [75]毛锋,莫健华,黄树槐.金属板材数控无模成形机及其应用程序开发[J].锻压机械,2002(2):38-41.
    [76]黄珍媛,阮锋,李振南.金属板材的数控逐次塑性成形系统的开发[J].锻压机械,2002,6:62-163
    [77]李湘吉,李明哲,蔡中义,等.板料多点与渐进复合成形方法及数值模拟[J].吉林大学学报(工学版),2009,9(39):178-182.
    [78] M. Z. Li, Y. H. Liu, S. Z. Su.Multi-point forming:a flexible method for a 3D surface sheet[J].Journal of Materials Processing Technology.1999,87:277-280.
    [79]中岛尚正.针金束を用いた金型·电极の研究[C].日本机械学会志第72卷第603号,昭和44年4月:32-40.
    [80]北野广雄等.钢板曲げ加工用万能调整式プレス机械の研究[D],日本东京:京都大学,昭和36年1月.
    [81]西岡富仁雄等,ユニバサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第一报基础の研究)[C].日本造船学会论文集第132号,昭和47年10月:481-501.
    [82]世古成道,熊本盛秀等.三条プレスの开发[J].三菱重工技报,1976,13(6):64-72.
    [83]井关日出男等.由柔性工具进行局部成形的方法[C].日本第42回塑性加工联合讲演会论文集,1991:265-266.
    [84] M. Z. Li, W. Z. Fu, et al. 2000kN multi-point forming press and its application to the manufacture of high-speed trains[C].Advanced Technology of Plasticity Proceedings of the 7th ICTP, JAPAN,2002:979-984.
    [85]付文智,李明哲,严庆光,等.630kN多点成形压力机的研制[J].吉林大学学报,2002,32(4):26-30.
    [86]付文智,李明哲,李东平,等.多点成形压力机及成形工艺的最新进展[J].机械科学与技术,2004,23(12): 1499-1502.
    [87]李明哲,胡志清蔡中义,等.自由曲面工件的连续高效塑性成形方法[J].吉林大学学报(工学版),2007,37(3):489-494.
    [88]龚学鹏.三维曲面板类件的多点滚压成形研究[D].长春:吉林大学博士学位论文,2010.
    [89] J. W. Park, Y. S. Hong, S. H. Lim. Dieless forming apparatus [P]. Patent number:6,151,938 USA 2000.
    [90] S. H. A. Boers, P. J. G. Schreurs, M. G. D. Geers. Path-dependent plasticity and 3D discrete forming [J]. Proc.of VIII International Conference on Computational Plasticity.Barcelona,Spain,5-7 September 2005.
    [91]王仲仁,董国庆,滕步刚,等.多点“三明治”成形及其在风洞收缩段形体制造中的应用[J].航空学报,2006,27(5):989-992.
    [92]张琦.金属板材多点“三明治”成形的数值模拟及实验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [93]李湘吉.基于多点成形与渐进成形的板料复合成形技术研究[D].长春:吉林大学博士学位论文,2009.
    [94] M. Valjavec . A closed-loop shape control methodology for flexible stretch forming over a reconfigurable tool [D].Massachusetts Institute of Technology,1999.
    [95]李寿萱.钣金成形原理与工艺[M].西北工业大学出版社,1985.
    [96] Alu Matter. Stretch Drawing [EB/OL]. http://www.aluminium.matter.org.uk/content/html/eng/default.asp? catid=189&pageid=2144416757. html.
    [97] Ducommun AeroStructures. Stretch Forming [EB/OL].http://www.ducommun.com/das/forming.aspx. html.
    [98] K.Siegert,K.-J.Fann,A.Rennet.CNC-Controlled segmented stretch forming process[J].Annals of the CIRP,1996,45(1):273-276.
    [99]侯红亮,余肖放,曾元松.国内航空钣金装备技术现状与发展[J].航空制造技术,2009,1:34-39.
    [100]张彦敏,周贤宾,罗红宇,等.双曲度飞机蒙皮拉伸成形轨迹优化与验证[J].中国机械工程,2006,2053-2056.
    [101]吉林大学.板材拉形机[P].中国,实用新型专利,200920093692.5,2009.
    [102]吉林大学.高柔性多头拉形机[P].中国,发明专利,200910217701.10,2009.
