基于光纤光栅传感的智能内窥镜形状感知系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新型传感技术、机械电子技术、生物医学工程、智能材料和计算机图形学等相关学科的发展、融合,临床上新型智能医疗器械不断出现,有效地拓展了传统医疗器械的功能和诊疗领域。结肠内窥镜是结肠疾病诊疗的重要医疗器械,由于工作环境的复杂性和自身形状不可视等不足,传统内窥镜在介入过程中会发生镜体缠绕、非预期结襻等情况,给病人带来痛苦和危险。基于迫切的临床需求和良好的市场前景,用智能传感器技术、自动化技术及可视化技术对传统内窥镜系统进行改进和创新研究已经在世界范围内展开。其中,新型的内窥镜形状感知系统是该领域的一个研究热点。
     论文对基于光纤光栅传感的内窥镜形状感知系统进行了探索和研究,特别对微小尺寸的光纤光栅大曲率传感器及传感网络的关键技术进行了深入探讨,结合机械电子技术和计算机图形学技术,研制了全新的基于光纤光栅传感网络的实时形状感知系统以及渐进式形状感知系统,实现了内窥镜检查过程中镜体的可视化。
     论文首先概述了医用内窥镜的发展历程,结合人体结肠特性,归纳了传统结肠内窥镜检查存在的问题,就内窥镜形状感知技术研究现状以及光纤光栅在智能结构中的应用现状进行了综述,通过对现有各种形状重建的方法和传感元器件的对比分析,提出了系统的总体研究方案,并讨论了各个功能模块的研究和设计技术路线。随后,论文结合光纤光栅传感器的温度及应变传感特性实验研究,探讨了光纤光栅传感的关键技术,包括传感机理、传感网络拓扑设计以及光纤光栅解调原理选择等。针对内窥镜形状感知的具体限制与要求,对光纤光栅大曲率传感的原理、设计、封装及标定等关键技术进行了研究,研究工作主要集中在以下三个方面:①为了实现大曲率变形检测,论文研究了光纤光栅空间曲率传感原理,选择了合适的基材,设计了传感器布置方式,并通过设计专用封装设备和工艺,研制了微小尺寸的大曲率传感器;②针对光纤光栅在机械性能上受拉、受压的能力不均衡,通过封装时在基材上施加预拉应变,扩大了光纤光栅的有效测量范围;③对曲率传感器在各种封装条件下的灵敏度进行了实验和分析,在较大的范围内实现了光纤光栅大曲率传感器灵敏度的可调。
     在光纤光栅大曲率传感器研究的基础上,论文设计并搭建了基于光纤光栅传感网络的实时和渐进式两种内窥镜形状感知系统:①设计了网络规模为20个光纤光栅的四通道空分/波分复用形状感知网络,并按设计的几何关系封装在细长的SMA基材上,研制了微小外径尺寸的光纤光栅传感柔性杆。基于两种实时性能不同的解调仪器,利用形状重建算法及相关的数据处理、融合方法,搭建了内
The technology for intelligent medical instruments and medical robots is a crucial method and an important means of minimal invasive surgery. With the development of novel sensing technology, mechatronics,bio-engineering, intelligent material, computer graphics and other relevant disciplines, many novel kinds of intelligent medial instruments come out continually and remarkably enhances the function and application area of traditional medical instruments. A colonoscope is a typical instrument for the diagnosis and treat of intestinal disease. However, many difficulties arise as a result of unpredictable and invisible shape of the colonoscope within the colonic anatomy, bringing the patients much pain and danger. Driven by the impending clinical requirement and the favorable commercial foreground, significant research efforts have been made for the amelioration and invention of endoscopic system using intelligent sensing, automation and visualization technology. Among them, novel shape sensing system for endoscope has become a research focus of general interests.
     This dissertation aims to provide steady sensing systems for the shape detection of colonoscopes. The research especially deals with the key technology of Fiber Bragg Grating (FBG) large curvature sensor and sensor net, integrates the technologies of mechatronics and computer graphics, and then develops real time FBG shape sensing system and incremental shape sending system for colonoscopies. After the analysis of state-of-the-art for the development of the endoscope and the difficulties of colonoscopy, the actualities of both endoscopic shape sensing and of FBG structure monitoring are summarized. By the analysis of the reconstruction principles and optional sensor components, integrated design of the shape sensing systems and the development roadmap of each unit are proposed respectively.
