CdS纳米粒子功能化及其在分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米材料具有独特的光学和电学性质,在过去的几十年中引起了人们的广泛关注。CdS半导体纳米粒子作为一种典型的Ⅱ-Ⅵ族禁带直接半导体纳米材料,与传统的有机染色剂相比,该纳米粒子具有激发光谱宽,发射光谱窄且对称,最大发射波长位置可调,不易光解等特点,因此可以成功地作为荧光探针对细胞和生物样品进行染色,也可用来检测无机离子、生物大分子。
     本文在文献基础上,水相中合成了高发光、水溶性的CdS纳米粒子,对CdS纳米粒子进行不同官能团的修饰。制备的功能性纳米粒子作为荧光探针定量检测无机离子、DNA及单碱基突变。主要内容如下:
     (1)综述了半导体量子点的性质、CdS纳米粒子的制备及其在分析科学中的应用。
     (2)采用水相法合成了粒径均匀、分散性好的CdS纳米粒子,并分别用半胱氨酸和半胱胺对CdS纳米粒子进行修饰。通过优化实验条件,跟踪监测了CdS纳米粒子荧光光谱的变化,探讨了CdS纳米粒子与半胱氨酸、半胱胺之间的相互作用机理,并对其进行表征,研究结果表明,在水相中可以制得稳定且荧光强度较强的CdS纳米溶胶;同时,分别用低浓度的半胱氨酸和半胱胺对其进行修饰,能够得到荧光稳定性较好的功能化CdS纳米粒子。
     (3)以修饰的纳米粒子为荧光探针,建立了荧光猝灭定量检测锰离子的新方法。考察了多种因素的影响。在最佳实验条件下,测定锰离子的线性区间为0.0534~77.6 mg/L,检出限为0.0168 mg/L。该方法经济、简单、快速、灵敏度高、检出限比较低、检测范围宽,可望用于生物基质样品中微量元素的测定。
     (4)在水相中合成了半胱氨酸修饰的CdS/ZnS核壳结构纳米探针,并对其进行表征。制得的功能化CdS/ZnS纳米晶近似呈球形,粒径约为20 nm。CdS纳米微粒的表面经ZnS修饰后,表面缺陷减少,其荧光发射峰强度显著增强。利用该探针对DNA进行了定量测定,考察了各种因素的影响,在最佳实验条件下,该方法测出有两个线性区间,分别为:0.0833~3.33μg/mL和3.33~16.7μg/mL,该方法的检出限为2.50×10~(-3)μg/mL。与其它方法相比,该方法具有简单、经济、快速、灵敏度高、低毒的特点。
     (5)以已知序列的单核苷酸为对象,磁性纳米颗粒作为压电检测增敏和磁分离材料,以单碱基修饰的CdS纳米粒子作为探针,利用压电与荧光光谱分析,建立一种新型的基于纳米粒子的单核苷酸多态性检测新方法。利用外加磁场的固定过程,成功地提供了一种简便、快捷、廉价的检测装置。加入单核苷酸修饰的CdS纳米粒子后,突变体系频率下降,而对应的完全互补目标DNA链,频率下降可以忽略,这一结果由荧光光谱分析后得到进一步的证实。因此,由于其操作简便且成本低,以上方法必将给研究领域和临床基因分析带来福音。
Nanostructured semiconductor materials with unique optical and electrical properties have attracted a lot of interests in the last two decades. As a direct bandgap II-VI semiconductor, CdS nanoparticles have been paid more attentions for their excellent optical properties. Compared to the conventional organic dyes, CdS nanoparticles appear to be less susceptible to photobleaching with much narrower emission spectra and tunable maximum emission wavelength, which have been successfully used as fluorescent probe for the imaging of biological samples and cells. And the CdS nanoparticles become very sensitive to their local environment, and detections of some inorganic ions, proteins, DNA conformations were thus developed based on this property.
     On the basis of related literatures, the synthesization of highly luminescent water-soluble CdS nanoparticles was studied. We modified the CdS nanoparticles to be fluorescent probes to detect inorganic ion, DNA and single-base mutations. The main work in this thesis is as follows:
     (1) Reviews were given firstly on the properties, synthetic methods and applications of CdS nanoparticles.
     (2) CdS nanoparticles were synthesized by the aqueous solution method. The nanoparticles were of uniformity in size and good dispersancy. CdS nanoparticles were modified with cysteine and cysteamine, respectively. The factors those influencing the CdS nanoparticle fluorescence were tracked and inspected. The interaction mechanism between CdS nanoparticles with cysteine and cysteamine were also discussed. Then characterize the samples. The experimental results showed that CdS nanoparticles were stable and of strong fluorescence intensity in aqueous solution. Furthermore, functionalized CdS nanoparticles with good fluorescence stabilities were obtained under the modification with low concentration of cysteine or cysteamine.
