丁香假单胞菌番茄致病变种和烟草致病变种egfp标记突变体的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病原细菌的三型分泌系统(TTSS)是丁香假单胞菌(Pseudomonas syringae)侵染过程中重要的蛋白分泌系统。TTSS的编码、蛋白分泌等受到hrp基因的调节。研究hrp基因在病菌侵染过程中的表达情况有助于进一步探索hrp基因的功能,揭示植物病原细菌的分子致病机制,而egfp标记突变体的构建是开展寄主-病原物的互作研究的重要策略。本试验拟以增强型绿色荧光蛋白基因(egfp)作为报告基因,以植物丁香假单胞菌烟草致病变种和番茄致病变种为材料,以其hrpA基因和hrpZ基因为靶标,通过体外重组和双亲结合技术,分别构建靶标基因与egfp融合表达的突变体,以及靶标基因缺失的egfp标记突变体,为今后研究丁香假单胞菌-植物的互作提供有用的材料工具。主要试验结果为:
     (1)以丁香假单胞菌番茄致病变种DC3000菌株和烟草致病变种4号菌株的基因组DNA为模板,扩增出了hrpA、hrpZ基因及其上下游片段;以pEGFP-C1为模板扩增出了egfp ORF全长。将相关的DNA片段进行体外重组后,得到了4个与预期大小一致的目的大片段CDE3、CTE1、CTE3、CTE4,它们分别为hrpZPto::egfp、hrpAPsta::egfp、hrpZPsta::egfp融合型片段和△hrpZPsta::egfp缺失型片段,为下一步构建融合型、缺失型突变体的构建奠定了基础。
     (2)试验将获得的目的大片段CDE3、CTE1、CTE3、CTE4分别连接至克隆载体pMD19-T,提取阳性克隆质粒pMD19-CDE3、pMD19-CTE1、pMD19-CTE3、pMD19-CTE4的DNA与自杀型质粒pKSM1的DNA同时进行BamHI和XbaI双酶切,切胶回收的酶切片段进行连接,得到了适于进行双亲接合所用的自杀型重组质粒pKSM-CDE3、pKSM-CTE1、pKSM-CTE3、pKSM-CTE4。
     (3)将含有质粒pKSM-CDE3的大肠杆菌S17-1与番茄致病变种DC3000野生型菌株进行双亲接合后获得了hrpZPto::egfp融合型突变体;将含有质粒pKSM-CTE1、pKSM-CTE3、pKSM-CTE4的大肠杆菌S17-1分别与烟草致病变种4号菌野生型菌株进行双亲结合获得了hrpAPsta::egfp、hrpZPsta::egfp融合型突变体和△hrpZPsta::egfp缺失型突变体。将获得的4个突变体菌株划线于KB培养基(30μg/ml Nalr)上,在紫外灯下观察发现hrpAPsta::egfp融合型突变体有明显的绿色荧光,而hrpZPto::egfp、hrpAPsta::egfp融合型突变体及△hrpZPsta::egfp缺失型突变体则无绿色荧光。
     (4)与野生型菌株相比,以上构建的4个egfp标记突变体人工接种烟草后,pv. tomato DC3000的hrpZPto::egfp融合型突变体的过敏性诱导能力明显降低;hrpAPsta::egfp、hrpZPsta::egfp融合型突变体及△hrpZPsta::egfp缺失型突变体的致病性也明显降低。
Type III secretory system (TTSS) of plant pathogenic bacteria is an important protein secretion system for Pseudomonas syringae infection. TTSS is regulated by Hrp gene. It is helpful to further explore the the function of hrp gene and reveal the molecular pathogenicity of pathogens that to study the hrp gene expression during the infection. To construct egfp marked-mutants is an important strategy for studying the interaction between plants -bacteria
     In this study, we intended to use enhanced green fluorescent protein (egfp) gene as a reporter, and hrpA gene and hrpZ gene of Pseudomonas syringae pv.tomato and Pseudomonas syringae pv.tabaci as the targets, to construct egfp-marked fusion mutants and egfp-marked deletion mutants, respectively, with recombination in vitro and parental conjugation. The major results are as follows:
     (1)hrpA、hrpZ gene and its down-stream and up-stream were amplified from the genomic DNA of P.s. pv.tomato DC3000 and P.s.pv.tabaci 4. The egfp full-legth ORF was amplified from plasmid pEGFP-C1 DNA. After recombination in vitro by PCR, 4 expected fragments CDE3、CTE1、CTE3、CTE4 were obtained that laid the foundation for construction of fusion mutants and deletion mutants.
