多辊下压式柔性拉形过程及其数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉伸成形(简称拉形)具有成形精度高和回弹量小等优点,是飞机蒙皮的主要成形方式。蒙皮件是构成飞机外形的关键零件,其制造质量直接影响飞机的气动性能。随着航空工业的发展,国内外飞机的产量越来越大,质量要求越来越高,其研发周期却在迅速缩短。此外,新一代飞机普遍采用翼身融合体设计,需要大面积的S形、马鞍形等有凹有凸、有弯有扭的复杂形状蒙皮。这些都为拉形技术带来了崭新的挑战,拉形装备迫切需要提高自身的柔性以适应航空工业的发展。
     多辊下压式拉形技术是一种基于新原理的柔性拉形技术,其基本原理是,用可浮动夹钳将板材两端夹住,采用离散为若干个的可摆头压辊下压板材悬空区的方式使板材贴模成形。该技术具有柔性高、成形范围大、板材贴模容易、成本低、控制简单、成形质量好等优点,具有较高的工程应用价值和学术研究价值。
     本文的主要研究内容与结论如下:
     1.在多辊下压式拉形装置及工艺研究方面分析了传统拉形机的结构特点,指出了传统拉形机存在的问题和多辊下压式拉形机的优势。给出了多辊下压式拉形实验装置设计方案,包括压辊机构、刚性浮动夹钳和柔性浮动夹钳两种夹钳机构、齿形压板和带筋压板两种夹钳压板;对多辊下压式拉形实验装置的可行性和实用性进行了实验验证。总结了多辊下压式拉形的典型成形工艺,即直接下压工艺、弯曲—下压工艺和上浮—下压工艺。研究了多辊下压式拉形中夹钳和压辊的加载控制方法。
     2.在多辊下压式拉形有限元建模方法研究方面
     基于ANSYS/LS-DYNA,建立了多辊下压式拉形的有限元分析模型和显—隐式回弹分析模型。通过对有限元模型的收敛性分析确定了较合理的板材单元尺寸。针对柔性浮动夹钳摆头的实际情况,提出了夹钳质心的修改方案并进行了验证,结果表明:该方案能够模拟出夹钳摆头的实际情况。对本文建立的有限元模型的可行性和准确性进行了实验验证,结果表明:数值模拟结果在形状特点、变形规律、回弹结果和危险点位置等方面与实验结果吻合较好。
     3.在多辊下压式拉形工艺的数值模拟研究方面
     根据多辊下压式拉形装置的结构特点和控制方式,推导了典型工艺过程中夹钳上浮量和压辊下压量的计算公式,并对压辊下压量公式进行了数值模拟和实验验证。以典型曲面为研究对象,对传统拉形和多辊下压式拉形过程进行了数值模拟,结果表明:与传统拉形相比,采用多辊下压式拉形时板材贴模更容易,成形件应力、应变、板厚分布更均匀。对比分析了三种典型工艺对成形结果的影响,总结了三种工艺各自的优缺点和适用范围;研究了板材和模具之间润滑对成形结果的影响,结果表明:良好的润滑能够使成形件应变、板厚分布更均匀。
     4.在夹钳机构对成形结果的影响研究方面
     对柔性浮动夹钳的夹持效果进行了仿真和实验验证,证明了柔性浮动夹钳能够较好的应用于多辊下压式拉形中,实现对板材的柔性、浮动夹持。对比分析了刚性浮动夹钳和柔性浮动夹钳对成形结果的影响,结果表明:采用柔性浮动夹钳时所得到的成形件应力、应变、板厚分布更均匀,且不容易产生起皱、拉裂等缺陷。对比分析了齿形压板和带筋压板两种夹钳压板对成形结果的影响,探讨了两种压板的优缺点和适用范围,并进行了相关实验验证;给出了带筋压板临界夹持阻力的计算方法,推导了相关理论计算公式。
     5.在压辊机构对成形结果的影响研究方面
     分析了滚动压辊和滑动压辊对成形结果的影响,探讨了压辊滚动设计的必要性和实用性;探讨了压辊机构离散化程度对成形结果的影响,确定了在本文研究条件下较优的压辊机构离散化程度;分析了两侧压辊到板材边缘的距离对成形结果的影响;系统探讨了压辊位置对成形结果的影响,首先对比分析了压辊位于模具上方和压辊位于悬空区上方时多辊下压式拉形过程和数值模拟结果,探讨了压辊在以上两种位置适合成形的工件类型;然后针对压辊位置在悬空区上方这种情况,分析了压辊与模具之间距离和压辊与夹钳之间距离对成形结果的影响,结果表明:压辊距离模具越近,压辊对板材施力方向越接近模具端面法线方向且成形件应变、板厚分布越均匀,而压辊与夹钳之间距离对成形结果影响不大。
     6.在多辊下压式拉形过程中起皱缺陷的研究方面
     由于拉形主要用于薄板件的成形,所以拉形过程中较易发生起皱缺陷。以鞍形面和球形面为研究对象,对工件起皱现象进行了模拟,结果表明鞍形面皱曲主要产生在板材中部,而球形面皱曲主要产生在板材两侧,采用壳单元主应变状态和应力应变顺序对应定律对产生皱曲的原因进行了解释,并从板材宏观受力的角度分析了起皱过程。以鞍形面为研究对象,对传统拉形和多辊下压式拉形起皱现象进行了模拟,结果表明:与传统拉形方式相比,多辊下压式拉形方式不易起皱。分析了板厚、板材与模具之间润滑和预拉对鞍形面中部起皱的影响规律,结果表明:板材厚度越薄,润滑越充分,预拉量越小,板材越容易起皱;提出了压辊分步下压的起皱抑制方法,分析了该方法能够抑制鞍形面中部起皱的原因,并采用数值模拟方法进行了验证。
Stretch forming process are extensively used for forming aircraft outer skin parts. The stretched parts will have better shape control and smaller springback after forming because of the metal strain-hardening. The skin parts are main parts for structuring aerodynamic configuration, so the forming quality of skin parts are directly influence the aerodynamic performance of aircrafts. As the rapid development of aviation industry, the demand of skin parts are increasing, the quality is becoming higher and higher and the development cycles are getting shorter and shorter. In addition, as the new generation of aircraft commonly use blended wing body design, the aircraft manufacturers require a lot of complex shaped skin parts, such as S-shaped, saddle-shaped parts. These all brings new challenges to the stretch forming technology and it is important to enhance the flexibility of stretch forming equipments to adapt the development of aviation industry.