     (3) A new approach was proposed for the sensitive determination of manganese ions with nanoparticles-modified fluorescence probes. Different influencing factors were studied. Under the optimum conditions, the response is linearly proportional to the concentration of manganese (II) ion in the range from 0.0534 mg/L to 77.6 mg/L. The limit of detection is 0.0168 mg/L for.manganese (II) ion. And it was proved to be a low-cost, simple, rapid, sensitive, low-limit method. Functionalized nanoparticles are hopeful to be used as fluorescence probes in detecting trace elements in biological samples.
     (4) The CdS/ZnS core-shell structure nanoparticles were synthesized in hydrotropic solution and characterized. The shape of CdS/ZnS core-shell particle approximated to a ball with an average diameter of 20 nm. The fluorescence intensity of the band-side emission of the CdS/ZnS was strengthened, and the surface state emission was weakened. Quantitative determination of DNA by functionalized CdS/ZnS core-shell nanofluorescence probe. Various Factors were assessed and the suitable conditions were optimized for the assay of DNA. Linear relationship was found between the quenched fluorescence intensity and the concentration of DNA in the range of 0.0833~3.33μg/mL and 3.33~16.7μg/mL with the limit of detection of 2.50×10~(-3)μg/mL. The method is also simple, cheap, rapid, sensitive and low toxicity.
     (5) A novel detection method for single nucleotide polymorphisms (SNPs) based on magnetic nanoparticle and CdS nanoparticle probes has been proposed in this work using fluorescence spectrometry and piezoelectric sensing. Magnetic nanoparticles were used to realize the isolation, separation and purification of DNA probes. Single nucleotide-coded CdS nanoparticles were synthesized and characterized. Magnetic nanoparticles coated by DNA strand with point mutation was immobilized onto the electrode surface with a magnet, ant then the CdS nanoparticle probes was utilized to search the mutation point via base-pairing. The hybridization of DNA with CdS nanoparticle probes caused changes of crystal frequency, whereas nearly no frequency changes for the complementary target could be recorded. Point mutation or single-base mismatch discrimination could be achieved successfully, and then each sample can be simultaneously identified by CdS fluorescent probes. Owing to its easy operation and cost-effectiveness, it was expected that the proposed procedure might hold great promise in both research-based and clinical genetic assays.
引文
[1]李新勇,李树本.纳米半导体研究进展[J].化学进展,1996,8(3):231-239.
    [2]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001.59.
    [3]姜忠义,成国祥.纳米生物技术[M].北京:化学工业出版社,2003.381.
    [4]朱屯,王福明,王习东.国外纳米材料技术进展与应用[M].北京:化学工业出版社,2002.132.
    [5]P.Alivisatosa.Semiconductor clusters,nanocrystals and quantum dots[J].Science,1996,271(5251):933-937.
    [6]M.J.Bruchez,M.Moronne,P.Gin,et al..Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281(25):2013-2016.
    [7]T.W.Roberti,N.J.Cherepy,J.Z.Zhang.Nature of the power-dependent ultrafast relaxation process of photoexcited charge carriers in Ⅱ-Ⅵsemiconductor quantum dots:effects of particle size,surface,and electronic structure[J].J.Chem.Phys.,1998,108(5):2143-2151.
    [8]M.L.Steigerwald,L.E.Brus.Synthesis,stabilization,and electronic structure of quantum semiconductor nanoclusters[J].Ann.Reu.Mater.Sci.,1989,19:471-495.
    [9]M.L.Steigerwald,L.E.Brus.Semiconductor crystallites,a class of large molecules[J].Ace.Chem.Res.,1990,23(1):183-188.
    [10]A.Henglein.Mechanism of reactions of colloidal microelectrodes and size quantization effects[J].Top.Curr.Chem.,1988,143(4):113-180.
    [11]Y.Wang,N.Herron,W.Mahler,et al..Linear- and nonlinear-optical properties of semiconductor clusters[J].J.Opt.Soc.Am.B,1989,6(4):808.
    [12]顾宁,付德刚,张海黔.纳米技术与应用[M].北京:人民邮电出版社,2002.
    [13] L. E. Brus. Electronic wave functions in semiconductor clusters: experiment and theory [J]. J. Phys. Chem., 1986, 90(12): 2555-2560.
    [14] L. E. Brus. Electron-electron and eleotron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state [J]. J. Chem. Phys., 1984, 80(9): 4403-4409.
    [15] Y. Kayanuma. Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape [J]. Phys. Rev. B, 1988, 38(14): 9797-9805.
    [16] Y. Wang, A. Suna, W. Mahler, et al.. PbS in polymers from molecules to bulk solids [J]. J. Chem. Phys., 1987, 87(12): 7315-7322.
    [17] Y. Wang, N. Herron. Quantum size effects on the exciton energy of CdS clusters [J]. Phys. Rev. B, 1990,42(11): 7253-7255.