     Based on the experimental research on FBG sensing response under different strain and temperature separately, the key technologies of typical FBG system are discussed. According to the limitation and requirement of the shape sensing of colonoscope, the principle design, encapsulation and calibration method of FBG large curvature sensor are discussed in detail. The research work mainly includes:①By the design of substrate material, encapsulation mechanism and encapsulation technology, a novel slim FBG large curvature sensor wire is developed.②FBG sensor with pre-strain is mounted on a slim cylindrical substrate to deal with the limitation caused by unbalanced mechanical property of the optical fiber.③At the same time, by changing the encapsulation condition, the curvature sensitivity can be adjusted in a large range.
     In the dissertation, based on the research on the large curvature sensor and the curve fitting method, real time and incremental FBG shape sensing systems have been developed respectively.①A four-channel SDM/WDM FBG sensor net comprised 20
引文
[1] 王田苗,宗光华,张启先. 新应用领域的机器人—医疗外科机器人[J]. 机器人, 1996, 18(4):603~606.
    [2] Carrozza, M.C, et al. A microrobot for colonoscopy[A]., Proc. of the Senventh International Symposium on Micro Machine and Human Science[C], 1996:223-228.
    [3] 查良镒编译. 内窥镜在消化系疾病中的应用[M]. 天津科学技术出版社 1984
    [4] 张小勇, 肖汉发, 陈吉庆编著.实用内镜检查与治疗学[M].长沙:湖南科学技术出版社,1997
    [5] Kodogiannis, V.S. Computer-aided diagnosis in clinical endoscopy using neuro-fuzzy systems[A]. IEEE Proc. of International Conference on Fuzzy Systems[C], 2004:1425-1429
    [6] Internet reference:http://www.rfnorika.com/eng/system/sys_004.html
    [7] 胡宗泰. 医用内窥镜现状及发展趋势[J]. 世界医疗器械,1997,3(1):32~36.
    [8] 人体解剖学编写组. 人体解剖学[M]. 北京:高等教育出版社,1986.5:268~271.
    [9] 郑思竟. 人体解剖学[M]. 北京:人民卫生出版社,1986.10:127~131
    [10] 武 汉 医 学 院 和 上 海 第 二 医 学 院 主 编 . 外 科 学 [M]. 北 京 : 人 民 卫 生 出 版社,1979.12:455~481.
    [11] 郑芝田主编. 胃肠病学[M]. 北京:人民卫生出版社,1986.12:1~9.
    [12] 曾宪九译. 克氏外科学[M]. 北京:人民卫生出版社,1983.10:1235~1312.
    [13] 吴襄. 生理学大纲[M].北京:高等教育出版社,1987.5:236~245
    [14] Robert H Sturges,Schitt Laowattana. A Flexible Tendon-controlled Device for Endoscopy[J]. The International Journal of Robotics Research,1993,12(2): 121~131.
    [15] 宇野良治, 韩英, 栋方昭博, 等. 实用大肠镜诊断及治疗学[M]. 北京:科学出版社,2001.
    [16] S Dogramadzi, C R Allen and G D Bell, et al. Computer controlled colonoscopy[A]. IEEE Proc. of instrumentation and measurement technology[C]. 1998: 210-213.
    [17] Bladen, J.S.; Anderson, A.; Bell, et al. A Non-radiological Technique for the Real Time Imaging of Endoscopes in 3 Dimensions[A]. Nuclear Science Symposium and Medical Imaging Conference[C], 1993 vol.3 :1891~1894
    [18] Internet reference:http://www.olympus-europa.com/medical/431_ScopeGuide.htm
    [19] Lin, Dong; Chen, Xin; Zheng, Huiru. Research on determination of the 3D position of endoscope by magnetic field[A]. Proc. of SPIE[C] . Vol.4077 2000:343-346.