     (2)After the expected recombined-fragments were cloned to vector pMD19-T, the positive cloning vector pMD19-CDE3, pMD19-CTE1, pMD19-CTE3, pMD19-CTE4 and the suicide plasmid pKSM1 was double digested with BamHI and XbaI, respectively. And the digested fragments were collected and ligated. So the research got plasmids pKSM-CDE3, pKSM-CTE1, pKSM-CTE3, pKSM-CTE4 which were suitable for parental conjugation.
     (3)The research obtained fusion mutant hrpZPto::egfp through the parental conjugation between Ecoli S17-1 containing the plasmid pKSM-CDE3 and P.s.pv.tomato wild type strain DC3000. Meantime, the research obtained fusion mutants hrpAPsta::egfp、hrpZPsta::egfp and deletion mutant△hrpZPsta::egfp through the parental conjugation between Ecoli S17-1 containing the plasmids pKSM-CTE1, pKSM-CTE3, pKSM-CTE4 separately and P.s.pv.tabaci wild type 4. When the fusion mutants and deletion mutant were cultured on KB plate(30μg/ml Nalr),only the fusion mutant hrpZPsta::egfp had significant green fluorescent colonies, while fusion mutants hrpZPto::egfp、hrpAPsta::egfp and deletion mutant hrpZPsta::egfp not.
     (4)Compared with the wild type strains, the resultant 4 egfp-marked mutants artificially inoculated to tabaco lealves showed different HRP capacity. The fusion mutant hrpZPto::egfp revealed a significantly reduced hypersensitivity-inducing, while the other 3 egfp marked mutants hrpAPsta::egfp, hrpZPsta::egfp and△hrpZPsta::egfp showed significant reduced pathogenicity to tobacco.
引文
1.陈瑞泰,朱贤朝,王智发,等.全国16个主产烟省(区)烟草侵染性病害调研报告[J].中国烟草科学,1997,(4):1-7.
    2.范晓静,邱思鑫.绿色荧光蛋白基因标记内生枯草芽孢杆菌,应用与环境生物学报, 2007, 13(4):50-53.
    3.高洁,张佳环,迟明亮.烟草野火病发病规律的研究[J].吉林农业大学学报,1997,19(1):8-15.
    4.何晨阳,饶军华,等.植物病原细菌的双组分传导系统[J].微生物学通报,1994,21(1):41-43.
    5.黄远帅,尹一兵.细菌密度感应系统的信号干扰及其应用[J].2005,25(2):86-88.
    6.贾洪革,吕玲飞,庞永奇.绿色荧光蛋白监测转基因植物中选择标记基因的消除[J].生物工程学报,2004,20(4):10-12.
    7.刘德松,王涛,陈建平,等.信号标签诱变突变体文库穿梭质粒构建[J].西部医学, 2006, 18(1): 4-6.
    8.生秀杰.基因打靶的策略及其发展[J].国外医学:遗传学分册,2001,24(1):8-10.
    9.宋从凤,王金生.植物抗病基因工程策略及其前景[J].世界农业,2001,10:39-41.
    10.王进,李付广,李倩如.含绿色荧光蛋白报告基因pUC18筛选载体的构建[J].郑州大学学报,2002,9(5):35-37.
    11.王金生.植物病原细菌学[M].北京:中国农业出版社,2000.
    12.王绍坤.烟草烘烤后野火病、赤星病病斑面积的变化研究[J].中国烟草,1992,2(1):23-25.
    13.薛丽香,童坦君,张宗玉.报告基因的选择及其研究趋向[J].生理科学进展, 2002, 33(4): 55 -58.
    14.杨军.植物病原细菌的hrp基因[J].遗传,2005,27(5):852-858.
    15.杨军,尹启生,宋纪真,等.植物病原细菌的hrp基因[J].遗传,2005,27(5):852-858.
    16.杨勇,李多川.植物病原细菌hrp基因研究进展[J].生命的化学,2001,21(5):405-407.
    17.张红,陈夕军.纹枯病菌胞壁降解酶对水稻组织和细胞的破坏作用[J].扬州大学学报,2005,26(4):83-86.