     Multi-roll stretch forming (MRSF) is a new flexible stretch forming technology based on a new principle. The basic principle of multi-roll stetch forming is clamping both ends of sheet metal with flexible floating clamp device firstly, and then using a number of discrete rollers press the free area of sheet metal to form the part. MRSF can improve the forming range of stretch forming and make the sheet metal attaching to the die easily. In addition, it also have other advantages, such as low cost, simple control and good quality. MRSF is provided with higher engineering applied value and academic research value.
     The main contents and conclusions are as follows:
     1. Researh on MRSF equipment and forming process
     The structural characteristics of the traditional stretch forming machine is analyzed, and the shortcomings of traditional stretch forming machine and the advantages of MRSF are given. The design scheme of MRSF testing machine is discussed, including the structure of roller device, two types of clamp device (rigid floating clamp and flexible floating clamp)and two types of clamp plate (tooth-shape clamp plate and brake clamp plate; the related experimental validation is finished. The typical processes are summarized, which are directly press forming process, bend-press forming process and lift up-press forming process. The control methods of roller device and clamp device are studied.
     2. Research on the finite element analysis (FEA) modeling method of MRSF
     Based on the FEA software ANSYS/LS-DYNA, the FEA model and explicit-implicit springback analysis model are established. Using the numerical simulation method, the convergence of the FEA model is analyzed and the element size of sheet metal are determined. For the practical swing situation of the flexible floating clamp, a FEA model program to modify the clamp centroid is established; the simulation validation is finished, and the results indicate that the practical situation of clamp swing can be reflected in this program. the related experimental validation of finite element modeling accuracy is finished, the results indicate that the deformation, springback and dangerous point prediction results of simulation coincide with the experimental results.
     3. Numerical simulation on MRSF process
     According to the structural characteristics and control method of MRSF testing machine, the calculation formulas of the loading amount of clamp and roller in typical forming process are derived; the related numerical simulation and experimental validation are finished, the results indicate that the formula is feasible. Take the typical surface parts as research object, the processes of traditional stretch forming and MRSF are simulated, the numerical simulation results indicate that the parts formed by MRSF process, comparing with the traditional stretch forming process, have more uniform distributions of stress, strain and thickness. The three typical forming processes of MRSF are simulated, the using scope and effect on formed parts of different forming processes are analyzed. The lubrication effect between the sheet metal and die is studied, the results indicate that good lubrication can make the strain and thickness distributions of formed parts more uniform.
     4. The effect of clamp device on the forming results
     Numerical simulation and experimental validation of the clamping process of floating clamp device are done, the results proved that the clamp device can be applied to the MRSF process. The effect of rigid floating clamp (RFC) and flexible floating clamp (FFC) on forming results is comparative analyzed, the results shows that the stress, strain and thickness distributions of the parts formed by FFC are more uniform and more prone to wrinkle and rupture by using RFC. Take the tooth-shaped clamp plate and brake clamp plate as research object, the effect of different clamp plate on forming results is comparative analyzed, the advantages and disadvantages are investigated and the related experimental is done, the results indicate that the two types of clamp plate are all feasible. Finally, the calculation formulas of critical clamping resistance of brake clamp are derived.
     5. The effect of roller device on the forming results
     The effect of sliding roller and rolling roller on forming results are studied, the results indicate that it is necessary and practical to design a roller unit with a roller head which can roll around itself. The discretization effect of the roller device on forming results is analyzed, and the optimal discretization of roller device in this case is determined. The effect of the distance between roller and the plate edge is analyzed, and the distance ranges of typical parts are calculated. The effect of different positions of roller device on forming results is studied, the results indicate that it is more suitable to form a large deformation 3D-surface when the roller device is on the top of die; For the situation that roller device is on the top of the free area of sheet metal, the effect of the distance between roller device and die on forming results is investigated, the results shows that the smaller the distance is, the more easily the shape can be formed, and the better the quality of formed part can be; In addition, the effect of the distance between roller device and clamp device on the forming results is studied, the results shows that the distance has little impact on the quality of forming results.
