石榴花多酚对糖尿病大鼠血糖血脂的影响及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     石榴花是传统维吾尔药材,用于治疗具有“三多一少”特征的疾病,现代医学研究发现石榴花提取物具有良好的降糖活性。本研究通过提取石榴花多酚,建立糖尿病大鼠模型,观察其对糖尿病大鼠血糖、血脂以及胰岛素抵抗的影响,并进一步探讨石榴花多酚降糖及缓解胰岛素抵抗的分子机制,为开发和有效利用维吾尔地方药材提供理论依据。
     方法与结果:
     第一部分:石榴花多酚制备
     选用D101大孔树脂纯化方法提取石榴花,以总酚含量为评价指标,获得多酚得率为68%的石榴花多酚。并通过正交试验,研究不同因素对石榴花多酚物质浸出率的影响,确定最佳的提取方法为:以60%乙醇作溶液,料液比为(g∶ml)1∶20,在50℃下提取2次,每次提取时间为1h,此条件下稳定性较好。
     第二部分:石榴花多酚对糖尿病大鼠药效学研究
     1.制备糖尿病大鼠模型
     高脂饲料加腹腔注射链脲佐菌素(STZ)45mg·kg~(-1)复制糖尿病大鼠模型,空腹血糖(FPG)≥11.1mmol·L~(-1),确定为糖尿病成模大鼠。所得模型鼠明显多饮、多食、多尿、喜卧、毛发灰暗、生长缓慢;并且具备高空腹血糖,高胰岛素水平及胰岛素抵抗等特点,接近人类2型糖尿病发病特征。
     2.分组给药并检测指标
     以二甲双胍(100mg·kg~(-1))为阳性对照药物,石榴花多酚(100mg·kg~(-1),300mg·kg~(-1))给药四周后,分别测定各项指标,结果如下:石榴花多酚两剂量组和二甲双胍组均能有效降低糖尿病大鼠血清中的FPG、TC、TG、LDL-C;显著升高HDL-C/TC比值(P<0.05,P<0.01);对体重无明显影响;石榴花多酚两剂量组和二甲双胍组均能有效降低糖尿病大鼠FIns水平,降低IRI,并增加ISI(P<0.05,P<0.01)。光镜下分别观察肝脏和胰岛细胞的病理学改变显示石榴花多酚两剂量组对糖尿病大鼠肝脏组织和胰岛细胞有一定的保护作用。
     第三部分:石榴花多酚降糖机制的研究
     1.石榴花多酚对糖尿病大鼠糖原合成的影响及机制
     测定大鼠肌、肝糖原含量(MG、HG)含量;骨骼肌己糖激酶(HK)活性、肝脏葡萄糖激酶(GK)活性;Western Blot法检测大鼠骨骼肌中糖原合酶激酶-3β(GSK-3β)和AMP活化蛋白激酶α(AMPKα)和磷酸化AMP活化蛋白激酶α(P-AMPKα)的蛋白含量。
     结果显示:石榴花多酚可有效增加MG含量(P<0.05,P<0.01),PFPⅡ组HK活性明显增强(P<0.01);但肝脏HG含量和GK活性无明显改变(P>0.05);PFP I组中GSK-3β的蛋白表达降低(P<0.01),P-AMPKα的表达量(P<0.01)及P-AMPKα/AMPKα(P<0.05)则显著增加。
     2.石榴花多酚对糖尿病大鼠胰岛素抵抗水平的影响
     分光光度法测定血清游离脂肪酸(FFA)浓度;ELISA法测定血清白介素-6(IL-6)和白介素-18(IL-18)含量。分光光度法观察石榴花多酚溶液在Mn~(2+)-H_2O_2-PAR体系中对·OH的抑制率和对DPPH·的清除率;分别检测大鼠肝脏和骨骼肌中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、还原型谷胱甘肽(GSH)和丙二醛(MDA)。RT-PCR法测定大鼠肝脏中PPARα/γmRNA水平;Western Blot法检测PPARα/γ蛋白表达水平。
     结果显示:1)石榴花多酚能有效降低糖尿病大鼠血清FFA和IL-6,两个剂量组均(P<0.05)。但对IL-18无显著影响(P>0.05);2)体外抗氧化实验中石榴花多酚(0.08mg·ml~(-1))在Mn~(2+)-H_2O_2-PAR体系中对·OH的清除率46%,相当于Vc(0.2mg·ml~(-1))的3倍;石榴花多酚(0.02mg·ml~(-1))对DPPH·的清除率87%,约为Vc(0.2mg·ml~(-1))的5倍。石榴花多酚能有效增加糖尿病大鼠肝脏CAT活力(P<0.05);PFPⅡ组SOD显著升高(P<0.01);PFPⅠ组MDA则显著降低(P<0.05);骨骼肌中,PFPⅡ组大鼠SOD显著升高(P<0.01);两剂量组中MDA明显降低,GSH则显著增加(P<0.05,P<0.01);3)石榴花多酚两个剂量组中PPARγmRNA的表达增强(P<0.01),PFPⅠ组中PPARαmRNA的表达量增加;PFPⅠ组中PPARγ蛋白表达量增加(P<0.05),两剂量组中PPARα蛋白表达量均上调(P<0.05)。
     3)初探石榴花多酚对糖尿病大鼠血管内皮功能的影响
     ELISA法测定大鼠血浆中以下各指标,结果显示:石榴花多酚两个剂量组中ET-1、ATⅡ和TXB2浓度均显著降低,6-Keto-PGF1a显著增加,TXB2/6-Keto-PGF1a均明显降低(P<0.01,P<0.05)。
     结论:
     1.石榴花多酚具有良好的降糖作用:通过增加糖尿病大鼠骨骼肌糖原含量降低血糖;机制可能与增强骨骼肌组织中己糖激酶活性,下调糖原合酶激酶-3的蛋白表达及增强骨骼肌AMPK活性有关。
     2.石榴花多酚可以缓解胰岛素抵抗水平:可能与降低血清中TG、FFA和血清炎症介质IL-6含量;清除糖尿病大鼠体内自由基有关;还可通过上调肝脏PPARα/γ的蛋白表达,提高肝脏组织对胰岛素敏感性;通过降低骨骼肌中GSK-3β的表达,增加AMPK活性,提高骨骼肌组织对胰岛素的敏感性。
     3.石榴花多酚对糖尿病大鼠的血管内皮有一定的保护作用:血浆中ET-1和ATⅡ浓度及TXB2和6-Keto-PGF1a比值下降提示石榴花多酚对糖尿病大鼠的血管内皮起到一定的保护作用。
Objective:
     Pomegranate flower in traditional Uygur medicine is wildly used for the treatment of the disease with a little "as" san-duo symptom, modern medical research have found that pomegranate flower extract has effective hypoglycemic activity, In this study, effect of PFP on blood glucose, blood lipids and insulin resistance of diabetic rats were observed through extraction of pomegranate flower polyphenols (PFP) and establishment of diabetic rats, then hypoglycemic mechanism of PFP was further explored, which provide a theoretical data and basic information for the development and effective use of Uighur local herbs.
     Methods:
     PARTⅠPomegranate flower polyphenol extraction
     D101 macroporous resin purification method was used to extract pomegranate polyphenols; with total phenol content as evaluation index, finally 68% of pomegranate flower polyphenols (PFP) were got from the effective part of pomegranate flower. And orthogonal experiment was used to study different factors on the leaching rate of pomegranate flower polyphenols in order to get optimum extraction process as follows: pomegranate flower was extracted for 2 times at 50℃, each extraction time covered 1h; the solution with 60% ethanol and solid-liquid was mixed as 1∶20 (g∶ml) .