    18.张敏,任慧霞.报告基因的应用研究进展[J].食品与药品,2007,9(09A):45-48.
    19.张广民,吕军鸿.烟草野火病研究概况[J].中国烟草学报,2002,8(2):78-83.
    20.张淑珍.植物病原菌毒素研究进展[J].黑龙江农业科学,2001,2(2):42-43.
    21.赵钢.烟草野火病角斑病及综合治理[J].烟草科技,1995,(6):43.
    22.钟增涛,郑会明,高轶静等.细菌中的群体感应[J].生命的化学,2003,23(6):421-424.
    23. Alfnao J R, Charkowski A O, Deng W L, et al. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type IIIsecretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitnessand pathogenicity in plants [J]. Proc Natl Acad Sci USA, 2000, 97(9) 4856-4861.
    24. Anguige K, King J R, Ward J P, Williams P. Mathematical modelling of therapies targetted at bacterial quorum sensing [J].Mathematical Biosciences. 2004, 192(1):39-83.
    25. Arlat M, Van Gijsegem F, Huet J C, et al. PopA1, a protein which induces a hypersansity -like responseon specific Petunia genotypes,is secreted via the Hrp pathway of Pseudomonas solanacearum [J]. EMBO J, 1994, 13(3):543-553.
    26. Bainton R G, Kubo K M, Feng J N, et a1. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system [J]. Cell, 1993, 72 (6):931-943.
    27. Bauer D W, Wei Z M, Beer S V, et al. Erwinia chrysanthemi harpinEch:An elicitor of the hypersensitive response thatcontributes to soft-rot pathogenesis[J]. Mol Plant Microbe Interact, 1995, 8(4):484-491.
    28. Harper B K, Mabon S A, Leffel S M, et al.Green fluorescent protein as a marker for expression of a second gene in transgenic plants [J]. Nat Biotechnol, 1999, 17(11): 1125-1129.
    29. Brito B, Marenda M, Barberis P, et al. prhJ and hrpG, two new components of the plant signal-dependent regulatory cascade controlled by PrhA in Ralstonia solanacearum [J]. Mol Microbiol, 1999, 31(1):237-251.
    30. Brown I R, Mansfield J W, Taira S, et al.Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv.tomato across the host plant cell wall [J]. Mol Plant Miorobe Interact, 2001, 14(3):394-404.
    31. Büttner D, Bonas U. Getting across-bacterial typeⅢeffector proteins on their way to the plant cell [J].EMBO J, 2002, 21(20):5313-5322.
    32. Casper-Lindley C, Dahlbeck D, Clark E T, et al. Direct biochemical evidence for type III secretion dependent translocation of the AvrBs2 effector protein into plant cells [J]. Proc Natl Acad Sci USA, 2002, 99(12): 8336-8341.
    33. Chalmem R M, Kleckner N.Tnl0/IS10 transposase purification, activation, and in vitro reaction [J]. The Journal of Biological Chemistry, 1994, 269(11):8029-8035.
    34. Charkowski A O, Alfano J R, Preston G, et al . The Pseudomonas syringae pv.tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate [J]. J Bacteriol, 1998, 180(19):5211-5217.
    35. Cornelis G R, Van G F. Assembly and function of type III secretory systems [J]. Annu. Rev. Microbiol, 2000, 54:735-774.
    36. Devine S E, Boeke J D. Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis [J]. Nucleic Acids Res, 1994, 22(18):3765-3772.
    37. Fouts D E, Abramovitch R B, Alfano J R, et al.Genomewide identification of Pseudomonas syringae pv.tomato DC3000 promoters controlled by the HrpL alternative sigma factor [J]. Proc Natl Acad Sci USA, 2002, 99(4):2275-2280.
    38. Preston G, Deng W L, Huang H C, Collmer A. Negative regulation of hrp genes in Pseudomonas syringae by HrpV [J]. J Bacteriol,1998,l80(17):4532-4537.
    39. Gardan R, Cossare P, Labadie J. Identification of Listeria monocytogenes genes involved in salt and alkaline-pH tolerance[J]. Appl Enviromental Microbiol, 2003, 69(6):3137-3143.
    40. Gopalan S, Bauer D W, Alfano J R, et al. Expression of the Pseudornonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity(Hrp)secretion system in eliciting genotype-specific hypersensitive cell death[J]. Plant Cell, 1996, 8(7):1095-1105.