    [103]吉林大学.板材拉形机[P].中国,发明专利,200920093938.7,2009.
    [104]茅梦云,何鑫华,李永丰,等.柔性压辊拉形机原理及其数值模拟研究[J].锻压技术,2010,35(5):100-104.
    [105]李东升,罗红宇,王丽丽,等.飞机蒙皮的数字化成形制造技术[J].塑性工程学报,2009,16(1):82-87.
    [106]刘纯国,李明哲,隋振.多点技术在飞机板类部件制造中的应用[J].塑性工程学报,2008,15(2):109-114.
    [107]张文阳,李东升,李小强,等.可重构柔性模具蒙皮拉形模面生成方法研究与实现[J].锻压技术,2009,34(2):145-148.
    [108] S.H.Wang,Z.Y.Cai,M.Z.Li.Numerical investigation of the influence of punch element in multi-point stretch forming process[J].Int J Adv Manuf Technol,2010,48(5-8):475-483.
    [109] Z.Y.Cai,S.H.Wang,X.D.Xu,, et al.Numerical simulation for the multi-point stretch forming process of sheet metal[J].J Mater Process Technol,2009,209(1):396-407.
    [110] D.E.Hardt,B.chen.Control of A Sequential Brakeforming Process[J].Control Manuf.Process Rob.Syst,1983:246-253.
    [111] D.F.Walczyk,D.E.Hardt.Design and analysis of reconfigurable discrete dies for sheet metal forming [J].Journal of Manufacturing System,1998,17(6):436-454.
    [112] D. E. Hardt, D. C. Gossard. A variable geometry die for sheet metal forming: machine design and control[C].Proc. Jt. Autom. Control Conf.,1980:366-367.
    [113] D. E. Hardt, B. A. Olsen, B. T. Allison, K. Pasch. Sheet metal forming with discrete die surface[C]. Proc: 9th NAMRC,1981:275-280.
    [114] J. M. Papazian. Tools of Change:Reconfigurable forming dies raise the efficiency of small-lot production [J]. Mechanical Engineering, 2002,124:52-55.
    [115] J. M. Papazian, E. L. Anagnostou, R. J. Christ, et al. Tooling for rapid sheet metal parts production[C]. 6th Joint FAA/DoD/NASA Conference on Aging Aircraft, San Francisco, CA, USA, September 16-19, 2002.
    [116] J. M. Papazian,D. Hoitsma,L. M.Kutt,et al.Reconfigurable tooling for flexible fabrication [C]. Proprietary Quarterly and Annual Reports,Northrop Grumman/MIT/Alstom Pressure Systems/NRL,1995-1999.
    [117] D.E.Hardt,R.D.Webb.Sheet metal die forming using closed loop shape control[J].Annals of the CIRP,1982,31:165-169.
    [118] D.E.Hardt,R.E.Robinson,R.D.Webb.Closed-loop control of die stamped sheet metal parts:Algorithm development and flexible forming machine design[C]. Proceedings of Advanced Systems for Manufacturing Conference,Madison,Wisconsin USA,1985:21-28.
    [119] S.H.A.Boers,P.J.G.Schreures,M.G.D.Geers.Path-dependent plasticity and 3D discrete forming[C]. International conference on computational plasticity,VIII, Barcelona,2005.
    [120] E. L. Angnostou, Optimized tooling design algorithm for sheet metal forming over reconfigurable compliant tooling [D]. Ph.D. thesis, State University of New York at Stony Brook,2002.
    [121]陈雪,李明哲,付文智,等.球形件多钳式柔性拉形的数值模拟[J].锻压技术,2010,35(4):32-36.
    [122] R. W. Clough.The finite element method in plane stress analysis[C].J Struct Div ASCE Proc of 2nd conf Electronic Computation,1960,345-350.
    [123] O. C. Zienkeiwicz, Y. K. Cheung. The finite element method in structural and continuum mechanics [M]. Mc-Graw-Hill Inc., New York, 1967.
    [124] K. K. Gupta,J. L.Meek. A brief history of the beginning of the finite element method [J]. International Journal for Numerical Methods in Engineering, 1996, 39:3761-3774.
