数字人虚拟定位系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代医学中,内窥镜已经被广泛用于疾病诊断,内窥镜可以为医生提供人体内脏组织图像用于疾病的诊断。由于检查时内窥镜探头位于人体体内,其在人体内的位置和角度均不可见,医生只能依据其采集到的图像,凭借经验判断与图像对应的人体组织,这不仅造成了图像识别的不便,而且容易产生误判,因此,需要一种有效的内窥镜体内实时定位技术。
     数字人虚拟定位系统是将医学人体数据库技术与内窥镜定位技术相结合的医疗辅助系统。该系统采用磁场定位原理,分别利用磁场传感器和加速度传感器采集磁场和重力场信息,经过信号处理,得到内窥镜探头在人体内部的位置和角度,并利用PC机将内窥镜探头的虚拟图像在数字人内部再现,从而实时地显示内窥镜在人体内的位置和探测角度。
     本文详细阐述了系统的定位原理和方案设计,介绍了系统的软硬件设计,对在实验室条件下的定位实验结果进行了详细的分析。
     本文主要工作总结如下:
     1.设计了数字人虚拟定位系统的整体方案和定位原理,系统采用磁场定位方式。在学习国内外现有的磁场定位系统的基础上,设计了角度定位和位置定位相互分离的定位方式和定位算法,大大降低了磁场定位算法的复杂性,提高了定位系统的实时性。相对于国内外其他磁场定位方式,该定位系统具有结构设计和定位原理上的独创性,相关技术已申请国家发明专利;
     2.设计并制作了系统定位实验所需的坐标平台,为实验室条件下进行定位实验,提供了机械结构方面的测量和定位装置。制作了系统硬件电路,包括传感器电路板、微处理器电路板、串口、I2 C接口等,利用VC语言编写了具有人机交互界面的系统应用程序,实现了系统定位算法;
     3.深入研究了励磁线圈的磁场分布规律,在励磁线圈磁场的理论分析、软件仿真、实物制作等方面做了大量的工作,制作出满足系统定位要求的励磁线圈;
     4.深入学习OpenGL计算机开源图形函数库,在此基础上,在应用程序中创建了内窥镜虚拟图像,利用三维图像直观显示内窥镜角度、位置信息。同时初步完成了人体虚拟图像的创建;
     5.在实验室条件下,成功地利用定位系统的软硬件资源进行了内窥镜角度和位置定位实验,系统定位精度和频率均达到设计要求。
In modern medicine, the endoscope has been used for more disease diagnosis. The endoscopy can provide effective medical images such as human tissue for disease diagnosis. Since the endoscopic probe is in the human body when in an endoscopy, its position in the human body and angle are not visible, based on the collected images, doctors can only judge by their experience which human tissue the image is corresponding to. This not only causes inconvenience to image recognition, and is prone to false positives, therefore, an effective and real-time endoscopic tracking technology is required.
     The tracking system for endoscope with digital human technology is a medical support system which combines the digital human technology with endoscopic traking technology. The system is a real-time magnetic tracking system. Using the magnetic field information detected by a three-axis magnetic sensor and gravity field information detected by a three-axis acceleration sensor, the position and rientation of the the endoscopic probe is determined, so the virtual endoscopic probe image in the digital human can be created to display the position and rientation of the the endoscopic probe.
     This dissertation describes the principle and program design of the tracking system; it also describes the hardware and softwaredesign of the system. Detailed analysis of the experimental results under laboratory conditions is made in this paper.
     The main contributions of this dissertation are summarized as follows:
     1. Put foword the design proposal and theory of the tracking system. The system is a magnetic tracking system. After studied domestic and overseas research on magnetic tracking system, the dissertation put foword the magnetic tracking theory, of which the orientation determination and position determination are separated from each other, and it simplifies the tracking algorithm, gets high real-time performance. The design proposal and theory of the tracking system is different from other magnetic tracking systems, we applied one national patent for the system;
     2. Designed and made the mechanical coordinate platform of the tracking system, the platform is used for measurement and fixed. Designed and made the hardware of the system, including the PCB boards of the sensors and the microprocessor, UART, IIC, etc. Developed the application with human-computer interaction interface by MFC in VC;
     3. Closely studied the theory of the inductance coil, did a lot of work on the theoretical analysis, software simulation, manufacture, etc. Produced inductance coils Meeting requirements of the system;
     4. After closely studied OpenGL, the Computer Open Graphics Library, created the virtue image of the endoscopic probe in the computer application, which show the orientation and position of the endoscopic probe;
     5. Successfully carried out experiments of the tracking system to determine the orientation and position of the endoscopic probe under laboratory conditions. The precision of the system and the tracking frequency meet the actual demand.