     PARTⅡPharmacodynamic studies of PFP on diabetic rats
     1.Establishment of diabetic rats models
     The models is established by feeding with high fat diet plus intraperitoneal injection of streptozotocin (STZ) 45mg·kg~(-1).The rats whose fasting plasma glucose (FPG) ≥11.1mmol·L~(-1) are identified as diabetic model rats. Diabetic model rats tend to drink, eat and urinate more than normal and like lying down, whose hair become gloomy and FPG, insulin levels insulin resistance become higher. Characteristics of model rats close to the human type 2 diabetes.
     2.Administration and Measurement of indexes
     With metformin (100mg·kg~(-1)) as a positive control, diabetes rats fed with pomegranate flower polyphenols (100mg·kg~(-1), 300mg·kg~(-1)) dose respectively for four weeks, then Weight, FPG, GLR, Fins, IRI, lipid profiles were detected.
     Results: Compared with diabetic models rats, fasting plasma glucose of rats in two-dose group and metformin group effectively reduced, as well as plasma triglycerides, low-density lipoprotein cholesterol, total cholesterol. while ratio of high-density lipoprotein to total cholesterol (HDL-C/TC) was higher. (P<0.05, P<0.01); Serum insulin levels as well as IRI were reduced significantly, while ISI was effectively elevated in two dose group. (P<0.05, P<0.01). In addition, PFP showed a protective effect on liver tissue and islet B cells of diabetic rats by pathology examination under light microscopy.
     PARTⅢHypoglycemic mechanism of PFP
     1.Effects of PFP on glycogen synthesis and mechanism research Effects of PFP on glycogen synthesis were evaluated by measuring the following items: MG and HG content, skeletal muscle HK activity ,GK activity; then Western Blot assay was applied for checking GSK-3βand AMPKαandP-AMPKαprotein expression in skeletal muscle .
     Results: Compared with diabetic models rats, MG level in both group (P<0.05, P<0.01) and HK activity in PFPⅡgroup (P<0.05) were effectively elevated; however HG and GK activity in liver showed no significant change (P>0.05); GSK-3βprotein expression effectively reduced in PFPⅠgroup (P<0.01); P-AMPK/AMPK significantly increased in PFPⅠgroup (P<0.05).
     2.Effect of PFP on IR of diabetic rats
     Serum FFA was measured by UV-visible spectrophotometry; serum IL-6 and IL-18 were checked by ELISA method; antioxidant activity of PFP was evaluated by clearance of DPPH·and·OH in Mn~(2+)-H_2O_2-PAR system in Vitro; then SOD、CAT、GSH and MDA in liver and skeletal muscle were detected respectively; PPARα/γmRNA level by RT-PCR and PPARα/γprotein expression by Western blot were measured.
     Results: Compared with model rats, 1)Serum FFA (P<0.05) and IL-6 (P<0.01) were significantly higher in two-dose group; however IL-18 had no significant change (P>0.05). 2) In vitro, PFP (0.08mg·ml~(-1)) in the clearance rate of·OH 46%is about three times of Vc (0.2mg·ml~(-1)) in Mn~(2+)-H_2O_2-PAR system. PFP (0.02mg·ml~(-1)) with scavenging rate of DPPH·87%is about 5 times of Vc (0.2mg·ml~(-1)). Antioxidant activity of PFP in liver: Compared with model rats,CAT significantly increased in both PFP group (P<0.05); SOD was significant higher (P<0.01) in PFPⅡgroup; MDA was significant lower in PFPⅠgroup (P<0.05). In skeletal muscle : SOD were significantly elevated in PFPⅡgroup (P<0.01); MDA was significantly reduced, GSH was significant increased in both PFP group. (P<0.05, P<0.01). 3) Compared with model rats,PPARγmRNA (P<0.01) in both dose group and PPARαmRNA in PFPⅠgroup (P<0.01) significantly increased; PPARγprotein expression in PFPⅠgroup (P<0.05) and PPARαprotein expression in both PFP group (P<0.05), were effectively upgrulated.
     3.Effect of PFP on vascular endothelium of diabtic rats
     Plasma ET-1, ATⅡ, TXB2 and 6-Keto-PGF1a were detected by ELISA. Results: compared with model rats, ATⅡand ET-1 concentrations were significantly reduced in two-dose group (P<0.05), and significant reduction of TXB2 (P<0.01) and increment of 6-Keto-PGF1a (P<0.01; P<0.05) caused a significant reduction in TXB2 and 6-Keto-PGF1a ratio (P<0.01).
     Conclusion:
     1) PFP perform hypoglycemic function in diabetic rats, possibly related to the following aspects: reduction of blood glucose in diabetic rats was probably induced by incremental glycogen content of skeletal muscle.and incremental skeletal muscle glycogen content was possibly caused by enhancement of hexokinase activity, which is the rate-limiting enzyme in glycogen synthesis process. In addition, another possible hypoglycemic mechanism was related to reduction of the protein expression of GSK-3βand significant enhancement of AMPK activity. 2) PFP are able to alleviate insulin resistance level in diabetic rats: the possible mechanism related to the following aspects: reducution of serum TG, FFA and serum inflammatory mediators IL-6 in diabetic rats and antioxidant activity; moreover, PFP are able to improve insulin sensitivity in liver tissue of diabetic rats by enhancing both protein expression of PPARγand PPARα, function as dual PPARα/γagonists and improve insulin sensitivity in skeletal muscle by reducing GSK-3βexpression and enhancing AMPK activity in skeletal muscle. 3) Protective effect of PFP on vascular endothelial of diabetic rats: the results of plasma ET-1, ATⅡ, TXB2 and 6-Keto-PGF1a suggested that: PFP may have preventative and protective effect on vascular complications of type 2 diabetes.
引文
[1] YANG W, LU J, WENG J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12):1090-1101.
    [2]陈电容,张更荣,等. 17792例体检人群的血糖调查分析[J].中国预防医学杂志, 2007, 8(3):291-292.
    [3]李锐,卢伟.上海市2型糖尿病患病情况现状调查[J].中华医学杂志, 2006, 86(24):1675-1680.
    [4]穆凯,应方微. 2型糖尿病流行病学相关因素调查综述[J].云南中医中药杂志, 1999, 20(20):44.
    [5] ZHISHENG C. some aspects of diabetes in the people’s Republic China- Aperspective from Beijing. In:Mann J I, Pyer3/4 13/4K, Teyscger A(Eds). diabetes in epidemiologieal perspective[J]. churchill livingstone publisher, edinburgh, london, melbourne and new york[M], 1983, 78-86.
    [6]吴先萍,杨晓妍. 2型DM危险因素及作用方式研究[J].中国慢性病预防与控制, 2004, 12(1):9-11.
    [7] OAKES N D, COONEY G J, CAMILLERI S, et al. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding[J]. Diabetes, 1997, 46(11):1768-1774.
    [8] GAO Z, ZHANG X, ZUBERI A, et al. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes[J]. Mol Endocrinol, 2004, 18(8):2024-2034.
    [9] NGUYEN M T, SATOH H, FAVELYUKIS S, et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes[J]. J Biol Chem, 2005, 280(42):35361-35371.
    [10] UNGER R H. Lipotoxic diseases[J]. Annu Rev Med, 2002, 53:F319-336.
    [11] BLOOMGARDEN Z T. Second World Congress on the Insulin Resistance Syndrome:hypertension, cardiovascular disease, and treatment approaches[J]. Diabetes Care, 2005, 28(8):2073-2080.
    [12] BODEN G, CHEN X, RUIZ J, et al. Mechanisms of fatty acid-induced inhibition of glucose uptake[J]. J Clin Invest, 1994, 93(6):2438-2446.
    [13] RANDLE P J, GARLAND P B, HALES C N, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus[J]. Lancet, 1963, 1(7285):785-789.