     6. Research on wrinkle defects in MRSF process
     For stretch forming process is mainly used to form thin metal plate, so the formed parts is always have wrinkle defects. Take the saddle-shaped surface part and spherical surface part as research object again, the wrinkling is simulated. The simulation results indicate: for the, wrinkling is on the middle of saddle-shaped surface part and on the both side of the spherical surface part, and the reasons of wrinkling are explained by principal strain state of shell element and the law of stress-strain. The wrinkling distribution area, wrinkling process and the cause of wrinkling of saddle-shaped surface and spherical surface parts are analyzed. Take saddle-shaped surface as the research object, the wrinkling is simulated. The simulation results indicate that, compared with the MRSF process, the traditional stretch forming process is more prone to wrinkle. The influence of thickness, lubrication and pre-stretching displacement to the wrinkling is analyzed. The results indicate that the thinner the sheet metal is and the better the lubrication is, the less prone to wrinkle; The pre-stretching can suppress wrinkling and the bigger the pre-stretching displacement is, the less prone to wrinkle. The wrinkle suppression method called fractional steps pressing mode is advanced, the related numerical simulation validation is finished. The simulation results indicate that this method can suppress the generation of wrinkles.
引文
[1]龚学鹏.三维曲面板类件的多点滚压成形研究[D].长春:吉林大学,2010.
    [2]刘伟.板材多点成形缺陷的数值模拟及颅骨钛板假体数字化制造研究[D].长春:吉林大学,2006.
    [3]孔永明,周贤宾,吕杰武等.蒙皮拉形模拟前置处理软件开发及关键技术研究[J].塑性工程学报,2001,8(2):29-31.
    [4]曹珺雯.可重构柔性模具蒙皮拉形工艺仿真技术及应用研究[D].北京:北京航空航天大学,2008.
    [5]张彦敏,周贤宾,罗红宇等.双曲度飞机蒙皮拉伸成形轨迹优化与验证[J].中国机械工程,2006,17(19):2053-2056.
    [6] A. N. Parris. Precision stretch forming of metal for precision assembly[D]. Massachusetts: Department of Mechanical Engineering, Massachusetts Institute of Technology, 1996.
    [7]张传敏.多点数字化拉形工艺的数值模拟研究[D].长春:吉林大学,2010.
    [8]金海霞.镜面铝合金蒙皮拉形基础试验与数值模拟研究[D].北京:北京航空航天大学,2006.
    [9]侯红亮,余肖放,曾元松.国内航空钣金装备技术现状与发展[J].航空制造技术,2009,(1):34-39.
    [10]罗红宇,李东升,张彦敏等.数控蒙皮拉形试验机系统开发与应用研究[J].试验技术与试验机,2006,(4):31-33.
    [11]周磊,金建新,周瑞武.飞机蒙皮拉形机数字化控制的研究[J].机械工程师,2003,(10):28-30.
    [12]吉林大学.高柔性多头拉形机:中国,200920094483.0[P].2009-10-09.
    [13] J. B. Pond. New plastic tooling plus new stretch forming machine equals lower cost aircraft wings[J]. Machinery (NY), 1970, 76(10): 47-51.
    [14] H. W. Swift. Plastic bending under tension[J]. Engineering, 1948, 166: 333-359.
    [15] A. Baba and Y. Tozawa. Effect of tensile force in Stretch-Forming process on the springback[J]. Bulletin of JSME, 1964, 7(28): 834-843.
    [16] J. Chakrabarty. A theory of stretch forming over hemispherical punch heads[J]. International Journal of Mechanical Sciences, 1970, 12(4): 315-325.
    [17] B. Kaftanoglu and J. M. Alexander. On quasistatic axisymmetrical stretch forming[J]. International Journal of Mechanical Sciences, 1970, 12(12): 1065-1084.
    [18] T. C. Hsu and P. K. Lee. Study of the strain distributions and strain histories in axisymmetrical stretch-forming[J]. American Society of Mechanical Engineers, 1973, 73.
    [19] R. P. Williams. Precision stretch forming large shapes[J]. Manufacturing Engineering, 1977, 78(2): 44-46.
    [20] P. M. Coffman. Stretch forming - new route to pp containers[J]. Automotive Plastics, 1977, 35: 45-47.
    [21] P. M. Coffman. Stretch-forming: a simple process with a lot of potential[J]. Plastics Engineering, 1977,33: 19-21.
    [22] M. Ueda, K. Ueno and M. Kobayashi. A study of springback in the stretch bending of channels[J]. Journal of Mechanical Working Technology, 1981, 5(3-4): 163-179.