    [20] Chen, Xin; Tamura, Shinichi; Naito, Hiroaki , et al. 3D localizer for ultrasound endoscope by outside-body markers[A]. Proc. of SPIE[C], Vol.3545,1998:500-503
    [21] Lin-yong Shen, Jin-wu QIAN.et al. Shape Reconstruction and Visualization Method for Intelligent Endoscope Development[A],Proc. of 2nd Japan-China Workshop on Multidisciplinary Researches in Engineering[C], 2003:121~126
    [22] 沈林勇, 陈建军, 钱晋武,等.利用应变片实现曲线形状的实时检测[J],机器人, Vol.26, No.3, 2004:204~206
    [23] Yansong Shan, US Patent, 5957833
    [24] D. Lee, E. Kevin, T. Andrew. Spatially continuous six degree of freedom position and orientation sensor[J]. Sensors Review.1999, Vol. 19(2):106-112.
    [25] Danisch, L.A., US Patents 5,633,494.
    [26] Baillot, Yohan; Eliason , et al . Evaluation of the shapetape tracker for wearable, mobile interaction[A]. Proceedings of Virtual Reality Annual International Symposium[C], 2003:285~286
    [27] A Brett Slatkin and Joel Burdick. The development of a robotic endoscope[A]. Proc. of IEEE International Conference on Intelligent Robots and Systems[C], 1995:162~171.
    [28] Hoeg, H.D.; Slatkin, A.B.; Burdick, J.W , et al . Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscopic[A]. IEEE International Conference on Robotics and Automation[C], v 2, 2000:1599~1606
    [29] Lin, Liangming, Gao, Liming; Yan, Guozheng , et al. Study on the endoscope system driven by squirmy robot [A]. Proc. of the IEEE International Conference on Intelligent Processing Systems[C],1998:75~81
    [30] P Dario, M C Carrozza, L Lencioni, et al . A micro robotic system for colonoscopy[A]. Proc. of IEEE International Conference on Robotics and Automation[C], 1997: 1567~1572.
    [31] Asari, Vijayan K.; Kumar, Sanjiv; et al. Autonomous microrobotic endoscopy system[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, v 28, n 4, 2000:325-341
    [32] 钱晋武, 李毅, 沈林勇. 柔软管道中机器人蠕动机构研究[J]. 机械与电子,2001,1:37~38.
    [33] 米智楠. 主动引导内窥检查机器人技术研究[D].上海大学博士论文.2002 年 5 月.
    [34] 高桥昌树, 林俨, 岩附信行. みみずの运动应用しナニ细管内移动マイタロロボツトの研究. 精密工学会誌[J],1995,61(1): 90~94.
    [35] 周银生, 李立新, 赵东福. 一种新型的微型机器人[J]. 机械工程学报,2001,37(1):11~13.
    [36] 吴江红. 肠道微型机器人无损伤驱动原理与方法及其仿真模型研究[D],重庆大学,2000.
    [37] Shigeo Maeda, Kazuhiro Abe, Keisuke Yamamoto , et al. Active endoscope with SMA coil springs [A]. Proc. of the IEEE Micro Electro Mechanical Systems [A], 1996: 290~295.
    [38] Koji Ikuta, Masahiro Tsukamoto, Shigeo Hirose. Shape Memory Alloy servo actuator system with electric resistance feedback and application for active endoscope[A]. Proc. of IEEE Conference on Robotics and Automation[C], 1988: 427~430.
    [39] 杨杰, 中村仁彦, 吴月华,等. 医用微型机器人[J]. 中国科学技术大学学报,1996, 26(4): 444~449.
    [40] Doominiek Peynaerts, Jan Peris and Hendrik Van Brussel. An implantable drug-delivery system based on shape memory alloy microactuation[J]. Sensors and Actuators A,1997,vol.61: 455~462.
    [41] Jan Peris, Doominiek Peynaerts and Hendrik Van Brussel. Shape memory alloy micro-mechanism for medical applications[A]. Proc. of the 8th International Conference on Advanced Robotics[C], 1997: 155~160.