    [14] BONADONNA R C, ZYCH K, BONI C, et al. Time dependence of the interaction between lipid and glucose in humans[J]. Am J Physiol, 1989, 257(1 Pt 1):E49-56.
    [15] SHOELSON S E, LEE J, GOLDFINE A B. Inflammation and insulin resistance[J]. J Clin Invest, 2006, 116(7):1793-1801.
    [16] CAREY A L, FEBBRAIO M A. Interleukin-6 and insulin sensitivity:friend or foe?[J]. Diabetologia, 2004, 47(7):1135-1142.
    [17] PICKUP J C, Mattock M B, Chusney GD, et al. NIDDM as a disease of the innate immune system:association of acute-phase reactants and interleukin-6 with metabolic syndrome X [J]. Diabetologia, 1997, 40(11):1286-1292.
    [18]陈锦风. 2型糖尿病患者血清炎症因子水平与胰岛素抵抗关系及二甲双胍干预的研究[D].福建:福建医科大学, 2004.
    [19] SENN J J, KLOVER P J, NOWAK I A, et al. Interleukin-6 induces cellular insulin resistance in hepatocytes[J]. Diabetes, 2002, 51(12):3391-3399.
    [20] ROTTER SOPASAKIS V, LARSSON B M, JOHANSSON A, et al. Short-term infusion of interleukin-6 does not induce insulin resistance in vivo or impair insulin signalling in rats[J]. Diabetologia, 2004, 47(11):1879-1887.
    [21] KLOVER P J, ZIMMERS T A, KONIARIS L G, et al. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice[J]. Diabetes, 2003,52(11): 2784-2789.
    [22] OKAMURA H, TSUTSI H, KOMATSU T, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells[J]. Nature, 1995, 378(6552):88-91.
    [23]赵星,方洁.不同糖耐量人群血浆IL-18与胰岛素抵抗的相关性[J].贵阳医学院学报, 2009, 34(4):399-401.
    [24] FRIDLYAND L E, PHILIPSON L H. Reactive species and early manifestation of insulin resistance in type 2 diabetes[J]. Diabetes Obes Metab, 2006, 8(2):136-145.
    [25] ESPOSITO K, PONTILLO A, CIOTOLA M, et al. Weight loss reduces interleukin-18 levels in obese women[J]. J Clin Endocrinol Metab, 2002,87(8): 3864-3866.
    [26] NAKAMURA A, SHIKATA K, HIRAMATSU M, et al. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes[J]. Diabetes Care, 2005, 28(12):2890-2895.
    [27] SKOPINSKI P, ROGALA E, DUDA-KROL B, et al. Increased interleukin-18 content and angiogenic activity of serum from diabetic(Type 2)patients with background retinopathy[J]. J Diabetes Complications, 2005, 19(6):335-338.
    [28] PRZYBYS W. The role of oxidative stress in the pathogenesis of diabetic macroangiopathy[J]. Pol Arch Med Wewn, 1996, 96(4):386-394.
    [29]王薇彬,谢自敬,阿依努尔,等. 2型糖尿病患者氧化应激状况及影响因素分析[J].中国糖尿病杂志, 2007, 15(8):487-489.
    [30] FRIDLYAND L E, PHILIPSON L H. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in panceatic B cells?[J]. Diabetes, 2004, 53(8):1942-1948.
    [31] TANAKA Y, TRAN P O, HARMON J, et al. A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity[J]. Proc Natl Acad Sci U S A, 2002, 99(19):12363-12368.
    [32] KANETO H, KAJIMOTO Y, MIYAGAWA J, et al. Beneficial effects of antioxidants in diabetes:possible protection of pancreatic beta-cells against glucose toxicity[J]. Diabetes, 1999, 48(12):2398-2406.
    [33] EVANS J L, GOLDFINE I D, MADDUX B A, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?[J]. Diabetes, 2003, 52(1):1-8.
    [34] CHOI K, KIM Y B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes[J]. Korean J Intern Med, 2010, 25(2):119-129.
    [35] HAAS J T, BIDDINGER S B. Dissecting the role of insulin resistance in the metabolic syndrome[J]. Curr Opin Lipidol, 2009, 20(3):206-210.
    [36] SLACK C, WERZ C, WIESER D, et al. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk[J]. PLoS Genet, 2010, 6(3):e1000881.
    [37] SUMARA G, FORMENTINI I, COLLINS S, et al. Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis[J]. Cell, 2009, 136(2):235-248.
    [38] CAO Q, LU X, FENG Y J. Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells[J]. Cell Res, 2006, 16(7):671-677.
    [39] WANG Z, SMITH K S, MURPHY M, et al. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy[J]. Nature, 2008,455(7217):1205- 1209.
    [40] EHLAR-FINKELMAN H, IHMZ R. Challenges and opportunities with glycogen synthase kinase-3 inhibitors for insulin resistance and Type 2 diabetes treatment[J]. Expert Opin lnvestig Drugs, 2003, 12(9):1511-1519.
    [41] ROACH P J. Control of glycogen synthase by hierarchal protein phosphorylation[J]. FASEB J, 1990, 4(12):2961-2968.
    [42] PARKER P J, CAUDWELL, F. B. , COHEN, P. Glycogen synthase from rabbit skeletal muscle;effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo[J]. Eur J Biochem, 1983, 130(1):227-234.
    [43] DOKKEN B B, HENRIKSEN E J. Chronic selective glycogen synthase kinase-3 inhibition enhances glucose disposal and muscle insulin action in prediabetic obese Zucker rats[J]. Am J Physiol Endocrinol Metab, 2006, 291(2):E207-213.
    [44] DOKKEN B B, SLONIGER J A, HENRIKSEN E J. Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle[J]. Am J Physiol Endocfinol Metab, 2005,288 (6):E1188-1194.
    [45] NIKOULINA S E, CIARALDI T P, MUDALIAR S, et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes[J]. Diabetes, 2000, 49(2):263-271.
    [46] COGHLAN M P, CULBERT A A, CROSS D A, et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription[J]. Chem Biol, 2000, 7(10):793-803.
    [47] PLOTKIN B, KAIDANOVICH O, TALIOR I, et al. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3[J]. J Pharmacol Exp Ther, 2003, 305(3):974-980.
    [48] MURRAY J T, CAMPBELL D G, MORRICE N, et al. Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3[J]. Biochem J, 2004, 384(Pt 3):477-488.
    [49] NIKOULINA S E, CIARALDI T P, MUDALIAR S, et al. Inhibition of glycogen synthase kinase 3improves insulin action and glucosmetabolism in human skeletal muscle[J]. Diabetes, 2002, 51(7):2190-2198.
    [50] HANASHIRO I, ROACH P J. Mutations of muscle glycogen synthase that disable activation by glucose 6-phosphate[J]. Arch Biochem Biophys, 2002,397(2):286- 292.
    [51] DOROTHEA K M W. Effects of extracts from traditional chinese medical plants on glycogen synthase kinase 3βactivity and COS7 cells[J]. Alzheimers Dement, 2009, 5(4):332.
    [52]彭均华.去氢吴茱萸碱在Alzheimer样tau蛋白过度磷酸化中的保护作用及其机制[D].湖北:华中科技大学, 2007.
    [53]曾育琦,陈晓春,黄春,等.人参皂苷Rg1通过调节GSK-3β/PP2A活性减轻皮层神经元Tau蛋白过度磷酸化[J].解剖学报, 2007, 38(6):665.
    [54]钟益宁,甄汉深,滕建北,等.姜黄素衍生物的合成?表征及其体外抗菌活性[J].中国实验方剂学杂志, 2008, 14(2):46.