    41. Gough C L, Genin S, Zischek C, Boucher C A. Hrp Genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria [J]. Mol Plant Microbe Interact, 1992, 5(5):384 -389.
    42. Guttman D S, Vinatzer B A,Sarkar S F,et al. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae [J]. Science, 2002, 295(5560): 1722-1726.
    43. Haapa S, Taira S, Heikkinen E, Savilahti H. An efficient and accurate integration of mini-Mu transposons, in vitro: a general methodology for functional genetic analysis and molecular biology applications [J]. Nucleic Acids Res, 1999, 27(13):2777-2784.
    44. Hacker J, Carniel E. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes [J]. EMBO Rep, 2001, 2(5):376-381.
    45. He S Y,Huang H C,Collmer A.Pseudomonas syringae pv. syringae harpinPss:a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants [J]. Cell, 1993, 73(7):1255-1266.
    46. He S Y.Elicitation of plant hypersensitive response by bacteria [J]. Plant Physiol, 1996, 112(3):865-869.
    47. He S Y.Type III protein secretion systems in plant and animal pathogenic bacteria [J]. AnnuRev Phytopathol, 1998, 36:363-392.
    48. Herron S R,Benen J A,Scavetta R D, et al. Structure and function of pectic enzymes: virulence factors of plant pathogens [J]. Proc.Natl.Acad.Sci.U.S.A, 2000, 97(16):8762-8769.
    49. Huang Q,Allen C,Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants [J]. Physiol.Mol.Plant Pathol, 2000, 57(2):77- 83.
    50. Innes R W, Bent A F, Kunkel B N, et al. Molecular analysis of avirulence gene avrRpt2 identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes [J]. J Bacterio1, 1993, 175 (15):4859-4869.
    51. Alfano J R, Collmer A.The type III (Hrp) secretion pathway plant pathogenic bacteria: trafficking harpins, Avr proteins, and death [J]. J Baeteriol. 1997, 179(18):5655-5662.
    52. Jin Q, He S Y. Role of the Hrp pilus in typeⅢprotein secretion in Pseudomonas syringae [J]. Science, 2001, 294 (5551):2556-2558.
    53. Jin Q, Hu W, Brown I, et al.Visualization of secreted Hrp and Avr proteins along the Hrp pilus during typeⅢsecretion in Erwinia amylovora and Pseudomonas syringae [J]. Mol Microbiol, 2001, 40 (5):1129-1139.
    54. Kim J F, Alfnao J R. Pathogenicity islands and virulence plasmids of bacterial plant pathogens [J]. Curr. Top. Microbiol.Immunol, 2002, 264(2):127-147.
    55. Kim J F,Beer S V. HrpW of Erwinia amylovora,a new harpin that contains a domain homologous to pectate lyases of a distinct class[J]. J Bacteriol.1998, 180(19):5203-5210.
    56. Kim J G,Park B K,Yoo C H,et al.Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island [J]. J.Bacteriol, 2003, 185(10):3155-3166.
    57. Koebnik R. The role of bacterial pili in protein and DNA translocation [J]. Trends Microbio, 2001, 9(12):586-590.
    58. Koornneef M, Dellaert L W M, Vander J H. EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana(L.)Heynh[J]. Mutat Res, 1982, 93(1):109-123.
    59. Lee Y H, Kolade O O, Nomura K, et al. Use of dominant-negative HrpA mutants to dissect Hrp pilus assembly and type III secretion in Pseudomonas syringae pv.tomato [J]. J Biol Chem, 2005, 280(22):21409-21417.
    60. Les H, Jerry J.Use of EZ::TN Transposon for genetic analysis and direct sequencing of bacterial genomic DNA [J]. Epicentre Technologies, 1999, 6(3):1-3.
    61. Li X, Song Y, Century K, etal. A fast neutron deletion mutagenesis-based reverse genetics system for plants [J]. Plant J, 2001, 27(3):235-242.
    62. Lindgren P B, Peet R C, Panopoulos N J. Gene cluster of Pseudomonas syringae pv.“phaseolicola”controls pathogenicity of bean plants and hypersensitivity of nonhost plants[J]. J Bacteriol.1986, 168(2):512-522.