    [23] K. K. Chen and D. C. Sun. Hydrodynamic lubrication in hemispherical punch stretch forming[J]. Journal of Applied Mechanics, Transactions ASME, 1986, 53(2): 440-449.
    [24] S. S. Oding and I. A. Alimenko. Stretch-wrap forming of multilayer skins[J]. Soviet Aeronautics (English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika), 1986, 29: 119-123.
    [25] Yasushi Kurosaki, Masanobu Matsumoto and Masanori Kobayashi. Studies on anisotropic yield characteristics and press formability of metal sheets (investigation into pure stretch-forming)[J]. JSME international journal, 1988, 31: 789-795.
    [26] V. V. Eliseev. Caculation of transitions in stretch forming[J]. Soviet Aeronautics, 1991, 34(2): 108-111.
    [27] A. E. Bayoumi and R. Joshi. On the formability/instability of stretch-forming sheet metals[J]. Applied Mechanics Reviews, 1992, 45: 154-164.
    [28] K. Siegert, K. J. Fann and A. Rennet. CNC-controlled segmented stretch-forming process[J]. CIRP Annals - Manufacturing Technology, 1996, 45(1): 273-276.
    [29] K. Siegert, A. Rennet and K. J. Fann. Prediction of the final part properties in sheet metal forming by CNC-controlled stretch forming[J]. Journal of Materials Processing Technology, 1997, 71(1): 141-146.
    [30] R. T. Fox, A. M. Maniatty and D. Lee. Determination of friction coefficient for sheet materials under stretch-forming conditions[J]. Metallurgical transactions. A, Physical metallurgy and materials science, 1989, 20A: 2179-2182.
    [31] D. E. Hardt, W. A. Norfleet, V. M. Valentin, et al. In process control of strain in a stretch forming process[J]. Journal of engineering materials and technology, 2001, 123: 496-503.
    [32] D. Vlahovic and M. Liewald. Benchmarking methods for short cycle stretch-forming[J]. International Journal of Material Forming, 2008, 1: 193-196.
    [33] A. Papaioanu and M. Liewald. Further development of the SCS Stretch-Forming technology with assistance of forming simulation[J]. International Journal of Material Forming, 2010, 3: 155-158.
    [34]万敏,周贤宾,李晓星等.拉形条件对镜面蒙皮成形质量的影响[J].北京航空航天大学学报,1998,24(6):664-657.
    [35]伍惠.双曲度镜面蒙皮的成形工艺[J].航空制造技术,2002,(3):55-57.
    [36]刘益成,周贤宾.蒙皮拉形机机构运动分析[J].航空制造技术,2004,(1):85-88.
    [37]韩金全,万敏,袁胜等.飞机复杂蒙皮拉形模具型面设计方法[J].北京航空航天大学学报,2008,(11):1360-1363.
    [38]韩金全,万敏,李卫东.基于回弹的飞机蒙皮拉形模型面修模技术研究[J].机械工程学报,2009,45(11):184-188.
    [39]申丽娟,杨军,赵宇.基于方差传递模型的飞机蒙皮拉形工艺稳健设计[J].机械工程学报,2011,47(1):145-151.
    [40]陈鲲,万敏,李卫东等.飞机蒙皮拉形工艺知识库的研究与开发[J].塑性工程学报,2008,15(5):142-146.
    [41]李明哲,中村敬一.基本的な成形原理の检讨(板材多点成形法の研究第1报)[C].平成4年度塑性加工春季讲演会论文集,1992,519-522.
    [42]李明哲,中村敬一.多点成形における不良现象の发生及ぴその抑制(板材多点成形法の研究第3报)[C].日本第43回塑性加工联合讲演会论文集,1992,425-428.
    [43]李明哲,中村敬一.油压式多点プレス实验装置の试作(板材多点成形法の研究第2报)[C].平成4年度塑性加工春季讲演会论文集,1992,523-526.
    [44]陈雪,李明哲,付文智等.多点成形冲头动态接触压力仿真分析[J].农业机械学报,2010,41(10):223-226.
    [45]北野广熊.钢板曲げ加工用万能调整式プレス机械の研究[D].日本:京都大学,1961.
    [46]中岛尚正.针金束を用いた金型?电极の研究[J].日本机械学会志,1959,72(603):32-40.
    [47]西冈富仁雄等.ユニバサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第一报基础の研究)[J].日本造船学会论文集,1972,(132):481-501.
    [48]西冈富仁雄等.ユニバサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第二报实用化研究)[J].日本造船学会论文集,1973,(133):291-305.
    [49]世古成道,熊本盛秀等.三条プレスの开发[J].三菱重工技报,1976,13(6):64-72.
    [50]井关日出男等.由柔性工具进行局部成形的方法[C].日本第42回塑性加工联合讲演会论文集,1991,265-266.
    [51]野本敏治.多点フしス法にとゐ船体外板の曲げ加工に关すゐ基础的研究[C].日本造船学会论文集第170号,1991,170:587-589.
    [52]井关日出男,加腾和典等.通过柔性工具进行逐次成形的方法[C].平成4年度塑性加工春季讲演会论文集,1992,527-530.