    [18] H. Shinojima, J. Yumoto, N. Uesugi, et al.. Microcrystallite size dependence of absorption and photoluminescence spectra in CdS_xSe_(1-x)-doped glass [J]. Appl. Phys. Lett., 1989, 55(15): 1519-1521.
    
    [19] P. E. Lippens, M. Lannoo. Calculation of the band gap for small CdS and ZnS crystallites [J]. Phys. Reo. E. 1989, 39(15): 10935-10942.
    [20] P. E. Lippens, M. Lannoo. Comparison between calculated and experimental values of the lowest excited electronic state of small CdSe crystallites [J]. Phys. Reo. B, 1990,41(9): 6079-6081.
    [21] P. Ball, L. Garwin. Science at the atomic scale [J]. Nature, 1992, 355(6363): 761-766.
    [22] M. A. Reed, W. R. Frensley, R. J. Matyi, et al.. Realization of a three-terminal resonant tunneling device: the bipolar quantum resonant tunneling transistor [J]. Appi. Phys. Lett., 1989, 54(11): 1034-1036.
    [23] G. J. Thomas, R. W. Siegel, J. A. Eastman. Grain boundaries in nanophase palladium: high resolution electron microscopy and image simulation [J]. Scr. Metall. Mater., 1990, 24(1): 201-206.
    [24]X.Michalet,F.Pinaud,T.D.Lacoste,et al..Properties of fluorescent semiconductor nanocrystals and their application to biogical labeling[J].Single Mol.,2001,2(4):261-276.
    [25]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2003.
    [26]张立德.纳米材料[M].北京:化学工业出版社,2000.
    [27]张立德,解思深.纳米材料和纳米结构.国家重大基础研究项目新进展[M].北京:化学工业出版社,2005.
    [28]J.C.Sanchez-Lopez,E.P.Reddy,T.C.Rojas,et al..Preparation and characterization of CdS and ZnS lanosized particles obtained by the inert gas evaporation method[J].Nanostruct.Mater.,1999,12(1-4):459-462.
    [29]唐文华,邹洪涛,蒋天智,等.低温固相合成纳米硫化镉的新方法[J].无机盐工业,2006,38(4):22-24.
    [30]张俊松,马娟,周益明,等.低温固相反应法合成水分散性CdS纳米晶[J].无机化学学报,2005,21(2):295-298.
    [31]刘辉,李文友,尹洪宗,等.CdS纳米粒子与半胱氨酸相互作用的研究[J].高等学校化学学报,2005,26(9):1618-1622.
    [32]俞英,周震涛.核壳纳米晶二硒化镉/硫化镉的合成及荧光法测定溶菌酶[J].分析化学,2005,33(5):650-652.
    [33]杨建军,张顺利,张治军,等.纳米CdS粒度控制的动力学效应[J].中国科学(B辑),2000,30(1):42-48.
    [34]李平,刘梅川,张成林,等.聚乙烯吡咯烷酮/硫化镉量子点修饰电极的制备及其对血红蛋白的测定研究[J].化学学报,2005,63(12):1075-1080.
    [35]黄风华,彭亦如.表面修饰的CdS纳米荧光探针的研究[J].光谱学与光谱分析,2006,26(6):1102-1105.
    [36]J.Allege,G.Arnand,H.Mathieu.Absorption properties of CdS nanocrystals jinglasses;evidence of both weak and strong confinement regimes[J].J.Cryst.Growth,1994,138(1-4):988-1003.
    [37]舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备[J].无机化学学报,1999,15(1):1-7.
    [38]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机化学学报,1996,11(2):193-206.
    [39]W.W.So,J.S.Jang,Y.W.Rhee,et al..Preparation of nanosized crystalline CdS particles by the hydrothermal treatment[J].J.Colloid Interface Sci.,2001,237(1):136-141.
    [40]袁求理,聂秋林.多臂CdS纳米晶体的水热控制合成[J].无机材料学报,2007,22(1):49-52.
    [41]聂秋林,袁求理,徐铸德.单齿络合剂辅助水热合成CdS纳米棒[J].无机材料学报,2004,19(6):1411-1414.
    [42]钟淮真,李国强,何晓云,等.有机溶剂热生长技术制备CdS及其与聚苯胺复合膜的光学性质[J].发光学报,2004,25(5):585-590.
    [43]T.Hirai,Y.Bando,K.Isao.Immobilization of CdS nanoparticles formed in reverse micelles onto alumina particles and their photocatalytie properties[J].J.Phys.Chem.B,2002,106(35):8967-8970.
    [44]客敏智,章明秋,粱海春,等.原位表面修饰纳米CdS粒子的表面结构和光学性质[J].材料研究学报,2004,18(4):343-350.