    [125] C.H.Lee,S.Kobayashi.New solution to rigid-plastic of deformation problems using a matrix method[J].Journal of Engineering for Industry, ASME,1973,95:865-873.
    [126] E.Onate, O.C.Zienkiewicz.A viscous shell formulation for the analysis of thin sheet metal forming[J].International Journal of Mechanical Science,1983, 25(5): 305-335.
    [127] P.V.Marcal, I.P.King.Elastic-plastic analysis of two-dimentional systems by the finite element method[J].International Journal of Mechanical Science,1967,9: 96-100.
    [128] Y.Yamada, N. Yoshimura, T. Sakurai.Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method[J].International Journal of Mechanical Science,1968, 10: 5-10.
    [129] H.D.Hibbit, et al.A finite element formulation for problems of large strain and large displacement[J].International Journal of Solids Structures,1970,6: 1069-1087.
    [130] R.M.Mcmeeking , J.R.Rice.Finite element formulation for problems of large elastic-plastic deformation[J].International Journal of Solids Structures,1975,11: 601-616.
    [131] J. T. Oden, D. R. Bhandari, et al.A new approach to the finite element formulation and solution of a class of problems in coupled thermo-elastoviscoplasticity of solids. Nuclear Engineering and Design, 1973, 24: 420-429.
    [132] N.M.Wang, M. L. Wenner.Elastic-viscoplastic ansysis of simple stretching forming processes [J].In:D.P.Koistinen, N.M.Wang.Mechanics of sheet metal Forming.Plenum Press,1978:367-391.
    [133] S.Kobayashi,J.H.Kim.Deformation analysis of axisymmetric sheet forming processes by the rigid-plastic finite element method[J].In:D.P.Koisthen, N.M.Wang. Mechanics of sheet Metal Forming. Prenum Press, New York,1978,341-365.
    [134] M.A.Hessami,W.Y.D.Yuen.Residual Stresses Induced by Stretch-Bending[C].Proceedings of the Fourth International Conference on Manufacturing Engineering,Brisbane,1988:78-83.
    [135] S.Socrate, M.C.Boyce.A finite element based die design algorithm for sheet-metal forming on reconfigurable tools. Journal of Engineering Materials and Technology, Transactions of the ASME V.123, 2001, Pages 489-495.
    [136] L.M.Kutt,J.A.Nardiello,P.L.Ogilvie,et al.Non-linear finite element analysis of springback[J].Communications in Numerical Methods in Engineering, 1999, 15(1): 33-42.
    [137] A.M.Yan,I.Klappka.Springback in stretch forming process of aeronautic panel production by finite element simulation[J].International Journal of Material Forming,2008,1-4.
    [138] A.G.Mamalis,D.E.Manolakos,A.K.Baldoukas.Finite element modeling of the stretch forming of coated steels[J].Journal of Materials Processing Technology, 1997(68): 71-75.
    [139] R.Suri,K.Otto.Variation modeling for a sheet stretch forming manufacturing system[J].Annals of the ClRP,1999,48(1):397-400.
    [140] O.Jaspart,L.D'Alvise.A virtual factory for the stretch forming process of aluminium part[C].s 7th National Congress on theoretical and applied Mechanics(NCTAM), 2006.
    [141] K.Siegert,A.Rennet,K.J.Fann.Prediction of the final part properties in sheet metal forming by CNC-controlled stretch forming[J].Journal of Materials Processing Technology, 1997,71:141- 146.
    [142] J.Wolak, F. R. Bodoia, R. E. Sherrcr, P. Worm. A preliminary study of an infinitely variable surface generator and its application to die forming[J].Manufacturing Engineering Transactions,1973,2 : 155-160.
    [143] V.Valentin.Implementing Strain Control in Stretch Forming[D].SM thesis,MIT Department of Mechanical Engineering,Jan,1999.
    [144] D.E.Hardt,W.A.Norfleet,et al.In process control of strain in a stretch forming process [J].Transactions of the ASME,2001,123:496-503.
    [145] Y.Tozawa.Dynamics of Springback[J].Journal of Japan Society of Plasticity,1977,18(202):953-963.
    [146]安丽娜,李晓星.弹性介质材料模型对回弹影响的数值模拟[J].航空制造技术,2002:17-20.
    [147]汪华,周贤宾.飞机蒙皮多点成形用复合柔性层结构优化[J].航空学报,2007,28(6):1482-1486.