    [53]中村敬一,李明哲.ねじれ形状の多点成形に关する实验的检讨(板材多点成形法の研究第4报)[C].第43回塑性加工联合讲演会论文集,1992,429-432.
    [54]岛昭夫,中村敬一,李明哲.ねじれ形状に对应した多点プレス成形CAD/CAMシステムの开发(板材多点成形法の研究第5报)[C].第45回塑性加工联合讲演会论文集,1994,335-338.
    [55]中村敬一,岛昭夫,李明哲.多点プレス成形装置の开发(板材多点成形法の研究第6报)[C].第45回塑性加工联合讲演会论文集,1994,339-342.
    [56] D. E. Hardt and B. Chen. Control of a sequential brakeforming process[J]. Journal of Engineering for Industry, 1985, 107: 141-145.
    [57] D. E. Hardt, R. D. Webb and N. P. Suh. Sheet metal die forming using closed-loop shape control[J]. CIRP Annals-Manufacturing Technology, 1982, 31(1): 165-169.
    [58] M. Hale and D. Hardt. Dynamic analysis and control of a roll bending process[J]. Control Systems Magazine, IEEE, 1987, 7(4): 3-11.
    [59] R. D. Webb and D. E. Hardt. A transfer function description of sheet metal forming for processcontrol[J]. Journal of Engineering for Industry, 1991, 113(1): 44-52.
    [60] D. F. Walczyk and D. E. Hardt. Design and analysis of reconfigurable discrete dies for sheet metal forming[J]. Journal of manufacturing systems, 1998, 17(6): 436-453.
    [61]李明哲,苏世忠,李广权等.金属板材无模多点成形专用/CAM与CAT软件的开发[J].中国机械工程,1999,(3):298-301.
    [62]李明哲,裴永生,徐建丽.薄板类件多点成形过程的数值模拟[J].材料科学与工艺,2004,12(4):379-382.
    [63] Z. Y. Cai, S. H. Wang and M. Z. Li. Numerical investigation of Multi-Point forming process for sheet metal: wrinkling, dimpling and springback[J]. The International Journal of Advanced Manufacturing Technology, 2008, 37(9): 927-936.
    [64]李明哲,赵晓江,苏世忠等.球形曲面多点分段成形的实验研究[J].塑性工程学报,1996,3(4):19-26.
    [65]钱直睿,李明哲,孙刚等.球形面多道次多点成形的数值模拟[J].吉林大学学报(工学版),2007,37(2):338-342.
    [66]钱直睿,李明哲,谭富星等.多点压机成形与多道次多点模具成形的数值模拟研究[J].塑性工程学报,2007,14(3):20-23.
    [67]刘纯国,李明哲,隋振.多点闭环成形中基本体群曲面描述方法的研究[J].中国机械工程,2003,14(24):2071-2073.
    [68]周朝晖,蔡中义,李明哲.多点模具的拉形工艺及其数值模拟[J].吉林大学学报(工学版),2005,35(3):287-291.
    [69] S. H. Wang, Z. Y. Cai and M. Z. Li. Numerical investigation of the influence of punch element in multi-point stretch forming process[J]. The International Journal of Advanced Manufacturing Technology, 2010, 49(5): 475-483.
    [70] Z. Y. Cai, S. H. Wang, X. D. Xu, et al. Numerical simulation for the Multi-Point stretch forming process of sheet metal[J]. Journal of Materials Processing Technology, 2009, 209(1): 396-407.
    [71] S. H. Wang, Z. Y. Cai and M. Z. Li. FE simulation of shape accuracy using the Multi-Point Stretch-Forming process[J]. International Journal of Materials and Product Technology, 2010, 38(2): 223-236.
    [72] D. T. Pham, S. Z. Su, M. Z. Li, et al. Digitally Adjustable Tooling technology for dieless forming and jigless assembly of panels[C]. 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 2007, 403-408.
    [73] J. M. Papazian and D. Hoitsma. Reconfigurable tool for flexible fabrication[C]. Northrop Grumman/MIT/Alstom Pressure Systems/NRL Proprietary Quarterly and Annual Reports, 1995-1999,
    [74] D. E. Hardt and D. C. Gossard. A variable geometry die for sheet metal forming: machine design and control[J]. Proc. Jt. Autom. Control Conf., 1980, 366-367.
    [75] D. E. Hardt, B. A. Olsen, B. T. Allison, et al. Sheet metal forming with discrete die surface[C]. Proc:9th NAMRC, 1981, 275-280.
    [76] J. M. Papazian. Reconfigurable forming dies raise the efficiency of small-lot production[J]. Mechanical Engineering, 2002, 124(2): 52-55.
    [77]罗红宇,李东升,曾元松等.蒙皮拉形可重构柔性模具模面生成系统开发及应用研究[J].塑性工程学报,2006,13(6):61-65.
    [78]崔相吉,许旭东,李光俊等.飞机蒙皮多点拉形装置的开发及应用[J].锻压装备与制造技术,2008,(3):35-37.