    [45]张颖,房喻,林书玉,等.纳米结构型PMAA/CdS复合微球的微凝胶模板法制备研究[J].物理化学学报,2004,20(专刊):897-901.
    [46]R.Dmitri,A.A.Tager,H.Junji,et al..Nonlithographic nano-wire arrys:fabrication,physics,and device applications[J].Ieee Trans.Elecron.Devices.,1996,43(10):1646-1658.
    [47]栾野梅,安茂忠,孙明仁.CdS/Cd纳米薄膜的制备及表征[J].高校化学工程学报,2004,18(6):745-750.
    [48]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002.1-16.
    [49]R.Cohen,L.Kronik,A.Shanzer,et al..Controlling semiconductor surface electronic properties by dicarboxylic acids[J].J.Am.Chem.Soc.,1999,121(45):10545-10533.
    [50]A.Ivanisevic,M.F.Reynolds,J.N.Burstyn,et al..Photoluminescent properties of cadmium selenide in contact with solutions and films of metalloporphyrins:nitric oxide sensing and evidence for the aversion of an analyte to a buried semiconductor-film interface[J].J.Am.Chem.Soc.,2000,122(15):3731-3738.
    [51]F.Seker,K.Meeker,T.F.Kuech,et al..Surface chemistry of prototypical bulk Ⅱ-Ⅳ and Ⅲ-Ⅴ semiconductors and implications for chemical sensing [J].Chem.Rev.,2000,100(7):2505-2536.
    [52]A.M.L.Nickel,F.Seker,B.P.Ziemer,et al..Imprinted poly(acrylic acid)films on cadmium selenide-composite sensor structure that couples selective amine binding with semiconductor substrate photoluminescence[J].Chem.Mater.,2001,13(4):1391-1397.
    [53]R.Cohen,L.Kronik,A.Shanzer,et al..Molecular control over semiconductor surface electronic properties:dicarboxylic acids on CdTe,CdSe,GaAs,and InP[J].J.Am.Chem.Soc.,1999,121(45):10545-10551.
    [54]Y.F.Chen,Z.Rosenzweig.Luminescent CdS quantum dots as selectiveion probes[J].Anal.Chem.,2002,74(19):5132-5138.
    [55]M.Kerim,A.Gattas,M.L.Roger.Peptide-coated CdS quantum dots for the optical detection of copper and silver[J].Chem.Comm.,2003,38(21):2684-2685.
    [56]M.Y.Han,X.Gao,S.Nie.Quantum-dot-tagged microbeads formultip lexed optical coding of biomolecules[J].Nat.biotechnol.,2001,19(7):631-635.
    [57]A.H.Jacob,M.Rupa,H.Jonas,et al..Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles[J].J.Am.Chem.Soc.,2006,128(12):3860-3861.
    [58]P.M,Chan,T.Yuen,S.C.Sealfon,et al..Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization[J].Nucleic Acids Res.,2005,33(18):161.
    [59]朱承谟.标记免疫分析技术进展[J].标记免疫分析与临床,2002,9(3):173-179.
    [60]C.P.Price,D.J.Newman.Principles and practice of immunoassay[M].London:Macmillan Publishers Ltd.,1997.101-102.
    [61]G.D.Liu,Y.Y.Lin,J.Wang,et al..Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip[J].Anal.Chem.,2007,79(20):7644-7653.
    [62]王传涛,王术皓,杜凌云,等.CdS纳米晶标记抗雌二醇抗体荧光免疫分析试剂[J].河北师范大学学报/自然科学版,2007,31(2):218-221.
    [63]W.C.W.Chan,D.J.Maxwell,X.Gao,et al..Luminescent quantum dots for multiplexed biological detection and imaging[J].Anal.Biotechnol.,2002,13(1):40-46.
    [64]M.Bruchez,M.Moronne,P.Gin,et al..Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281(5385):2013-2016.
    [65]B.J.Winter,T.Y.Liu,B.A.Korgel.Biomolecule-directed interfacing between semiconductor quantum dots and nerve cells[J].Adv.Mater,2001,13(22):1673-1677.
    [66]X.Gao,Y.Cui,S.R.M.Levenson,et al..In vivo cancer targeting and imaging with semiconductor quantum dots[J].Nat.biotechnol.,2004,22(8):969-976.
    [67]B.Dubertret,P.Skourides,L.Albert,et al..In vivo imaging of quantum dots encapsulated in phospholipids micelles[J].Science,2002,298(5599):1759-1762.
    [68]W.J.Parak,R.Boudreau,A.P.Alivisatos,et al..Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks[J].Adv.Mater.,2002,14(12):882-885.
    [69]李鸿梅,刘含智,张皓,等.量子点荧光标记在重组噬菌体表面展示肽与胰岛素受体相互作用中的应用[J].高等学校化学学报,2004,25(5):982-984.