引文
[1] G. Iddan, G. Merron, A. Glukhovsky, et al.. Wireless capsule Endoscopy, Nature, 2000, 405: 417
    [2] G. Costamagna, S. K. Shah, M. E. Riccioni. A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease. Gastroenterology, 2002,123(4):999~1005
    [3] B. S. Lewis, P. Swain. Capsule endoscopy in the evaluation of patients with suspected small intestinal bleeding: Result of a pilot study. Gastrointestinal Endoscopy, 2002,56(3):349~353
    [4]李励,医用内窥镜的发展历程,医疗设备信息,1999,4:51~53
    [5]梁学领,郑小林,侯文生等,消化道微型诊疗胶囊核医学图像定位系统设计,中国医学影像技术,2006,22(10): 1592~1594
    [6] Newman SP, Wilding IR. Imaging techniques for assessing drug delivery in man. Pharmaceutical Science & Technology Today, 1999, 2(5): 181~189.
    [7]易新华,钱晋武,张伦伟等,一种新型的内窥镜三维形状重构与定位算法,仪器仪表学报,2008,29(1):55~60
    [8] V. Schlageter, P. A. Bessea, R. S. Popovica, et al.. Tracking system with five degrees of freedom using 2D-array of Hall sensors and a permanent magnet. Sensors and Actuators, 2001,A 92:37~42
    [9] Wilfried Andra, Henri Danan, Walter Kirm?e. A novel method for real-time magnetic marker monitoring in the gastrointestinal tract. Phys. Med. Biol., 2000, 45 : 3081-3093
    [10] M Appeleyard, Z Fireman, A Glukhovsky, et al.. A randomized trial comparing wireless capsule endoscopy with push enteroscopy for the detection of small-bowel lesions. Gastroenterology, 2000, 119 (6): 1431-1438
    [11] J S Day, D J Murdoch, G A Dumas. Calibration of position and angular data from a magnetic tracking device. Journal of Biomechanics, 2000, 33 (8): 1039-1045
    [12] E. Stathopoulos, V. Schlageter, B. Meyrat, et al.. Magnetic pill tracking: a novel non-invasive tool for investigation of human digestive motility. Neurogastroenterology & Motility Volume, 2005,17(1):148~154
    [13] T Nagaoka, A Uchiyama. Development of a small wireless position sensor for medical capsule debicees. proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, USA, 2004: 2137-2140
    [14] FischerD, Shreiber R, Meron G. Localization of the wireless capsule endoscope in its passage through the GI tract. Gastrointestinal Endoscopy, 2001, 53(5): 126-131
    [15] Werner Weitschies, Henning Blume, Hubert M?nnikes. Magnetic Marker Monitoring: High resolution real-time tracking of oral solid dosage forms in the gastrointestinal tract. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74(1): 93~101
    [16] K. Goodman, L. A. Hodges, H. N. E. Stevens, et al.. Assessing gastrointestinal motility and disintegration pro?les of magnetic tablets by anovel magnetic imaging device and gamma scintigraphy, Eur. J. Pharm Biopharm, 2009, 74:84–92.