    [79] D. E. Hardt, R. E. Robinson and R. D. Webb. Closed-loop control of die stamped sheet metal parts: algorithm development and flexible forming machine design[C]. Proceedings of Advanced Systems for Manufacturing Conference, Madison,Wisconsin USA, 1985, 21-28.
    [80] M. Valjavec and D. E. Hardt. Closed-loop shape control of the stretch forming process over a reconfigurable tool: precision airframe skin fabrication[C]. Manufacturing Engineering Division Proceedings of the ASME, MED, 1999, 10: 909-919.
    [81] A. K. Rzepniewski, D. E. Hardt and C. D. Vaughan. Cycle-to-Cycle control of multivariable manufacturing processes with process model uncertainty[C]. Proceedings of ASME International Mechanical Engineering Congress and RD&D Expo, California, USA, 2004.
    [82] S. H. A. Boers, P. J. G. Schreurs and M. G. D. Geers. Path-Dependent plasticity and 3D discrete forming[C]. VIII International conference on computational plasticity, Barcelona, spanish, 2005, 1-4.
    [83]蔡中义,张海明,李光俊等.多点拉形数值模拟及模具型面补偿方法[J].吉林大学学报(工学版),2008,38(2):329-333.
    [84]黄丽丰,李东升,罗红宇.可重构柔性模具蒙皮拉形闭环形状控制系统设计[J].塑性工程学报,2008,15(6):38-42.
    [85]冯朋晓,李明哲,付文智.高柔性多夹钳拉形机的结构设计[J].锻压装备与制造技术,2010,(5):21-25.
    [86]陈雪,李明哲,付文智等.基于多点模的板材柔性夹钳拉形夹持力[J].吉林大学学报(工学版),2011,41(1):95-99.
    [87] X. Chen, M. Z. Li, W. Z. Fu, et al. Research on Multi-Head stretch forming technology of sheet metal[C]. International Conference on Electrical and Control Engineering, Wuhan, China, 2010, 1(1): 2952-2955.
    [88] X. Chen, M. Z. Li, W. Z. Fu, et al. Numerical simulation of different clamping modes on stretch forming parts[J]. Advanced Materials Research, 2011, 189: 1922-1925.
    [89] X. Chen, M. Z. Li, Z. Y. Cai, et al. Effect of different clamping modes on dimples of sheet metal parts in multi-point stretch forming[J]. Applied Mechanics and Materials, 2011, 44: 2326-2330.
    [90] H. L. Peng, M. Z. Li, Q. G. Han, et al. Design of Flexible Multi-Gripper Stretch Forming Machine by FEM[J]. Advanced Materials Research, 2011, 328: 13-17.
    [91]李明哲,胡志清,蔡中义等.自由曲面工件多点连续成形方法[J].机械工程学报,2007,43(12):155-159.
    [92]胡志清.连续多点成形方法,装置及成形实验研究[D].长春:吉林大学,2008.
    [93] M. Z. Li, Z. Q. Hu, Z. Y. Cai, et al. Research on new spinning process based on the principle of continuous multi-point forming[C]. 9th International Conference on Technology of Plasticity, Gyeongju, Korea, 2008, 2360-2365.
    [94] Z. Q. Hu, M. Z. Li, Z. Y. Cai, et al. Continuous flexible forming of three-dimensional surface parts using bendable rollers[J]. Materials Science and Engineering: A, 2009, 499(1-2): 234-237.
    [95]龚学鹏,李明哲,胡志清.使用可弯曲辊的三维曲面卷板成形过程数值模拟[J].吉林大学学报(工学版),2008,38(6):1310-1314.
    [96]龚学鹏,李明哲,胡志清.三维曲面柔性卷板成形技术及其数值模拟[J].北京科技大学学报,2008,30(11):1296-1300.
    [97]付文智,李明哲,邓玉山等.多点成形中的柔性压边技术研究[J].塑性工程学报,2006,13(2):32-35.
    [98] G. Sun, M. Z. Li, X. P. Yan, et al. Study of blank-holder technology on multi-point forming of thin sheet metal[J]. Journal of Materials Processing Technology, 2007, 187-188: 517-520.
    [99]吉林大学.板材拉形机:中国,200910067003.6[P].2009-05-25.
    [100]张昊晗,李明哲,付文智等.多辊下压式柔性拉形工艺及其数值模拟[J].吉林大学学报(工学版),2011,41(1):89-94.
    [101] H. H. Zhang, M. Z. Li, W. Z. Fu, et al. Study of Multi-Roll stretch forming process using different clamps[J]. Applied Mechanics and Materials, 2011, 44-47: 2752-2756.
    [102] H. H. Zhang, M. Z. Li, W. Z. Fu, et al. Numerical simulation of Multi-Roll stretch forming process with different lubrication and rollers[C]. The 2nd International Conference on Mechanical Industrial and Manufacturing Technologies, Singapore, 2011, 2: 608-612.
    [103]茅梦云,何鑫华,李永丰等.柔性压辊拉形机原理及其数值模拟研究[J].锻压技术,2010,35(5):100-104.