    [148]汪华,周贤宾,罗红宇,等.复合垫层在多点蒙皮拉形中的应用[J].塑性工程学报,2007,14(5):43-47.
    [149]杜可佩,李东升,李小强.可重构柔性模具蒙皮拉形工艺仿真CAE系统开发[J].航空制造技术, 2007,(291):294-299.
    [150]曹珺雯,李东升,王丽丽,等.可重构柔性模具蒙皮拉形有限元等效模型[J].塑性工程学报,2009,16(3):74-77.
    [151]白笛,周贤宾,李东升.数控蒙皮拉形机试验系统及精度分析[J].北京航空航天大学学报,2004,30(4):334-338.
    [152]张彦敏,周贤宾.飞机蒙皮拉伸成形加载轨迹设计及优化[J].北京航空航天大学学报,2007,33(7):826-829.
    [153] D. H. He,D. S. Li,X. Q. Li,et al.Optimization on springback reduction in cold stretch forming of titanium-alloy aircraft skin [J].Transaction of Nonferrous Metals Society of China,2010,20:2350-2357.
    [154] D. H. He,X. Q. Li,D. S. Li,et al.Process design for multi-stage stretch forming of aluminium alloy aircraft skin [J].Transaction of Nonferrous Metals Society of China,2010,20:1053-1058.
    [155]白飘雪,曾元松,李志强.单曲率蒙皮零件柔性多点模具的拉形过程的数值模拟与优化[J].航空制造技术,2006,11:85-88.
    [156]白飘雪,曾元松,吴为,李志强.典型双曲率零件柔性多点模具蒙皮拉形技术研究[J].塑性工程学报,2007,14(12):105-108.
    [157]周朝晖,蔡中义,李明哲.多点模具的拉形工艺和数值模拟[J].吉林大学学报(工学版),2005,5:287-291.
    [158]张传敏,刘伟,陆贵友,等.多点数字化拉形成形性能的数值模拟分析[J].机械设计与制造,2009, (2):112-114.
    [159]蔡中义,张海明,李光俊,等.多点拉形数值模拟及模具型面补偿方法[J].吉林大学学报(工学版),2008,38(2):330-333.
    [160]陈志红,李明哲,高占民.蒙皮多点拉形过程中成形的缺陷的数值模[J].塑性工程学报,2007,14(3):112-116.
    [161]谭富星,许旭东,李光俊,等.柔性夹持多点拉形过程的数值模拟[J].西安交通大学学报,2008,42(9):1160-1164.
    [162] S. H. Wang, Z. Y. Cai, M. Z. Li. FE simulation of shape accuracy using the Multi-Point Stretch-Forming process [J]. Int. J. Materials and Product Technology, 2010, 38 (2/3):223-235.
    [163]张昊晗,李明哲,付文智,等.多辊下压式柔性拉形工艺及其数值模拟[J].吉林大学学报(工学版),2011,41(1):89-94.
    [164]陈雪,李明哲,付文智,等.基于多点模的板材柔性夹钳拉形夹持力[J].吉林大学学报(工学版),2011,41(1):95-99 .
    [165] X. Chen, M. Z. Li, W. Z. Fu, et al. Numerical simulation of different clamping modes on stretch forming parts[C]. Advanced Materials Research, 2011, 189-193: 1922-1925.
    [166]陈雪,李明哲,付文智,龚学鹏.多点成形冲头动态接触压力仿真分析[J].农业机械学报,2010,41(10):221-226.
    [167]翟平,林兆荣.飞机钣金成形原理与工艺[M].西安:西北工业大学出版社,1995.
    [168]胡世光,陈鹤峥,李东升,等.板料冷压成形的工程解析(第2版)[M].北京航空航天大学出版社,2009.
    [169]张冬娟,崔振山,李玉强,等.平面应变板料拉弯成形回弹理论分析[J].工程力学,2007,24(7):66-71.
    [170] D. Y. Yang,D. W. Jung,I. S. Song,et al. Comparative investigation into implicit,explicit,and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes [C]. In: Proc of NUMISHEET’93 Numerical Simulation of 3-D Sheet Metal Forming Processes- Verification of Simulation with Experiment,Tokyo,1993,39-53.