    [55]陈冰,李毅,商悦.葛根素对缺氧损伤的大鼠脑微血管内皮细胞凋亡和功能的影响[J].中国实验方剂学杂志, 2009, 15(4):72.
    [56] RUTTER G A, DA SILVA XAVIER G, LECLERC I. Roles of 5'-AMP-activated protein kinase(AMPK)in mammalian glucose homoeostasis[J]. Biochem J, 2003, 375(Pt 1):1-16.
    [57] LIM C T, KOLA B, KORBONITS M. AMPK as a mediator of hormonal signalling[J]. J Mol Endocrinol, 2010, 44(2):87-97.
    [58] BUHL E S, JESSEN N, POLD R, et al. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome[J]. Diabetes, 2002, 51(7):2199-2206.
    [59] DESHMUKH A S, LONG Y C, DE CASTRO BARBOSA T, et al. Nitric oxide increases cyclic GMP levels, AMP-activated protein kinase(AMPK)alpha1-specific activity and glucose transport in human skeletal muscle[J]. Diabetologia, 2010, 53(6):1142-1150.
    [60] ANDREELLI F, FORETZ M, KNAUF C, et al. Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin[J]. Endocrinology, 2006, 147(5):2432-2441.
    [61] FRYER L G, FOUFELLE F, BARNES K, et al. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells[J]. Biochem J, 2002, 363(Pt 1):167-174.
    [62] ZHENG D, MACLEAN P S, POHNERT S C, et al. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase[J]. J Appl Physiol, 2001, 91(3):1073-1083.
    [63] BERGERON R, PREVIS S F, CLINE G W, et al. Effect of 5-aminoimidazole-4- carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats[J]. Diabetes, 2001, 50(5):1076-1082.
    [64] IGLESIAS M A, FURLER S M, COONEY G J, et al. AMP-activated protein kinase activation by AICAR increases both muscle fatty acid and glucose uptake inwhite muscle of insulin-resistant rats in vivo[J]. Diabetes, 2004, 53(7):1649-1654.
    [65] ATKINSON L L, KELLY S E, RUSSELL J C, et al. MEDICA 16 inhibits hepatic acetyl-CoA carboxylase and reduces plasma triacylglycerol levels in insulin- resistant JCR:LA-cp rats[J]. Diabetes, 2002, 51(5):1548-1555.
    [66] RAILE K, KLAMMT J, LAUE S, et al. Glucose concentration and AMP-dependent kinase activation regulate expression of insulin receptor family members in rat islets and INS-1E beta cells[J]. Diabetologia. 2005 Sep;48(9):1798-809.
    [67] SAHA A K, AVILUCEA P R, YE J M, et al. Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo[J]. Biochem Biophys Res Commun, 2004, 314(2):580-585.
    [68] HAWLEY S A, GADALLA A E, OLSEN G S, et al. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism[J]. Diabetes, 2002, 51(8):2420-2425.
    [69] ZOU M H, KIRKPATRICK S S, DAVIS B J, et al. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species[J]. J Biol Chem, 2004, 279(42): 43940 -43951.
    [70] MUSI N, HIRSHMAN M F, NYGREN J, et al. Metformin increases AMP- activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes[J]. Diabetes, 2002, 51(7):2074-2081.
    [71]金华.大黄素调节脂肪细胞和骨骼肌细胞糖代谢的分子机制[D].上海:上海交通大学, 2008.
    [72]邹丰.黄芪多糖对STZ诱导的2型糖尿病大鼠AMPK活性的影响[C].湖北:武汉微循环学会第六届会员代表大会暨第十二次学术年会论文集, 2008.
    [73]刘红雨.苦瓜降糖多肽PA口服降血糖作用及机制研究[D].上海中医药大学,硕士论文, 2009.
    [74] ISSEMANN I, GREEN S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators[J]. Nature, 1990, 347(6294):645-650.
    [75] WILLSON T M, BROWN P J, STERNBACH D D, et al. The PPARs:from orphan receptors to drug discovery[J]. J Med Chem, 2000, 43(4):527-550.
    [76] GUAN Y. Targeting peroxisome proliferator-activated receptors(PPARs)in kidney and urologic disease[J]. Minerva Urol Nefrol, 2002, 54(2):65-79.
    [77] HAUNER H. The mode of action of thiazolidinediones[J]. Diabetes Metab Res Rev, 2002, Suppl 2:S10-S15.
    [78] LUPI R, DEL GUERZA S, MARSELLI L, et al. Rosiglitazone prevents theimpairment of human islet function induced by fatty acids:evidence for a role of PPARgamma2 in the modulation of insulin secretion[J]. Am J Physiol Endocrinol Metab, 2004, 286(4):E560-E567.
    [79] WATA M, HARUTA T, USUI I, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator--activated receptor-gamma[J]. Diabetes, 2001, 50(5):1083-1092.
    [80] MOORE G B, CHAPMAN H, HOLDER J C, et al. Differential regulation of adipocytokine mRNAs by rosiglitazone in db/db mice[J]. Biochem Biophys Res Commun, 2001, 286:735-741.
    [81] NISSEN S E, WOLSKI K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes[J]. N Engl J Med, 2007,356(24): 2457-2471.
    [82] HOME PD, POCOCK S J, BECK-NEILSEN H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial[J]. Lancet, 2009, 373(9681):2125-2135.
    [83] HUMPHRIES P S, ALMADEN JV, BARNUM S J, et al. Pyridine-2-propanoic acids:Discovery of dual PPARalpha/gamma agonists as antidiabetic agents[J]. Bioorg Med Chem Lett, 2006, 16(23):6116-6119.
    [84] HENKE B R. Peroxisome proliferator-activated receptor alpha/gamma dual agonists for the treatment of type 2 diabetes[J]. J Med Chem, 2004,47(17):4118- 4127.
    [85] FIEVET C, FRUCHART J C, STAELS B. PPARalpha and PPARgamma dual agonists for the treatment of type 2 diabetes and the metabolic syndrome[J]. Curr Opin Pharmacol, 2006, 6(6):606-614.
    [86] POURCET B, FRUCHART J C, STAELS B, et al. Selective PPAR modulators, dual and pan PPAR agonists:multimodal drugs for the treatment of type 2 diabetes and atherosclerosis[J]. Expert Opin Emerg Drugs, 2006, 11(3):379-401.
    [87] HANSEN B C, TIGNO X T, BDNARDEAU A, et a1. Effects of aleglitazar, a balanced dual peroxisome proliferator-activated receptor alpha/gamma agonist on glycemic and lipid parameters in a primate model of the metabolic syndrome[J]. Cardiovasc Diabetol, 2011, 10:7.
    [88] LONG Y C, BARNES B R, MAHLAPUU M, STEILER TL, et al. Role ofAMP-activated protein kinase in the coordinated expression of genes controlling glucose and lipid metabolism in mouse white skeletal muscle[J]. Diabetologia, 2005, 48(11):2354-2364.
    [89]陈思兰,林兰,楚晓燕,等. 2型糖尿病中医辩证分型与胰岛素抵抗的相关性分析[C].第六次中国中西医结合糖尿病学术会议论文汇编, 2002, 413-416.
    [90]黎学松,岑永庄,梁干雄,等. 2型糖尿病中医分型与胰岛素抵抗相关性分析[J].辽宁中医杂志, 1998, 25(8):345.
    [91]朱章志,熊曼琪. 2型糖尿病患者不同证型红细胞胰岛素受体缺陷的观察[J].中国中西医结合杂志, 1995, 15(5):266-268.
    [92]陆灏,丁学屏,蔡淦. 84例NIDDM辨证分型与IR Glucagon的关系[J].辽宁中医杂志, 1998, 25(9):387-389.