    [70]马慧莲,刘含智,王丽萍,等.量子点的荧光共振能量转移在生物分析中的应用[J].分析化学评述与进展,2005,3(9):1335-1338.
    [71]陈军霞,丁双阳.量子点荧光探针在生物学中的应用[J].动物医学进展,2005,26(6):108-111.
    [72]林章碧,苏星光,张皓,等.用水溶液中合成的量子点作为生物荧光标记物的研究[J].高等学校化学学报,2003,24(2):216-220.
    [73]黄风华,彭亦如.表面修饰的CdS纳米荧光探针的研究[J].光谱学与光谱分析,2006,126(16):1102-1105.
    [74]李步洪,张镇西,谢树森.量子点在生物学中的研究进展[J].激光生物学报,2006,15(2):214-220.
    [75]钟萍,俞英,陈波,等.量子点的合成及在生物分析中的应用[J].化学试剂,2005,27(11):657-661.
    [76]贺蓉,田红叶,古宏晨.不同溶剂中制备单分散量子点[J].上海交通大学学报,2005,39(11):1816.
    [77]徐海娥,闫翠娥.水溶性量子点的制备及应用[J].化学进展,2005,17(5):800.
    [78]闻中凯,董宇平.荧光量子点复合微球的制备[J].化工新型材料,2006,34(6):10-12.
    [79]任国兰,柴宜民,卫洪青,等.量子点荧光探针的合成[J].山西师范大学学报,2003,17(1):60-62.
    [80]徐力,江林,赵辛,等.水相中两种不同荧光CdS纳米粒子的合成[J].吉林大学学报,2003,41:241-244.
    [81]周锋,马强,唐亚平,等.硫化镉纳米粒子的制备[J].材料工程,2004,10:42-46.
    [82]庞起,郭必成,王建农,等.反胶束法合成Cd_(1-x)Mn_xS量子点及其发光性能研究[J].高等学校化学学报,2004,25:1593-1596.
    [83]丛日敏,罗运军,李国平,等.PAMAM树形分子模板法原位制备CdS-ZnS核.壳结构量子点[J].高等学校化学学报,2006,27(5):793-796.
    [84]田红叶,贺蓉,古宏晨.不同温度下硒化镉(CdSe)量子点的生长及荧光性研究[J].功能材料,2005,36(10):1564-1567.
    [85]M.Gao,A.L.Rogach,A.Kornowski,et al..Strongly photoluminescent CdTe nanocrystals by proper surface modification[J].J.Phys.Chem.,1998,102(43):8360-8363.
    [86]M.L.Dai,Z.Y.Yan,P.Qu,et al..Application of L-Cys-capped CdS nanoparticles in determination of nucleic acid by resonance light-scattering technique[J].J.Chin.Pharm.Sci.,2006,15(2):109-114.
    [87]S.Logunov,T.Green,S.Marguet,et al..Interfacial carriers dynamics of CdS nanoparticles[J].J.Phys.Chem.A,1998,102(28):5652-5658.
    [88]C.W.Wang,M.G.Moffitt.Surface-tunable photoluminescence from block copolymer-stabilized cadmium sulfide quantum dots[J].Langmuir,2004,20(26):11784-11796.
    [89]Z.H.Zhang,W.S.Chin,J.J.Vittal.Water-soluble CdS quantum dots prepared from a refluxing single precursor in aqueous solution[J].J.Phys.Chem.B,2004,108(48):18569-18574.
    [90]G.D.Liu,J.Wang,J.Kim,et al..Electrochemical coding for multiplexed immunoassays of proteins[J].Anal.Chem.,2004,76(23):7126-7130.
    [91]L.Wang,X.T.Tao,J.H.Shi,et al..Conjugated chromophore near the quantum-confined cadmium sulfide cluster:quenched photoluminescence and enhanced two-photon absorption[J].J.Phys.Chem.B,2006,110(39):19711-19716.
    [92]刘辉,李文友,尹洪宗,等.CdS纳米粒子制备的影响因素及CdS纳米粒子-酚藏花红体系的光谱特性[J].化学学报,2005,63(4):301-306.
    [93]刘辉,李文友,尹洪宗,等.CdS纳米粒子与半胱氨酸相互作用的研究[J].高等学校化学学报,2005,26:1618-1622.
    [94]王柯敏,王益林,李朝辉,等.CdTe量子点荧光猝灭法测定铜离子的研究[J].湖南大学学报,2005,32(3):1-5.
    [95]徐力,郭轶,解仁国,等.水相合成CdS纳米晶标记牛血清白蛋白[J].功能材料与器件学报,2003,9(2):201.
    [96]殷好勇,徐铸德,郑遗凡,等.巯基乙酸为稳定剂在MWCNTs上原位生长CdSe量子点[J].物理化学学报,2004,20(11):1308-1312
    [97]孟磊,宋增璇.量子点在生物医学中的应用[J].生物化学与生物物理进展.2004,32(2):185-187.