    [42] 罗继军,智能内窥镜辅助介入子系统研究[D],上海大学硕士学位论文,2003 年 2 月
    [43] 殷金喜, 钱晋武, 沈林勇, 等.利用硅微传感器实现智能内窥镜的主动避障[J].机电一体化,2004.3
    [44] 李朝东, 姚华. 刘建平, 等. 内窥镜搭载超细型直线微电机的研究[A], 2003 第八届中国小电机技术研讨会[C],2003:94~95
    [45] 张震, 钱晋武, 章亚男, 等.智能内窥镜视觉导航技术研究[J].高技术通讯.2005,2:25~28
    [46] 钱晋武,张震,章亚男,等,智能内窥镜视觉导航技术和系统研究[J],光学 精密 工程,2004,12(3):76~80
    [47] Choiu, R.C.H.; Kaufman, A.E.; Zhengrong Liang , et al . An interactive fly-path planning using potential fields and cell decomposition for virtual endoscopy[J], IEEE Trans. on nuclear science,1999:1045 - 1049.
    [48] Tong-Yee Lee; Ping-Hsien Lin; Chao-Hung Lin , et al . Interactive 3-D virtual colonoscopy system [J], IEEE Trancsaction on information technology. 1999,Vol.3(2): 139 - 150
    [49] 姜德生. 智能材料与结构、器件[M]. 武汉:武汉工业大学出版社, 2000.
    [50] 陶宝祺. 智能材料结构[M]. 北京:国防工业出版社. 1997 年
    [51] Kersey A.D. A review of recent developments in fiber optic sensor technology [J]. Optic Fiber Tchnol.,1996,(2):291~317
    [52] Hill K.O., et al. Photosensitivity in optical fiber waveguides: application filter fabrication [J].Appl.Phys.Lett.,1978,(32):647~649
    [53] G.Meltz, W.W Morey, and W.H.Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method [J]. Opt. Lett.,1989,14(15):823-825
    [54] Hill K.O. et al. Bragg gratings fabricated in monomode photosensitivite optical fiber by UV exposure through a phase mask [J]. Appl.Phys.Lett.,1993(62):1035~1037
    [55] 姜德生, 何伟. 光纤光栅传感器的应用概况[J]. 光电子·激光, 2002, 13(4): 421-430.
    [56] 余有龙, 刘治国, 关柏鸥, 董孝义. 利用悬臂梁将均匀周期光纤光栅变为啁啾光纤光栅[J].中国激光,1999,A26(10):912~916
    [57] 张记龙,曾光宇. 光纤光栅(FBG)传感技术及其应用[J]. 测试技术学报, 2001, (4): 214-220
    [58] 周智, 赵雪峰, 武湛君, 等. 光纤光栅毛细钢管封装工艺及其传感特性研究[J],中国激光 2002(12):1089~1092
    [59] 詹亚歌, 陆青, 向世清,等.优化光纤光栅传感器匹配光栅解调方法的研究[J].光子学报 2004 年 06 期 711~715
    [60] 郭团, 乔学光, 贾振安, 等. 光纤光栅传感技术及其在石油工业中的应用[J],测试技术学报 2004,(3):208~213
    [61] 鲍吉龙, 章献民, 陈抗生, 等. 光纤光栅传感器及其应用[J]. 激光技术 第 24 卷 第 3 期2000 年 6 月
    [62] 上海紫珊光电技术有限公司. FBG 技术交流材料.
    [63] Internet reference:http://www.cse.polyu.edu.hk/cihps/research_3.html
    [64] Internet reference:http://Gfz-potsdam.de/pb5/pb51/html1/conny.en.htm
    [65] http://www.oilfield.slb.com/media/services/resources/oilfieldreview/ors02/win02/p14_35.pdf
    [66] Internet reference:http://www.spa.com/aedp_ta.htm
    [67] Kiddy, J., C. Baldwin, and T. Salter. Certification of a submarine design using fiber Bragg grating sensors[A],Proc. of SPIE [C] , 2004. 5388: 387~398
    [68] Ecke W., et al. Optical Fibre Grating Strain Sensor Network for X238 Spacecraft Health Monitoring [A]. Proc. of the SPIE [C]. 2000, 4185: 888~891.