    [93]丁学屏,陆潦,虞芳华,等.非胰岛素依赖型糖尿病中医辨证分型与胰高糖素?胰岛素敏感性的相关研究[J].上海中医药杂志, 1999, (9):18-20.
    [94]周国英,武雪萍,衡先培,等. 2型糖尿病气阴两虚证与胰岛素抵抗的相关性研究[J].福建中医药, 2000, 31(2):7-8.
    [95]黄蕾,陆雄.中药治疗糖尿病药理学研究进展[J].上海医药, 2010,31(3):130- 132.
    [96]王嘉惠.中药有效成分治疗糖尿病的研究进展[J].中国民族民间医药, 2011, 20(3):24-26.
    [97]王莉.中药复方益糖康对2型糖尿病大鼠骨骼肌GLUT4含量的影响及转位机制的研究[D].辽宁:辽宁中医药大学, 2008.
    [98]王东.糖克煎剂对2型糖尿病大鼠模型胰岛素抵抗影响的分子机制的研究[D].北京:北京中医药大学, 2003.
    [99]陈少华,孙玉萍,陈秀杉,等.降糖康对2型糖尿病患者血糖?血液粘度?胰岛素敏感性等指标的影响[J].中国中西医结合杂志, 1997, 17(11):666-668.
    [100]茹克娅木·沙德克.维吾尔常用药材学[M].乌鲁木齐:新疆科技卫生出版社, 1993, 128-129.
    [101] NADKARNI KM.Nadkarni's Indian Materia medica[M]. Popular Prakashan, 1994, Bombay 1031-1035.
    [102]张立华,孙晓飞,张元湖,等.石榴花化学成分及生物活性研究进展[J].山东农业科学, 2009, (3):33-35.
    [103] WANG R, WEI W, WANG L, et al. Constituents of the flowers of Punica granatum[J]. Fitoterapia, 2006, 77(7-8):534-537.
    [104] AUVICHAYAPAT P, PRAPOCHANUNG M, TUNKAMNERDTHAI O, et al.Effectiveness of green tea on weight reduction in obese Thais:A randomized, controlled trial[J]. Physiol Behav, 2008, 93(3):486-491.
    [105] JUSKIEWICZ J, ZDUNCZYK Z, JURGONSKI A, et al. Extract of green tea leaves partially attenuates streptozotocin-induced changes in antioxidant status and gastrointestinal functioning in rats[J]. Nutr Res, 2008, 28(5):343-349.
    [106] WU L Y, JUAN C C, HO LT, et al. Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats[J]. J Agric Food Chem, 2004, 52(3):643-648.
    [107]俞河松,竹剑平.茶多酚对2型糖尿病大鼠胰岛素抵抗的影响[J].海峡药学, 2009, 21(5):31-32.
    [108]邢莎莎,陈超.香椿子总多酚对糖尿病小鼠的降血糖作用[J].中国实验方剂学杂志, 2011, 17(11):169-171.
    [109]周雁,马亚兵,高海青.葡萄籽多酚抗糖尿病大鼠非酶糖基化实验研究[J].中华老年医学杂志, 2007, (6):49-52.
    [110]周雁.葡萄籽多酚(GSPE)对糖尿病慢性并发症的干预研究[D].山东:山东大学, 2002.
    [111] AVIRAM M, VOLKOVA N, COLEMAN R, et al. Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic:studies in vivo in atherosclerotic apolipoprotein e-deficient(E 0)mice and in vitro in cultured macrophages and lipoproteins[J]. J Agric Food Chem, 2008, 56(3):1148-1157.
    [112] HUANG T H, PENG G, KOTA B P, et al. Anti-diabetic action of Punica granatum flower extract: activation of PPAR-gamma and identification of an active component[J]. Toxicol Appl Pharmacol, 2005, 207(2):160-169.
    [113]焦淑萍,周玮,薛丽娟,山葡萄多酚对氧应激大鼠心肌线粒体损伤的保护作用[J].中国地方病防治杂志, 2008, 23(1):18-20.
    [114] KAVIARASAN S, SUNDARAPANDIYAN R, ANURADHA CV. Protective action of fenugreek(Trigonella foenum graecum)seed polyphenolsagainst alcohol-induced protein and lipid damage in rat liver[J]. Cell Biol Toxicol, 2008, 24(5):3 91-400.
    [115] MABLEY J G, SUAREZ-PINZON W L, HASKO G, et al. Inhibition of poly(ADP-ribose)synthetase by gene disruption or inhibition with 5-iodo-6- amino-1, 2-benzopyrone protects mice from multiple-low-dose-streptozotocin- induced diabetes[J]. Br J Pharmacol, 2001, 133(6):909-919.
    [116] ZHAO M, CHRISTIE M R, HEATON N, et al. Amelioration of streptozotocin- induced diabetes in mice using human islet cells derived from long-term culture in vitro[J]. Transplantation, 2002, 73(9):1454-1460.
    [117] LIANG HX, ZHANG S. Observation of stability of a simple type 2 diabetic rat model:combination of high-fat diet-fed and low-dose streptozotocin-induced diabetic rat[J]. Chinese Pharmacological Bulletin, 2008, 24(4):551-554.
    [118]李光伟,潘孝仁, LILLOJA S等.检测人群胰岛素敏感性的一项新指数[J].中华内科杂志, 1993, (32):652.
    [119] SZKUDELSKI T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas[J]. Physiol Res, 2001, 50(6):537-546.
    [120] MAURICIO D, MANDRUP-POULSEN T. Apoptosis and the pathogenesis of IDDM:a question of life and death[J]. Diabetes, 1998, 47(10):1537-1543.
    [121] LIU K P A J, CHIN E. ET AL. Glucose stimulates protein modifiation by olinked GlcNAC pancreastic beta cell:Linkage of olinked GlcNAC to beta cell death[J]. Proc Natl Acad Sci USA, 2000, 97(16):2820.
    [122] PAPACCIO G, FRASCATORE S, ESPOSITO V, et al. Early macrophage infiltration in mice treated with low-dose streptozocin decreases islet superoxide dismutase levels:prevention by silica pretreatment[J]. Acta Anat(Basel), 1991, 142(2):141-146.
    [123]孙晓风,王海燕,李琳琳,等.高糖高脂饮食诱导的2型糖尿病模型大鼠血脂的特点[J].新疆医科大学学报, 2005, 28(2):104-106.
    [124]周迎生,高妍,李斌,等.高脂喂养联合链脲佐菌素注射的糖尿病大鼠模型特征[J].中国实验动物学报, 2005, 13(3):154.
    [125]杨文英,邢晓燕,林红,等.高甘油三酯血症是非胰岛素依赖型糖尿病发病的危险因素[J].中华内科杂志, 1995, 34:583-586.
    [126]陆泽元,林怿昊,邵豪,等.血脂紊乱类型与胰岛素抵抗的关系[J].中华内分泌代谢杂志, 2004, 20(50):447-449.
    [127] LEUNG KK, LEUNG PS. Effects of hyperglycemia on angiotensin II receptor type 1 expression and insulin secretion in an INS-1E pancreatic beta-cell line[J]. JOP, 2008, 9(3):290-299.
    [128]沈稚舟,吴松华,邵福源.糖尿病慢性并发症[M]上海医科大学出版社, 1999:321.
    [129] LI ANLE L J, LIU XUNFANG, ET AL. The characteristics of abnormal lipid metabolism in three groups[J]. Chronic Disease Prevention and Control in China, 2008, 16(2):184-186.
    [130] BAI X, QIU A, GUAN J, et al. Antioxidant and protective effect of an oleanolic acid-enriched extract of A. deliciosa root on carbon tetrachloride induced rat liverinjury[J]. Asia Pac J Clin Nutr, 2007, 16 Suppl 1:169-173.