    [98]汪乐余,郭畅,李茂国,等.功能性硫化镉纳米荧光探针荧光猝灭法测定核酸[J].分析化学研究简报,2003,31(1):83-86.
    [99]陈宏伟,刘红莉,王一理,等.量子点:新的荧光标记物质[J].中华病理学杂志,2005,34(1):47.
    [100]严拯宇,庞代文,邵秀芬,等.量子点荧光猝灭法测定中药饮片中的微量铜[J].中国药科大学学报,2005,36(3):230-233.
    [101]Q.Z.Zhu,F.Li,X.Q.Guo,et al..Application of a novel fluorescence probe in the determination of nucleic acids[J].Analyst,1997,122(9):937-940.
    [102]孔祥瑞.必需微量元素的营养、生理及临床意义[M].安徽:安徽科技出版社,1982,339.
    [103]蔡同建,陈景元,李妍,等.锰对PCl_2细胞增殖及蛋白酶体活性的抑制作用[J].现代预防医学,2006,33(3):257-260.
    [104]姜闯道,高辉远,邹琦,等.缺锰降低大豆叶片中叶绿素荧光的高能态猝灭[J].植物生理与分子生物学学报,2002,28(4):287-291.
    [105]何可群,刘艳丽,沈国励,等.CdS纳米颗粒的合成、表面修饰及光学特性研究.湖南大学学报[J],2004,31(6):6-8.
    [106]A.Kumar,S.Mital.Photophysics and photocatalytic behavior of composite CdS-purine nanoparticles in the presence of certain indoles[J].J.Colloid and Interface Sci.,2003,265(2):432-438.
    [107]T.Dannhauser,M.O'Neil,K.Johansson,et al..Photophysics of quantized colloidal semiconductors:dramatic luminescence enhancement by binding of simple amines[J].J.Phys.Chem.,1986,90(23):6074-6076.
    [108]汪乐余,朱英贵,王伦,等.硫化镉纳米荧光探针荧光猝灭法测定痕量铜[J].分析化学,2002,30(1):1352-1354.
    [109]戴美玲,严拯宇,庞代文,等.功能性L-Cys-CdS纳米荧光探针的合成及其光谱性质研究[J].光谱学与光谱分析,2006,26(8):1503-1507.
    [110]Z.X.Cai,H.Yang,Y.Zhang,et al..Preparation,characterization and evaluation of water-soluble 1-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(Ⅱ)in aqueous solution[J].Anal.Chim.Acta,2006,559(2):234-239.
    [111]S.Koch,R.Court,W.Garen.Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy[J].Spectrochim.Acta Part B,2005,60(7-8):1230-1235.
    [112]张克荣,李崇福.脉冲火焰原子吸收法测定组织样品中微量锰[J].中国卫生检验杂志,1994,4(4):222-223.
    [113]李荣勤.苯基荧光酮分光光度发测定微量锰[J].齐齐哈尔大学学报,2004,20(4):24-26.
    [114]M.G.Bawndi,M.L.Steigerwakd,L.E.Brus.The quantum mechanics of larger semiconductor cluster[J].Annu.Rev.Phys.Chem.,1990,41:477-491.
    [115]L.E.Brus.Quantum crystallites and nonlinear optics[J].Appl.Phys.A,1991,53(6):465-474.
    [116]L.E.Brus.Electron wave functions in semiconductor clusters:experiment and theory[J].J.Phys.Chem.,1986,90(12):2555-2560.
    [117]R.Premachandran,S.Banerjee,V.T.John,et al..The enzymatic synthesis of thiol-containng polymers to prepare polymers-CdS nanocomposites[J].Chem.Mater.,1997,9(6):1342-1347.
    [118]W.C.W.Chan,S.Nie.Quqntum dot bioconjuqates for ultrasensitve non isotopic dectection[J].Science,1998,281(5383):2016-2018.
    [119]M.J.Bruchez,M.Moronne,P.Gin,et al..Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281(5385):2013-2016.
    [120]张宇,付德刚,蔡建东,等.CdS纳米粒子的表面修饰及其对光学性质的影响[J].物理化学学报,2000,16(5):431-436.
    [121]俞英,吴霖,谭贤丽.碱性品红荧光法测定脱氧核糖核酸及其机理的研究[J].分析化学,2004,32(5):628-632.
    [122]李文友,吴会灵,何锡文,等.中性红荧光探针法测定生物大分子核酸[J].高等学校化学学报,2003,24(10):1787-1789.
    [123]J.Mu,D.Y.Gu,Z.Z.Xu.Synthesis and stabili-zation of ZnS nanoparticles embedded in silica nanospheres[J].Appl.Phys.A,2005,80(7):1425-1429.