    [69] Baldwin, C., T. Salter, and J. Kiddy. Static shape measurements using a multiplexed fiber Bragg grating sensor system [A], Proc. of SPIE 2004 [C].Vol. 5384:206~217
    [70] Internet reference:http://www.spa.com/aedp_wing_shape.htm
    [71] 陆麒, 樊红朝, 钱晋武,等,面形结构大变形智能检测系统概念设计[J],光学 精密 工程,Vol.12,No.3,2004,pp128~131
    [72] 汤慧雅, 钱晋武, 孙流川,等. 非开挖地下信息管线位置检测的新方法[J],光学 精密 工程, Vol.12,No.3,2004, pp132~135
    [73] 德纳斯 R G.. 高等材料力学及实用应力分析[M]. 北京:机械工业出版社.1983.
    [74] 梅向明, 黄敬之. 微分几何[M]. 人民教育出版社, 1981
    [75] 姜献峰, 孙毅. 平面曲线的曲率表示及其应用[J]. 计算机辅助设计与图形学学报, 1999,11(5):464~466.
    [76] 陈大鹏, 周文伟. 空间弹性曲杆在三维变形中的曲率-位移关系[J]. 西南交通大学学报(自然科学版), 1997,32(02):123~129
    [77] 吴家麒, 杨东英, 钱晋武,等. 基于曲率数据的曲线拟合方法研究[J],应用科学学报,2003,21(3):258~262
    [78] Jiaqi Wu, Dongying Yang, Jinwu Qian. Research on Visualization of Robotic Endoscope Body in Examination [A],Proc. of the 11th International Conference on Advanced Robotics[C], 2003:901~905
    [79] 杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000:76-80
    [80] Andreas Othonos, Kyriacs Kalli, Fiber bragg grating: fundamentals and applications in telecommunications and sensing[M]. Artech House. London
    [81] 吴重庆. 光波导理论[M]. 清华大学出版社 2000 年 3 月第一版
    [82] 金发宏, 等.光纤布拉格光栅的理论分析[J].光子学报 1996,(25):809~812
    [83] 申铉国, 张铁强主编. 光电子学[M].北京:兵器工业出版社.1994 年.
    [84] 贾宏志, 李育林, 忽满利, 等.光纤 Bragg 光栅温度和应变的灵敏度分析及应用探讨[J].激光杂志,1999,20(5):12~14
    [85] 靳伟 , 廖延彪 , 张志鹏 , 等 . 导波光学传感器原理与技术 [M]. 北京 : 科学出版社,1998:45~102
    [86] M.B. Reid, M. Ozcan. Temperature dependence of fiber optic Bragg gratings at low temperatures[J]. Optical Engineering,Vol.37, 1998:237~240
    [87] 鲍吉龙, 章献民, 陈杭生,等. FBG 传感网络技术研究[J].光通信技术.2001,25(2):84-89
    [88] 陈伟民, 江毅, 黄尚廉. 利用成像光谱技术的光纤光栅多传感器复用[J].光学学报,
    [89] 涂亚庆, 刘兴长. 光纤智能结构[M]. 重庆:重庆出版社. 2000
    [90] Jackson DA, Ribeiro ABL, Reekie L., et al. Simple Multiplexing Scheme for a Fiber-optic Grating Sensor Network [J].Opt.Lett.,1993,18(14):1192-1194.
    [91] Yasukazu Sano, Toshihiko Yoshino. Fast Optical Wavelength Interrogator Employing Arrayed Waveguide Grating for Distributed Fiber Bragg Grating Sensor [J]. Journal of Lightwave Technology, 2003. 21(1):132 - 139
    [92] Kersey AD. Multiplexed Fiber Bragg Grating Strain-sensor System with a Fiber Fabry-Perot Wavelength Filter [J]. Optics Letters 1993, 18(16):1370.
    [93] 刘鸿文. 材料力学[M]. 北京:高等教育出版社, 1992
    [94] 舟久保, 熙康编, 千东范译. 形状记忆合金[M]. 北京:机械工业出版社,1992.