    [131]张红芝.翻白草降糖作用及对肝细胞糖代谢影响的研究[D].北京:中国农业大学, 2005.
    [132] ITANI S I, SAHA A K, KUROWSKI T G, et al. Glucose autoregulates its uptake in skeletal muscle:involvement of AMP-activated protein kinase[J]. Diabetes, 2003, 52(7):1635-1640.
    [133] IGLESIAS M A, YE J M, FRANGIOUDAKIS G, et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin- resistant high-fat-fed rats[J]. Diabetes, 2002, 51(10):2886-2894.
    [134] KING T D, SONG L, JOPE R S. AMP-activated protein kinase(AMPK)activating agents cause dephosphorylation of Akt and glycogen synthase kinase-3[J]. Biochem Pharmacol, 2006, 71(11):1637-1647.
    [135] JORGENSEN S B, NIELSEN J N, BIRK J B, et al. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading[J]. Diabetes, 2004, 53(12):3074-3081.
    [136] KARAKAS S E, ALMARIO R U, KIM K. Serum fatty acid binding protein 4, free fatty acids, and metabolic risk markers[J]. Metabolism, 2009, 58(7):1002-1007.
    [137] NAKAHARA I, MATSUHISA M, SHIBA Y, et al. Acute elevation of free fatty acids impairs hepatic glucose uptake in conscious rats[J]. Diabetes Res Clin Pract, 2004, 66(2):109-118.
    [138]张龙江,林汉华,王宏伟,等.白介素-6与肥胖及2型糖尿病[J].临床儿科杂志, 2005,23(5):332-334
    [139] STARR R, WILLSON T A, VINEY E M, et al. A family of cytokine-inducible inhibitors of signaling[J]. Nature, 1997, 387(6636):917-921.
    [140] SENN J J, KLOVER P J, NOWAK I A, et al. Suppressor of cytokine signaling-3(SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes[J]. J Biol Chem, 2003, 278(16):13740-13746
    [141] LEINONEN E, HURT-CAMEJO E, WIKLUND O, et al. Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes[J]. Atherosclerosis, 2003, 166(2):387-94.
    [142]阿吉姑·阿布都热西提.新疆葡萄树伤流液抗氧化活性及其检测方法的研究[D].新疆:新疆医科大学, 2008年.
    [143]许申鸿,杭瑚.分光光度法测定抗坏血酸[J].食品科学, 2007, (7):54-57.
    [144] Yang H, Jin X, Kei Lam CW, et al. Oxidative stress and diabetes mellitus[J]. ClinChem Lab Med. 2011 Nov;49(11):1773-82.
    [145] Pácal L, Varva?ovskáJ, Ru?avy Z, et al. Parameters of oxidative stress, DNA damage and DNA repair in type 1 and type 2 diabetes mellitus[J]. Arch Physiol Biochem. 2011 Oct;117(4):222-30.
    [146]魏媛媛,窦勤,帕尔哈提·克热木,等.石榴花提取物对2型糖尿病大鼠抗氧化能力的影响[J].新疆医科大学学报, 2010, 33(6):625-627.
    [147] MARITIM A C, SANDERS R A, WATKINS J B 3rd. Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats[J]. J Nutr Biochem, 2003, 14(5):288-294.
    [148]朱秀敏.谷胱甘肽的生物活性及生理功能机制研究[J].中外健康文摘, 2011, 8(6)
    [149] BISHOP-BAILEY D. Peroxisome proliferator-activated receptors in the cardiovas- cular system[J]. Br J Pharmacol, 2000, 129(5):823-834.
    [150]窦勤,魏媛媛,帕尔哈提·克热木,等.石榴花多酚对糖尿病大鼠IL-6 TXB2及PPARγmRNA基因表达的影响[J].中国药理学通报, 2010, 6:794-797.
    [151] HOSTETLER H A, HUANG H, KIER A B, et al. Glucose directly links to lipid metabolism through high affinity interaction with peroxisome proliferator-activated receptor alpha[J]. J Biol Chem, 2008, 283(4):2246-2254.
    [152] INOUE H, JIANG X F, KATAYAMA T, et al. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferatoractivated receptor alpha in mice[J]. Neurosci Lett, 2003, 352:203-206.
    [153] KAJSTURA J, FIORDALISO F, ANDREOLI A M, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress[J]. Diabetes, 2001, 50(6):1414-1424.
    [154] PIATTI PM, MONTI LD, CONTI M, et al. Hypertriglyceridemia and hyperinsulinemia are potent inducers of endothelin-1 release in human[J]. Diabetes, 1996, 45:316.
    [155] FIORDALISO F, LI B, LATINI R, et al. Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II-dependent[J]. Lab Invest, 2000, 80(4):513-527.
    [156]程虹,田雪飞,董鸿蕊,等.糖尿病肾病大鼠内皮素-1与血管紧张素Ⅱ交叉作用的初步探讨[J].中华医学杂志, 2004, 84(3):248-252.
    [157] KAJSTURA J, FIORDALISO F, ANDREOLI A M, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress[J]. Diabetes, 2001, 50(6):1414-1424.
    [158] PRIYANKA B, MOHD A, VIDHU A, et al. Antidiabetic effect of Punica granatum flowers:Effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxi- dant enzymes experimental diabetes[J]. Food and Chemical Toxicology, 2008, 47:50-54.
    [159] HUANG T H, PENG G, KOTA B P, et al. Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model:role of lowering circulating lipids[J]. Br J Pharmacol, 2005, 145:767-774.
    [160] HUANG T H, YANG Q, HARADA M, et al. Pomegranate flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats:modulation of cardiac endothelin-1 and nuclear factor-kappaB pathways[J]. Cardiovasc Pharmacol, 2005, 46:856-862.
    [161] HE J, KELLEY D E. Muscle glycogen content in type 2 diabetes mellitus[J]. Am J Physiol Endocrinol Metab, 2004, 287(5):E1002-1007.
    [162] MATSCHINSKY FM, ZELENT B, DOLIBA NM, et al. Research and development of glucokinase activators for diabetes therapy:theoretical and practical aspects[J]. Handb Exp Pharmacol. 2011;(203):357-401.
    [163] BISCHOF M G, BERNROIDER E, KRSSAK M, et al. Hepatic glycogen metabolism in type 1 diabetes after long-term near normoglycemia[J]. Diabetes, 2002, 51(1):49-54.
    [164] KRSSAK M, BREHM A, BERNROIDER E, et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes[J]. Diabetes, 2004,53(12):3048- 3056.
    [165]王艳荣,钱荣立,马晓伟.实验性糖尿病大鼠肝糖原合成酶活性的改变[J].北京医科大学学报, 1998, 30:46-48.
    [166] BOLLEN M, KEPPENS S, STALMANS W. Specific features of glycogen metabolism in the liver[J]. Biochem J, 1998, 336(Pt 1):19-31.
    [167] LAAKSO M, MALKKI M, DEEB S S. Amino acid substitutions in hexokinase II among patients with NIDDM[J]. Diabetes, 1995, 44(3):330-334.
    [168]杨宏莉,张宏馨,李兰会,等.本草消渴丹对实验性糖尿病大鼠糖代谢酶活性的影响[J].时珍国医国药, 2009, 20(9):615-617.
    [169] KIDA Y, PUEUTE AE. Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activityin human skeletal muscle[J]. J Clin Invest, 1990, 85:476-481.
    [170] LIBERMAN Z, ELDAR-FINKELMAN H. Serine 332 phosphorylation of insulinreceptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling[J]. J Biol Chem, 2005, 280(6):4422-4428.
    [171] JORGENSEN S B, NIELSEN J N, BIRK J B, et al. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading[J]. Diabetes, 2004, 53(12):3074-3081.