    [124]Q.L.Wei,S.Z.Kang,J.Mu."Green" synthesis of starch capped CdS nanoparticles[J].Colloid surf.A.,2004,247(1-3):125-127.
    [125]徐万帮,汪勇先,许荣辉,等.CdS量子点的优化合成及其在离子检测中的应用[J].无机材料学报,2006,21(5):1031-1037.
    [126]L.Xu,L.Wang,X.F.Huang,et al..Surfacepassivation and enhanced quantumsize efect and photostability of coated CdSe/CdS nanocrystals[J].Physica E.,2000,6(8):129-133.
    [127]刘舒曼,徐征,H.Wageh,等.CdSe/CdS核/壳型纳米晶的光谱特性[J].光谱学与光谱分析,2002,22(6):908-911.
    [128]孙聆东,付雪峰,钱程,等.水热法合成CdS/ZnO核壳结构纳米微粒[J].高等学校化学学报,2001,22(6):879-882.
    [129]A.Sashchiuk,L.Langof,R.Chaim,E.Lifshitz.Synthesis and characterization of PbSe and PbSe/PbS core/shell colloidal nanocrystals[J].J.Cryst.Growth,2002(3-4),240:431-438.
    [130]K.K.Song,S.H.Lee.Highly luminescent(ZnSe)ZnS core/shell quantum dots for blue to UV emission:synthesis and characterization[J].Curr.Appl.Phys.,2001,1(223):169-173.
    [131]S.J.Kim,M.G.Bawendi.Oligomeric ligands for luminescent and stable nanocrystal quantum Dots[J].J.Am.Chem.Soc.,2003,125(48):14652-14653.
    [132]M.Jones,J.Nedeljkovic,R.J.Ellingson,et al..Photoenhancement of luminescence in colloidal CdSe quantum dot solutions[J].J.Phys.Chem.B,2003,107(41):11346-11352.
    [133]Y.C.Charles,J.Wang.One-pot synthesis of high-quality zinc-blende CdS nanocrystals[J].J.Am.Chem.Soc.,2004,126(44):14336-14337.
    [134]M.G.Bawndi,M.L.Steigerwakd,L.E.Brus.The quantum mechanics of larger semiconductor cluster('Quantum dots')[J].Ann.Rev.Phys.Chem.,1990,41:477-491.
    [135]L.E.Brus.Quantum crystallites and nonlinear optics[J].Appl.Phys.A,1991,53(6):465-474.
    [136]L.E.Brus.Electron wave functions in semiconductor clusters:experiment and theory[J].J Phys.Chem.,1986,90(12):2555-2560.
    [137]谢颖,徐静娟,于俊生,等.水溶性的CdSe/ZnS纳米微粒的合成及表征[J].无机化学学报,2004,20(6):663-667.
    [138]孙聆东,付雪峰,钱程,等.水热法合成CdS/ZnO核壳结构纳米微粒[J].高等学校化学学报,2001,22(6):878-880.
    [139]谢颖,徐静娟,于俊生,等.水溶性的CdSe/ZnS纳米微粒的合成及表征[J].无机化学学报,2004,20(6):663-667.
    [140]L.Y.Wang,L.Wang,F.Gao,et al..Application of functionalized Cds nanoparticles as flurescence probe in the determination of nucleicacids[J].Analyst,2002,127(7):977-980.
    [141]E.Marshall.Laying chicken over gene markers[J].Science,1997,278(5346):2046-2048.
    [142]H.N.Liu,S.Li,Z.F.Wang,M.J.Ji,et al..High-throughput SNP genotyping based on solid-phase PCR on magnetic nanoparticles with dual-color hybridization[J].J.Biotechnol.,2007,131(3):217-222.
    [143]V.Alain,et al..A review on SNP and other types of molecular markers and their use in animal genetics[J].Genet.Sel.Evol.,2002(34):275-305.
    [144]杨昭庆,洪坤学,等.单核苷酸多态性的研究进展[J].国外遗传学分册,2000,23(1):4-8.
    [145]R.Sachidanandam,D.Weissman,S.C.Schmidt,et al..A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms[J].Nature,2001,409(6822):928-933.
    [146]L.L.Pang,J.S.Li,J.H.Jiang,et al..A novel detection method for DNA point mutation using QCM based on Fe_3O_4/Au core/shell nanoparticle and DNA ligase reaction[J].Sens.Actuat.B,2007,127(2):311-316.
    [147]D.Altshuler,V.J.Pollara,C.R.Cowles,et al..An SNP map of the human genome generated by reduced representation shotgun sequencing[J].Nature,2000,407(6803):513-516.
    [148]P.S.Andersen,C.Jespersgaard,J.Vuust,et al..Capillary electrophoresis-based single strand DNA conformation analysis in high-throughput mutation screening[J].Mutat,2003,21(5):455-465.