    63. Lindgren P B.The role of hrp genes during plant–bacterial interactions [J]. Annu Rev Phytopathol, 1997, 35:129-152.
    64. Lorang J M, Keen N T.Characterization of avrE from Pseudomonas syringae pv. tomato: a hrp-linked averulence locus consisting of at least two transcriptional units [J]. Mol plant Microbe Interact, 1995, 8(1):49-57.
    65. Maekawa T, Yanagihara K, Ohtsubo E. A cell-free system of Tn3 transposition and transposition immunity [J]. Genes Cells, 1996, 1(11):1007-1016.
    66. Mclean R J, Whiteley M, Stickler D J, et al. Evidence of autoinducer activity in naturally occurring biofilms[J]. FEMS Microbiol Lett, 1997, 154(2):259-263.
    67. Menissier de Murcia J, Ricoul M, Tartier L, et al. Functional ineraction between RARP-1 and RARP-2 in chromosome stability and embryonic development in mouse [J]. EMBO J, 2003, 22(9):2255-2263.
    68. Muskett P R, Kahn K , Austin M J, et al. Arabidopsis RARI exerts rate-limiting control of R gene-mediated defenses against multiple pathogens [J]. Plant Cell, 2002, 14(5):979-992.
    69. Noel L, Thieme F, Nennstiel D, etal.Two novel typeⅢ-secreted proteins of Xanthomonas campestris pv.vesicatoria are encoded within the hrp pathogenicity island[J]. J Bacteriol, 2002, 184(5):1340-1348.
    70. Lindgren P B.The role of hrp genes during plant-bacterial interactions [J]. Ann Rev Phytopathol, 1997, 35:l29-152.
    71. Polard P,Ton-Hoang B, Haren L, et al. IS911-mediated transpositional recombination in vitro [J]. J Mol Biol, 1996, 264(1):68-81.
    72. Preston G, Huang H C, He S Y, et al.The HrpZ proteins of Pseudomonas syringae pv syringae,glycinea,and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean[J]. Mol Plant Microbe Interact, 1995, 8(5):717-732.
    73. Rahme L G,Mindrinos M N,Panopoulos N J.Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syrqngae pv.phaseolicola [J]. J Bacteriol, 1992, 174(11):3499-3507.
    74. Roine E,Wei W,Yuan J,et al.Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv.tomato DC 3000 [J]. Proc Natl Acad Sci USA, 1997, 94(7):3459-3464.
    75. Smith S, de Lange T.Tankyrase promotes telomere elongation in human cells [J]. Curr Biol, 2000, 10(20):1299-1302.
    76. Suresh G,Sheng Y H.Bacterial genes involved in the elicitation of hypersensitive response and pathogenesis [J]. Plant Disease, 1996, 80(6):604-610.
    77. Szurek B,Rossier O,Hause G,et al.Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell[J]. Mol Microbiol, 2002, 46(1): 13-23
    78. Van Gijsegem F, Vasse J, Camus J C,et al.Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells [J]. Mol Microbiol, 2000, 36(2):249-260.
    79. Weber E, Koebnik R.Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. Vesicatoria [J]. J Bacteriol, 2005, 187(17):6175-6186.
    80. Wei W, Plovanich-Jones A, Deng W L, et al.The gene coding for the Hrp pilus structural protein is required for typeⅢsecretion of Hrp and Avr proteins in Pseudomonas syringae pv.tomato [J]. Proc Natl Acad Sci USA, 2000, 97(5):2247-2252.
    81. Wei Z W, Laby R J, Zumoff C H, et al. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora [J]. Science, 1992, 257(5066):85-88.
    82. Wengelnik K,Marie C,Russel M,Bonas U. Expression and Iocalization of HrpA 1, a protein of Xanthomonas campestris pv.vesicatoria essential for pathogenicity and induction of the hypersensitive reaction [J]. J Bacteriol, 1996, 178(4):1061-1069.
    83. Wengelnik K, Rossier O, Bonas U.Mutations in the regulatory gene hrpG of Xanthomonas campestris pv.vesicatoria result in constitutive expression of all hrp Genes[J]. J Bacterial, 1999, 181(21):6828-6831.
    84. Xiao Y, Hutcheson S W.A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae [J]. J Bacterial, 1994, 176(10):3089-3091.
    85. Zhang C L, Chen D F, Mccormac A C, et a1. Use of the GFP reporter as a vital marker for agrobaeterium-mediated transformation of sugar beet (Beta vulgaris L.) [J]. Mol Biotechnol, 2001, 17(2):109-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700