    [172] Mhairi C. Towler, D. Grahame Hardie. AMP-Activated Protein Kinase in Metabolic Control and Insulin Signaling[J]. Circ Res, 2007,16(3):328-41.
    [173] Fryer, L. G., F. Foufelle, K. Barnes, S. A. et al. Characterization of the role of the AMPactivated protein kinase in the stimulation of glucose transport in skeletal muscle cells[J]. Biochem. 2002,363:167-174
    [174] IGLESIAS M A, YE J M, FRANGIOUDAKIS G, et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin- resistant high-fat-fed rats[J]. Diabetes, 2002, 51(10):2886-2894.
    [175] ITANI S I, SAHA A K, KUROWSKI T G, et al. Glucose autoregulates its uptake in skeletal muscle:involvement of AMP-activated protein kinase[J]. Diabetes, 2003, 52(7):1635-1640.
    [176] IGLESIAS M A, YE J M, FRANGIOUDAKIS G, et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin- resistant high-fat-fed rats[J]. Diabetes, 2002, 51(10):2886-2894.
    [177] KING TD, SONG L, JOPE RS, et al. AMP-activated protein kinase (AMPK) activating agents cause dephosphorylation of Akt and glycogen synthase kinase-3[J]. Biochem Pharmacol. 2006, 71(11):1637-47
    [178] WANG HM, MEHTA S, BANSODE, et a1. AICAR positively regulate glycogen synthase activity mad LDL receptor expression through Raf-1/MEK/ 1M2/ (MAPK)/ p90(RSK)/GSK-3 signaling cascade[J]. Biochem Pharmacol 2007, Sep 1;
    [179] GALINA P, ABHILASHA G, BELINDA JM, et a1. AMPK beta subunit target metabol ic stress sensing to glycogen[J]. Current Biolog 2003, 13:867-871.
    [180] LAM TK, CARPENTIER A, LEWIS G F, et al. Mechanisms of the free fatty acid-induced increase in hepatic glucose production[J]. Am J Physiol Endocrinol Metab, 2003, 284(5):E863-873.
    [181] FINEGOOD D T, BERGMAN R N, VRANIC M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Compari- son of unlabeled and labeled exogenous glucose infusates[J]. Diabetes, 1987, 36(8):914-924.
    [182] LAGATHU C, BASTARD JP, AUCLAIR M, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone[J]. Biochem Biophys Res Commun, 2003,311(2):372- 379.
    [183] LEINONEN E, HURT-CAMEJO E, WIKLUND O, et al. Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes[J]. Atherosclerosis, 2003, 166(2):387-394.
    [184]吴和珍,朱艳平,杨艳芳,等.罗汉果植株不同器官的抗氧化活性[J].中国实验方剂学杂志, 2011, 17(4):176-178.
    [185]霍丽妮,李培源,邓超澄.眼树莲不同极性溶剂提取物的体外抗氧化活性[J].中国实验方剂学杂志, 2011, 17(9):219-221.
    [186]王芳玲,田风胜,王元松.中药抗糖尿病氧化应激的研究进展[J].现代中西医结合杂志, 2011, 20(25):3242-3243.
    [187] KRIS-ETHERTON P M, KEEN C L. Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health[J]. Curr Opin Lipidol, 2002, 13(1):41-49.
    [188] ARAI Y, WATANABE S, KIMIRA M, et al. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration[J]. J Nutr, 2000, 130(9): 2243- 2250.
    [189] GELEIJNSE J M, LAUNER L J, VAN DER KUIP D A, et al. Inverse association of tea and flavonoid intakes with incident myocardial infarction:the Rotterdam Study[J]. Am J Clin Nutr, 2002, 75(5):880-886.
    [190]魏媛媛,窦勤,帕尔哈提·克热木等.石榴花提取物对2型糖尿病大鼠抗氧化能力的影响[J].新疆医科大学学报, 2010, 33(6):625-627.
    [191] SCHINNER S, DELLAS C, SCHRODER M, et al. Repression of glucagon gene transcription by peroxisome proliferator-activated receptor gamma through inhibition of Pax6 transcriptional activity[J]. J Biol Chem, 2002, 277(3):1941-1948.
    [192] MALEROD L, SPORSTOL M, JUVET L K, et al. Hepatic scavenger receptor class B, type I is stimulated by peroxisome proliferator-activated receptor gamma and hepatocyte nuclear factor 4 alpha[J]. Biochem Biophys Res Commun, 2003, 305(3):557-565.
    [193] FERRE P. The biology of peroxisome proliferator-activated receptors:relationship with lipid metabolism and insulin sensitivity[J]. Diabetes, 2004, 53:843-850.
    [194] LEONARDINI A, LAVIOLA L, PERRINI S, et al. Cross-Talk between PPAR gamma and Insulin Signaling and Modulation of Insulin Sensitivity[J]. PPAR Res, 2009, 2009:818945.
    [195] A1-KHALILI L, FORSGREN M, KANNISTO K, et al. Enhanced insulin- stimulated glycogen synthesis in response to insulin, metformin or rosiglitazone is associated with increased mRNA expression of GLUT4 and peroxisomal prolifera- tor activator receptor gamma co-activator 1[J]. Diabetologia. 2005,48(6):1173-9.
    [196] Sozio MS, Lu C, Zeng Y,et al.Activated AMPK inhibits PPAR-{alpha} and PPAR- {gamma} transcriptional activity in hepatoma cells. Am J Physiol Gastrointest Liver Physiol.2011 Oct;301(4):G739-47.
    [197] Meng R, Pei Z, Zhang A, AMPK activation enhances PPARαactivity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway.Arch Biochem Biophys.2011 Jul;511(1-2):1-7.
    [198] XU KZ, ZHU C, Li Y, et al. Pomegranate flower ameliorates fatty liver in an animal model of type 2 diabetes and obesity[J].J Ethnopharmacol. 2009,Jun, 123 (2): 280-7.
    [199]李韬糖尿病血管内皮损伤机制研究进展[J].中医药临床杂志2010,22(3):275- 277.
    [200] OVAMA T, MIVASITA Y, WATANABE H, et al. The role of polyol pathway in high glucose-induced endothelial cell damages[J]. Res Diabetes Clin Pract, 2006, 73(3):227-234
    [201] INOGUCHI T, LI P, UMEDA F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein in kinase C-dependent activation of NAD(P)H oxidase in culured vascular cells[J]. Diabetes, 2000, 49. 1939-1945
    [202] Wu J, Lei MX, Liu L, et al. Aortic endothelium-dependent vasodilation function and PI3K-, PKB-, eNOS mRNA expressions in insulin-resistant and type 2 diabetic rats[J]. Zhonghua Xin Xue Guan Bing Za Zhi. 2007 Mar;35(3):265-70.
    [203] Szostak-W?gierek D, Szamotulska K. Fetal development and risk of cardiovascular diseases and diabetes type 2 in adult life[J]. Med Wieku Rozwoj. 2011 Jul-Sep;15(3 Pt 1):203-15.
    [204] WANG J J, LIU S M, CHEN R, et al. A novel effect of lobeline on vascular smooth muscle cell:inhibition of proliferation induced by endothelin-1[J]. Pharmazie, 2007, 62(8):620-624.
    [205] MANEA S A, MANEA A, HELTIANU C. Inhibition of JAK/STAT signaling pathway prevents high-glucose-induced increase in endothelin-1 synthesis in human endothelial cells[J]. Cell Tissue Res, 2010, 340(1):71-79.
    [206] BLENDEA M C, JACOBS D, STUMP C S, et al. Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression[J]. Am J Physiol Endocrinol Metab, 2005, 288(2):E353-359.