    [149]G.R.Taylor.CRC Press:Boca.Raton.,1997.FL.
    [150]T.J.Griffin,L.M.Smith.Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry[J].Trends Biotechnol.,2000,18(2):77-84.
    [151]官月平,姜波,朱星华,等.生物磁性分离研究进展[J].化工学报,2000,51:315-319.
    [152]C.M.Niemeyer.Nanoparticles,proteins,and nucleic acids:biotechnology meets materials science[J].Angew.Chem.Int.Ed.,2001,40(22):4128-4158.
    [153]X.J.Zhao,R.Tapec-Dytioco,K.M.Wang,et al..Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers[J].Anal.Chem.,2003,75(14):3476-3483.
    [154]R.Ingrain,H.Tagoh,A.D.Riggs,et al..Rapid,solid-phase based automated analysis of chromatin structure and transcription factor occupancy in living eukaryotic cells[J].Nucleic Acids Res.,2005,33(1):el-el.
    [155]M.C.Daniel,D.Astruc.Gold nanoparticles:assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology[J].Chem.Rev.,2004,104(1):293-346.
    [156] Y. Xia, B. Gates, Y. Yin, et al.. Monodispersed colloidal spheres: old materials with new applications [J]. Adv. Mater, 2000,12(10): 693-713.
    [157] D. S. Grubisha, R. J. Lipert, H. Y. Park, et al.. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels [J]. Anal. Chem., 2003, 75(21): 5936-5943.
    [158] H. G. Park, J. Y. Song, K. H. Park, et al.. Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis [J]. Chem. Eng. Sci., 2006, 61(3): 954-965.
    [159] M. Bruchez, M. Moronne, P. Gin, et al.. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998,281(5385): 2013-2016.
    [160] H. Mattoussi, J. M. Mauro, E. R. Goldman, et al.. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J. Am. Chem. Soc, 2000,122(49): 12142-12150.
    [161] R. E. Bailey, A. M. Smith, S. Nie. Quantum dots in Biology and Medicine [J]. Phys. E., 2004, 25(1): 1-12.
    [162] J. R. Taylor, M. M. Fang, S. Nie. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles [J]. Anal. Chem., 2000, 72(9): 1979-1986.
    [163] A. P. Alivisatos. Perspectives on the physical chemistry of semiconductor nanocrystals [J]. Phys. Chem., 1996, 100(31): 13226-13239.
    [164] R. Mahtab, J. P. Rogers, C. J. Murphy. Protein-sized quantum dot luminescence can distinguish between "straight", "bent", and "kinked" oligonucleotides [J]. J. Am. Chem. Soc, 1995, 117(35): 9099-9100.
    [165] Y. S. Kang, S. Risbud, J. F. Rabolt, et al.. Synthesis and characterization of nanometer-size Fe_3O_4 and y-Fe_2O_3 particles [J]. Chem. Mater, 1996, 8(8): 2209-2211.
    [166]P.Ashtari,X.X.He,K.M.Wang,et al..An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles [J].Talanta,2005,67(3):548-554.
    [167]A.Ghosh,C.R.Patra,P.Mukherjee,et al..Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica[J].Micropor.Mesopor.Mater.,2003,58(3):201-211.
    [168]G.D.Liu,T.M.H.Lee,J.Wang.Nanocrystal-Based Bioelectronic coding of single nucleotide polymorphisms[J].J.Am.Chem.Soc.,2005,127(1):38-39.
    [169]黄桂华,殷霞,章伟光,等.功能化介孔磁性载体的制备及对铜离子的吸附[J].华南师范大学学报,2006,4:82-87.
    [170]A.Ghosh,C.R.Patra,P.Mukherjee,et al..Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica[J].Micropor.Mesopor.Mater.,2003,58(3):201-211.
    [171]杨文玉,崔亚丽,代丽君.单分散纳米胶体的合成[J].陕西师范大学学报,2003,31(2):71-73.
    [172]朱梓华,朱涛,刘忠范.大粒径分散金纳米粒子的水相合成[J].物理化学学报,1999,15(11):966-969.
    [173]崔亚丽,惠文利,汪慧蓉,等.Fe_3O_4/Au复合微粒制备条件及性质的研究[J].中国科学,2003,33(6):482-488.
    [174]R.L.Joseph,G.Ignacy,et al..Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effects of DNA oligomer binding[J].Anal.Biochem.,2000,280(1):128-136.
    [175]G.D.Liu,T.M.H.Lee,J.Wang.Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms[J].J.Am.Chem.Soc.2005,127(1):38-39.
    [176] S. J. Cho, J. C. Idrobo, J. Olamit, et al.. Fe core is metallic jagged Au shell surface may compromise oxidation resistance [J]. Chem. Mater, 2005, 17(12): 3181-3186.
    [177] M. C. Daniel, D. Astruc. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev., 2004, 104(1): 293-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700