    [104]李永丰,丛晓霜,何鑫华等.柔性压辊拉形中回弹的数值模拟[J].塑性工程学报,2010,17(6):46-50.
    [105]冯兰,蔡英文,何丹农等.金属板料成形数值模拟的研究现状[J].塑性工程学报,2004,11(6):1-6.
    [106] M. A. Hessami and W. Y. D. Yuen. Residual stresses induced by stretch-bending[C]. Proceedings of the Fourth International Conference on manufacturing Engineering, Brisbane, 1988, 78-83.
    [107] V. V. Kadannikov, L. G. Sukhomlinov, A. D. Matveev, et al. Process parameters of stretch forming of a thin wide sheet around cylindrical surfaces[J]. Soviet Forging and Sheet Metal Stamping Technology (English Translation of Kuznechno-Shtampovochnoe Proizvodstvo), 1989, 13: 98-104.
    [108] L. M. Kutt, J. A. Nardiello, P. L. Ogilvie, et al. Non-linear finite element analysis of springback[J]. Communications in numerical methods in engineering, 1999, 15(1): 33-42.
    [109] S. Socrate and M. C. Boyce. A finite element based die design algorithm for sheet-metal forming on reconfigurable tools[J]. Journal of engineering materials and technology, 2001, 123(4): 489-495.
    [110] H. H. Wisselink and A. H. Van den Boogaard. Finite element simulation of the stretch-forming of aircraft skins[C]. Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process, 2005, 778: 60-65.
    [111] O. Jaspart and L. D'Alvise. A virtual factory for the stretch forming process[C]. The 7th National Congress on theoretical and applied Mechanics (NCTAM), 2006.
    [112]李晓星.拉形数值模拟前后置处理系统与OpenGL的应用[J].航空制造工程,1998,6(5):5-8.
    [113]王晓林,周贤宾,李晓星.飞机蒙皮拉形过程的有限元数值模拟[J].航空制造技术,2002,(2):39-42.
    [114]白笛,周贤宾,李东升.飞机复杂蒙皮拉形过程有限元分析中的接触搜索算法[J].航空学报,2004,25(3):308-311.
    [115]白雪飘,李东升,万敏等.基于蒙皮拉形模拟系统的数控拉形仿真与实践[J].塑性工程学报,2004,11(1):43-51.
    [116]赵秋玲,李东升,周贤宾等.基于蒙皮拉形模拟系统的后处理技术及开发[J].材料科学与工艺,2004,12(5):553-556.
    [117] D. H. He, X. Q. Li, D. S. Li, et al. Process design for Multi-stage stretch forming of aluminium alloy aircraft skin[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2010, 20: 1053-1058.
    [118] D. H. He, D. S. Li, X. Q. Li, et al. Optimization on springback reduction in cold stretch forming of titanium-alloy aircraft skin[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2010, 20: 2350-2357.
    [119]白雪飘,曾元松,李志强.单曲率蒙皮零件柔性多点模具拉形过程的数值模拟与优化[J].航空制造技术,2006,(11):85-88.
    [120]安丽娜,李晓星.弹性介质材料模型对回弹影响的数值模拟[J].航天制造技术,2007,(2):17-20.
    [121]汪华,周贤宾,罗红宇等.复合垫层在多点模蒙皮拉形中的应用[J].塑性工程学报,2007,14(5):43-47.
    [122]杜可佩,李东升,李小强等.可重构柔性模具蒙皮拉形工艺仿真CAE系统开发[J].航空制造技术,2007,增刊:294-299.
    [123]周朝晖,蔡中义,李明哲.多点模具拉形中回弹的数值分析[J].锻压技术,2006,(2):94-97.
    [124]张海明,蔡中义,李明哲.板材多点成形回弹补偿与控制的方法研究[J].塑性工程学报,2007,14(3):32-35.
    [125] C. M. Zhang, W. Z. Fu, X. D. Li, et al. The study on suppression of dimples in digital Multi-Point stretching process[J]. Advanced Materials Research, 2010, 97: 2589-2593.
    [126] C. M. Zhang, W. Z. Fu, F. Liu, et al. Numerical simulation of forming force in lateral bend forming[J]. Advanced Materials Research, 2011, 152: 1120-1124.
    [127]谭富星,许旭东,李光俊等.柔性夹持多点拉形过程的数值模拟[J].西安交通大学学报,2008,42(9):1160-1164.
    [128]陈志红,付文智,李明哲.蒙皮多点拉形过程中压痕的数值模拟及控制[J].材料科学与工艺,2010,18(6):791-795.
    [129]王少辉,蔡中义,李明哲等.基于有限元方法确定多点拉形轨迹及数值模拟[J].材料科学与工艺,2010,赠刊(1):191-195.
    [130] S. H. Wang, Z. Y. Cai, M. Z. Li, et al. Numerical analysis of the Multi-Point sretch forming process of aircraft outer skin part[J]. Advanced Materials Research, 2011, 154: 1068-1072.
    [131]王丽丽,李东升,曹珺雯等.可重构柔性模具蒙皮包覆拉形仿真系统开发[J].锻压技术,2009,34(2):141-145.