    [95] 杨杰, 吴月华. 形状记忆合金及其应用[M]. 合肥:中国科学技术大学出版社,1993.
    [96] 姚兴田, 邱自学, 袁江, 等. 形状记忆合金在智能材料结构中的应用[J].. 南通工学院学报(自然科学版) 2001(1):17~19
    [97] 李子东, 李广宇, 于敏. 现代胶粘技术手册[M],北京:新时代出版社,2002
    [98] 贺曼罗 编, 胶粘剂与其应用[M], 北京:中国铁道出版社,1987
    [99] 杨东英, 内窥镜镜体三维形状重建方法研究[D], 上海大学硕士学位论文,2004 年 3 月
    [100] 李兰友. Visual C++.NET 图形图像编程[M], 北京:电子工业出版社,2002:247.
    [101] David J.Kruglinski. Visual C++ 技术内幕[M],北京:清华大学出版社,1999 .
    [102] 郑莉, 董渊, 傅仕星. C++语言程序设计[M],北京:清华大学出版社,2000
    [103] 郑庆华, 钱晋武, 张伦伟, 等. .渐进式内窥镜空间形状感知和重建[J].光学 精密 工程.2004(5).
    [104] 郑庆华. 渐进式内窥镜空间形状感知和重建[D], 上海大学硕士学位论文,2004 年 3月
    [105] 李朝青. PC 机及单片机数据通信技术[M]. 北京:北京航空航天大学出版社.2000
    [106] 吕 文 哲 . 用 VC++ 开 发 Windows 环 境 下 串 行 通 信 程 序 [M]. 电 子 技 术 应用.1997,23(8):29-31.
    [107] 刘云启, 郭转运, 刘志国, 等.. 光纤光栅传感测量中的交叉敏感机制及其解决方案[J]. 光电子 激光,2003,10(2):179-182.
    [108] Magne S, Rougeault S, Vilela M, et al. State-of-strain evaluation with fiber Bragg grating rosettes:application to discrimination between strain and temperature effects in fiber sensors [J]. Appl. Opt.,1997,36(36):9437~9447
    [109] 谢芳, 张书练, 张岩,等. 温度补偿的光纤光栅应力传感系统的研究[J]. 光学技术,2001,27(5):393-395.
    [110] Iwashima T, Inoue A, Shigematsu M, et al. Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes[J]. Electron. Lett., 1997, (33) 417-419
    [111] 乔学光, 李育林, 忽满利, 等. 用不同周期重叠写入的光纤布拉格光栅传感器对应力和温度实现同时测量. [J].应用激光,1998,18(6):254—258.
    [112] 关柏欧, H Y Tam, S L Ho , et al. 单光纤光栅温度应变双参数传感研究[J].中国激光,2001,28(4):372-374.
    [113] 张善钟. 精密仪器精度理论[M]. 北京: 机械工业出版社, 1993.
    [114] 刘志万. 实验数据的统计分析和计算机处理[M]. 北京: 中国科学技术出版社, 1989
    [115] 张文杰. 自由曲线自由曲面的高精度自动测量、数据处理及误差分析方法的 研究 [D]. 天津: 天津大学,1995
    [116] 张宝军. 机器人内窥镜主动避障子系统研究[D], 上海:上海大学,2003 年 2 月
    [117] 秦新捷, 章亚男, 张祖仁, 等. 全自动智能内窥镜系统试验平台的研究与设计[J],光学 精密 工程,2004,12(3):288~291
    [118] 苗明三. 实验动物和动物实验技术[M].北京:中国中医药出版社,1997 .
    [119] 孙敬方. 动物实验方法学[M]. 北京:人民卫生出版社,2001.
    [120] GB11244-1989.医用纤维内窥镜通用技术条件[S].
    [121] GB/T17006 5-1997.医用成像部门的评价及例行试验图像显示装置稳定性试验[S].
    [122] GB9706 19-2000. 医用电气设备.第 2 部分:内窥镜设备安全专用要求[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700