    [171] M. Kawka, A. Makinouchi. Shell-element formulation in the static explicit FEM code for the simulation of sheet stamping [C]. In: Proc of NUMISHEET’93 Numerical Simulation of 3-D Sheet Metal Forming Processes- Verification of Simulation with Experiment,Tokyo,1993,105-115.
    [172] L. Bernspang,T. Hammam,K. Mattiasson,et al. Samuelsson. Verification of an Explicit finite Element Code for the Simulation of the Press Forming of Rectangular Boxes of Coated Sheet Steels[J].Journal of Materials Processing Technology, 1993(39):431-453.
    [173] A. G. Mamalis, D. E. Manolakos, A. K. Baldoukas. Finite-element modeling of the stretch forming of coated steels [J]. Journal of Materials Processing Technology,1997,68:71-75.
    [174] E. Nakamachi,H. Tongru. Development of Virtual Manufacturing System for Automotive Sheet Forming[C].Advanced Technology of Plasticity Proceeding of the Fourth International Conference on Technology of Plasticity,1993:1799-1805.
    [175] M. J. Finn,P. C. Galbraith,L. Wu,et al. Use of a Coupled Explicit Implicit Solver for Calculating Spring back in Automotive Body Panels[J].Journal of Material Processing Technology,1995(50):395-409.
    [176] O. C. Zienkeiwicz, R. L. Taylor. The Finite Element Method, Volume 2: Solid Mechanics Fifth Edition [M]. Butterworth-Heinemann, 2000: 217-242.
    [177] J. O. Hallquist. LS-DYNA theoretical manual [M]. Livermore software technology corporation,1998.
    [178] M. Mooney. A Theory of Large Elastic Deformation [J]. Journal of Applied Physics, 1940,6:582-592.
    [179] R. S. Rivlin. Forty Years of Nonlinear Continuum Mechanics[C].Proc. IX Int. Congress on Rheology. 1984:1-29.
    [180]冯朋晓,李明哲,付文智.高柔性多夹钳拉形机的结构设计[J].锻压装备与制造技术,2010,5:21-24.
    [181]白笛,周贤宾,李东升,等.飞机复杂蒙皮拉形数值模拟系统开发及关键技术研究[J].航空学报,2004,25(6):606-610.
    [182] J. W. Hutchinson. Plastic bucking [J]. Advances in Applied Mechanics, 1974, 14:67-144.
    [183] K. W. Neale, P. Tugcu. A numerical analysis of wrinkle formation tendencies in sheet metal [J]. International Journal for Numerical Methods in Engineer, 1990,30:1595-1608.
    [184]蔡中义,李明哲,宋雪松.无压边多点成形中起皱的分析与控制[J].塑性工程学报,2003,10(5):14-18.
    [185] R. Pilani, K. Narasimhan, S. K. Maiti, et al. A hybrid intelligent systems approach for die design in sheet metal forming [J]. International Journal of Advanced Manufacturing Technology 2000,16(5): 370-375.
    [186] A. D. Santos, J. F. Duarte, A. Reis, et al. The use of finite element simulation for optimization of metal forming and tool design [J]. Journal of Materials Processing Technology. Technol. 2001,119 (1-3):152-157.
    [187] S. K. Esche, S. Khamitkar, G. L. Kinzel, et al. Process and die design for multi-step forming of round parts from sheet metal [J]. Journal of Materials Processing Technology 1996,59(1-2):24-33.
    [188]宋天霞,邹时智,杨文兵.非线性结构有限元计算[M].武汉:华中理工大学出版社,1996.
    [189] E. Onate, J. Rojek, C. G. Garino. NUMISTAMP: a research project for assessment of finite element models for stamping processes [J]. Journal of Materials Processing Technology,1995,50 (1) :17-38.
    [190] F. Lan, J. Chen, J. Lin. A method of constructing smooth tool surfaces for FE prediction of springback in sheet metal forming [J]. Journal of Materials Processing Technology, 2006,177 :382-385.
    [191]林忠钦,李淑慧,于忠奇,等.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2005.
    [192] S. P. Wang, E. Nakamachi. Nonlinear contact and friction modeling in dynamic explicit finite element analysis. In: Proc of NUMISHEET’96, Detroit, 1996, 9-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700