    [132]张铜.多点拉形中局部应力与局部变形的数值分析[D].长春:吉林大学,2009.
    [133] T. Meinders, B. D. Carleer, H. J. M. Geijselaers, et al. Implementation of an equivalent drawbead model in a finite-element code for sheet metal forming[J]. Journal of Materials Processing Technology, 1998, 83: 234-244.
    [134] M. Samuel. Influence of drawbead geometry on sheet metal forming[J]. Journal of Materials Processing Technology, 2002, 122: 94-103.
    [135] Y. You. Calculation of drawbead restraining forces with the Bauschinger effect[C]. Proceedings of the Institution of Mechanical Engineers, London, United Kingdom, 1998, 212: 549-553.
    [136]王少辉.多点拉形中局部变形与成形缺陷及其控制方法的数值模拟研究[D].长春:吉林大学,2011.
    [137]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2005.
    [138]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007.
    [139]蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1988.
    [140]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用[M].北京:冶金工业出版社,1990.
    [141]谭富星.带孔网板多点成形过程数值模拟研究[D].长春:吉林大学,2009.
    [142] J. P. De Magalhaes Correia and G. Ferron. Wrinkling predictions in the deep-drawing process of anisotropic metal sheets[J]. Journal of Materials Processing Technology, 2002, 128: 178-190.
    [143]李文平.弯曲回弹变分原理及其数值模拟研究[D].燕山大学,2006.
    [144]赵国伟,王元勋,陈建桥.板材成形回弹的数值模拟与影响因素[J].锻压装备与制造技术,2005,(3):55-58.
    [145] W. L. Xu, C. H. Ma, C. H. Li, et al. Sensitive factors in springback simulation for sheet metal forming[J]. Journal of Materials Processing Technology, 2004, 151: 217-222.
    [146] G. Ingarao, R. D. Lorenzo and F. Micari. Analysis of stamping performances of dual phase steels: A multi-objective approach to reduce springback and thinning failure[J]. Materials and Design, 2009, 30: 4421-4433.
    [147] M. G. Lee, S. J. Kim, R. H. Wagoner, et al. Constitutive modeling for anisotropic/asymmetric hardeningbehavior of magnesium alloy sheets: Application to sheet springback[J]. International journal of plasticity, 2009, 25: 70-104.
    [148] L. Noels, L. Stainier and J. P. Ponthot. Combined implicit/explicit time-integration algorithms for the numerical simulation of sheet metal forming[J]. Journal of Computational and Applied Mathematics, 2004, 168: 331-339.
    [149] J. C. Gerdeen. Effect of buckling due to residual stresses on spring back measurements[C]. 13th Biennial Congress - International Deep Drawing Research Group: Efficiency in Sheet Metal Forming, 1984, 160-165.
    [150] Kyung Seok Oh, Kwang Hwan Oh, Jun Ho Jang, et al. Design and analysis of new test method for evaluation of sheet metal formability[J]. Journal of Materials Processing Technology, 2011, 211 695-707.
    [151] M. M. Moshksar and S. Mansorzadeh. Determination of the forming limit diagram for Al 3105 sheet[J]. Journal of Materials Processing Technology, 2003, 141(1): 138-142.
    [152] M.G. Lee, D. Kim, C. Kim, et al. Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications[J]. International journal of plasticity, 2005, 21(5): 915-953.
    [153]李大永,胡平,李运兴.拉伸筋阻力的一种简便解析模型[J].机械工程学报,2000,36(5):46-49.
    [154] T. B. Stoughton. Model of drawbead forces in sheet metal forming[C]. Proceeding of the 15th IDDRG, Dearborn, USA and Toronto, Canada, 1988, 205-215.
    [155] N. M. Wang. A mathematical model of drawbead forces in sheet metal forming[J]. Journal of applied metalworking, 1982, 2(3): 193-199.
    [156] Nobukazu Hayashi and Masanori Kobayashi. Stretch forming of sheet metal using wrinkle appeared in compression for thickness direction by tooth shaped tool[J]. Transactions of the Japan Society of Mechanical Engineers, Part C, 2002, 68: 2451-2456.
    [157] Chuan-Tao Wang, Gary Kinzel and Taylan Altan. Failure and wrinkling criteria and mathematical modeling of shrink and stretch flanging operations in sheet-metal forming[J]. Journal of Materials Processing Technology, 1995, 53: 759-780.
    [158] Yutaka Hayashi and Masayasu Kojima. Investigation on effects of material characteristics on wrinkle behavior in press forming[J]. Sumitomo Metals, 1973, 25: 55-63.
    [159] Masayasu Kojima. Study on wrinkle removing process in press forming of steel sheets[J]. Sumitomo Metals, 1974, 26: 108-117.
    [160] J. W. Hutchinson. Plastic bucking[J]. Advances in Applied Mechanics, 1974, 14: 67-144.
    [161] K. W. Neale and P. Tugcu. A numerical analysis of wrinkle formation tendencies in sheet metal[J]. International Journal for Numerical Methods in Engineering, 1990, 30: 1595-1608.
    [162]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700