    [17] W. Weitschiles, R. Kotitz, DinoCordini, et al.. High-resolution monitoring of the gastro-intestinal transit of a magnetic marked capsule. Pharm. Sci., 1997, 86(1):1218~1222
    [18]陈新,林东,张庆辉等,磁场方式的内窥镜体内三维定位与追踪方法研究中国生物医学工程学报,2002,5(21):465~470
    [19]郭旭东,颜国正,何文辉等,基于电磁感应的遥测式三维定位系统,上海交通大学学报,2007,11(41):1753~1757
    [20]李建新,陈新,刘欣宇等,用四面体结构磁偶极子对内窥镜定位探头微型化的研究,福州大学学报,2002,6(30):809~813
    [21]陈新,田村进一,林东等,磁传感方式的内窥镜三维定位与引导方法,计算机研究与发展,2002,37(2):242~246
    [22]郭旭东,严荣国,颜国正,胶囊内窥镜无线遥测定位的校正,光学精密工程,2010,18(2):2650~2655
    [23] Chao Hu, Max Q.-H. Meng. A linear algorithm for tracing magnet position and orientation by using Three-axis magnetic sensors. IEEE Transactions on Magnetics, 2007, 12(43): 4096~4101
    [24] Frederick H Raab, Ernest B Blood, Terry O Steiner, et al.. Magnetic position and orientation tracking system. IEEE Transactions on Aerospace and Electronic Systems, 1979, AES-15 (5): 709~718
    [25] E. Paperno, Ichiro Sasada, Eduard Leonovich. A new method for magnetic position and orientation tracking. IEEE Transactions on Magnetics, 2001, 4(11): 1938~1940
    [26] A. Plotkin, E. Paperno. 3-D Magnetic Tracking of a Single Subminiature Coil With a Large 2-D Array of Uniaxial Transmitters. IEEE Transactions on Magnetics, 2003,vol. 39(5):3295~3297
    [27] Jacob H, Levy D, Shreiber R,et al. Localization of the given M2A ingestible capsule in the given diagnostic imaging system. Gastrointestinal Endoscopy, 2002, 55(5): AB135
    [28] Spitzer VM, Ackerman MJ, Scherzinger AL, et al. The visible human male: a technical report. J Am Med Inform Assoc, 1996 , 3 (2): 118~130
    [29] Spitzer VM, Whitlock DG. The visible human dataset: the anatomical platform for human simulation. The Anatomical Record (New Anat). 1998 , 253 (2): 49~571
    [30]张绍祥,刘正津,谭立文等,首例中国数字化可视人体完成,第三军医大学学报,2002,24(10) :1231 ~1232
    [31]简江涛,安滨,熊进等,中国数字人切片图像的自动配准与分割方法研究.中国科学技术大学学报,2007,2(37):130~134
    [32]沈颖,数字化虚拟人体组织连续切片图像的背景移除:[硕士学位论文],重庆;第三军医大学,2006
    [33]冉旭,分布式并行计算在数字化人体图像重采样加速处理中的应用:[硕士学位论文],重庆;第三军医大学,2007
    [34] Kuipers J B. An electromagnetic relative position and orientation tracking system. IEEE Trans. Instrum. Meas. 1980, 29: 462~467.
    [35]王晓明,梁殿印,厚壁圆环线圈磁系磁场特性及分选原理的研究,矿冶,2007,16(1):67~70
    [36]颜冲,于军,周文利等,巨磁电阻传感器,科技动态,2000,1(33):32~34
    [37] Ben-Zion Kaplan, E. Papemo. New Method forextracting signals generated by magnetoresistive sensors. IEEE Transactions on Mangnetics, 1994, 30(6): 4614~4616
    [38] Eugene Papemo, Ben Zion Kaplan, Simultaneous Measurement of Two DC Magnetic Field Components by a Single Magnetoresistor. IEEE Transactions on Mangnetics, 1995, 31(3): 2269-2273
    [39]张兴,何继光,李国丽,无线内窥镜三点定位方法及简化,系统仿真学报,2008,20(9):2275~2278
    [40] Wan’an Yang,Chao Hu, Max Q. H. MengA, et al.. Six-Dimensional Magnetic Localization Algorithm for a RectangularMagnet Objective Based on a Particle Swarm Optimizer. IEEE Transactions on Mangnetics, 2009, 45(8): 3092~3099
    [41] W. Weitschies, M. Karaus, D. Cordini, et al.. Magnetic marker monitoring of disintegrating capsules. Eur. J. Pharm. Sci., 2001, 13(4):411~416
    [42] W. Weitschies, J. Wedmeyer, R. Stehr, et al.. Magneticmarkers as a noninvasive tool to monitor gastrointestinal transit. IEEE Trans. Biomed. Eng., 1994, 41(2):192~195
    [43]齐玮,王仁明,王秀芳等,北京地磁台K指数3小时扰幅修正及K指数计算机标定,地球物理学报,2010,53(7):1661~1670

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700