    [207] TOUYZ R M. Reactive oxygen species and angiotensin II signaling in vascular cells--implications in cardiovascular disease[J]. Braz J Med Biol Res, 2004,37(8): 1263-1273.
    [208] KAJSTURA J, FIORDALISO F, ANDREOLI A M, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress[J]. Diabetes, 2001, 50(6):1414-1424.
    [209] FIORDALISO F, LI B, LATINI R, et al. Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II-dependent[J]. Lab Invest, 2000, 80(4):513-527.
    [210] STEWART D J, KUBAC G, COSTELLO K B, et al. Increased plasma endothelin-1 in the early hours of acute myocardial infarction[J]. J Am Coll Cardiol, 1991, 18(1):38-43.
    [1] NANDKARNI A.K. Nandkarni’s Indian Materia Medica. Popular Prakashan[J]. Bombay. pp. 1031-1035.
    [2]茹克娅木·沙德克.维吾尔常用药材学[M].乌鲁木齐:新疆科技卫生出版社, 1993, 128-129.
    [3] CHOPRA C.L., BHATIA M.C., CHOPRA I.C. In vitro antibacterial activity of oils from Indian medicinal plants[J]. Am. Pharmacol. Assoc. (Sci. Ed.)1976, 49.
    [4] CHARYA MAS., REDDY S.M., KUMAR B.P, et al. Laboratory evaluation of some medicinal plant extracts against two pathogenic fungi[M]. 1979. New Botany
    [5] SINGHAL K.C. Antihelmintic activity of Punica granatum and Artemisia siversia- na against experimental infection in mice[J]. Indian J. Pharmacol, 1983,15: 119.
    [6] GUJRAL M.L., VERMA D.R., SAREEN K.N. Oral contraceptive part I:preli- minary observations on the antifertility effect of some indigenous drugs[J]. Indian J. Med. Res. 1960., 48:46-52.
    [7] YASUKO N., TAKAO K., AKITANE M., et al. Antioxidant activities of pome- granate fruit extract and its anthocyanidines:delphinidine, cyanidine and pelargoni- dine[J]. Agri. Food Chem. 2002, 50:166-167
    [8] AJAIKUMAR K.B., ASHEEF M., BABU B.H., et al. The inhibition of gastric mucosal injury by PGL(pomegranate)methanolic extract[J]. Ethnopharmacol. 2005, 96:171-176.
    [9] JAFRI M. A., ASLAM M., JAVED K. Effect of Punica granatum Linn. (Flowers)on blood glucose level in normal and alloxan-induced diabetic rats[J]. Ethnopharmacol. 2000, 70:309-314.
    [10] HUANG TH, PENG G, KOTA BP, et al. Anti-diabetic action of Punica granatum flower extract:activation of PPAR-gamma and identification of an active component[J]. Toxicol Appl Pharmacol 2005, 207:160-169.
    [11] HUANG TH, YANG Q, HARADA M, et al. Pomegranate flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats:modulation of cardiac endothelin-1 and nuclear factor-kappaB pathways[J]. Cardiovasc Pharmacol 2005, 46:856-862.
    [12] KARASIK A:Glycaemic control is essential for effective cardiovascular risk reduction across the type 2 diabetes continuum[J]. Ann Med 2005;37:250-258.
    [13] CHOI K, KIM Y B. Molecular mechanism of insulin resistance in obesity and type2 diabetes[J]. Korean J Intern Med, 2010, 25(2): 119-129.
    [14] HUANG TH, PENG G, KOTA BP, et al. Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model:role of lowering circulating lipids[J]. Br J Pharmacol 2005;145:767-774.
    [15] AVIRM M, VOLKOVA N. Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic:studies in vivo in atherosclerotic apolipoprotein e-deficient(E0)mice and in vitro in cultured macrophages and lipoproteins[J]. Agric Food Chem. 2008, Feb 13;56(3):1148-57
    [16] SZKUDELSKI T. The mechanism of alloxan and streptozotocin action ofβ-cells of the rat pancreas[J]. Physiol. Res. 50:537-546.
    [17] BAYNESS J. W, THORPE S. R, The role of oxidative stress in diabetic complications[J]. Curr. Opin Endocrinol. 2001, 3:277-284.
    [18] STRAIN J.J. Disturbances of micronutrient and antioxidant status in diabetes[J]. Proc. Nutr. Soc. 1991, 50:591-604.
    [19] MCLENNAN S.V., HEFFERNEN S., Wright L. Changes in hepatic glutathione metabolism in diabetes[J]. Diabetes 1991., 40:344-348.
    [20] JENNINGS P.B., CHIRICO S., Jones A. F, et al. Vitamin C metabolites and microangiopathy in diabetes mellitus[J]. Diabetes Res. 1991, 6:151-154.
    [21] YADAV P., SARKAR S., BHATNAGR D. Action of Capparis deciduas against alloxan induced oxidative stress and diabetes in rat tissue[J]. Pharmacol. Res. 1997., 36:221-228.
    [22] SATO Y., HOTTO N., SAKAMOTO N., et al. Lipid peroxide level in plasma of diabetic patient[J]. Biochem. Med. 1979, 21:104-107.
    [23] SCHUBERT S.Y., LANSKY E.P., NEEMAN I., Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids[J]. Ethnopharmacol. 1999, 66:11-17.
    [24] AVIRM M, ROSENBLAT M. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation[J]. Clin Nutr. 2004 Jun, 23(3):423-33
    [25] PRIYANKA, BAGRI A. Antidiabetic effect of Punica granatum flowers:Effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes[J]. Food and Chemical Toxicology 2009, 47:50-54
    [26] KAUR G, JABBAR Z, ATHAR M, et al. Punica granatum(pomegranate)flower extract possesses potent antioxidant activity and abrogates Fe-NTA inducedhepatotoxicity in mice[J]. Food Chem Toxicol. 2006 Jul, 44(7):984-93.
    [27] XU KZ, ZHU C, Li Y, et al. Pomegranate flower ameliorates fatty liver in an animal model of type 2 diabetes and obesity[J]. Ethnopharmacol. 2009 Jun, 123(2):280-7.
    [28] LIHUA ZHANGA, B, XUEMEI YANGA, YUANHU ZHANGA, In vitro antioxi- dant properties of different parts of pomegranate ?owers[J]. Food and Bioproducts Processing. 2010. FBP(156):1- 7
    [29] RUFENG WANG, Wei Wang. Constituents of the flowers of Punica granatum[J]. Fitoterapia 2006, 77:534-537
    [30] KANG J G, WULIYA, LI Y J. Analys is of contents of microelements in flower, pedicel and peel of pomegranate and their TLC, UV spectra[J]. Xinjiang Medical University 2001, 24(2):110-111.
    [31] MATSUDA H, MURAKAMI T, SHIMADA H, et al. Inhibitory mechanisms of oleanolic acid 3-Omonodesmosides on glucose absorption in rats[J]. Biol Pharm Bull 1997, 20:717-719.
    [32] MATSUDA H, Li Y, YAMAHARA J, et al. Inhibition of gastric emptying by triterpene saponin, momordin Ic, in mice:roles of blood glucose, capsaicin-sensitive sensory nerves, and central nervous system[J]. Pharmacol Exp Ther 1999,289:729- 734.
    [33] YOSHIKAWA M, MATSUDA H:Antidiabetogenic activity of oleanolic acid glycosides from medicinal foodstuffs[J]. Biofactors 2000, 13:231-237.
    [34] JAYAPRAKASAM B, OLSON LK, SCHUTZKI RE, et al. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry(Cornus mas)[J]. J Agric Food Chem 2006, 54:243-248.
    [35] ROSEN ED, SARRAF P, TROY AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro[J]. Mol Cell 1999, 4:611-617.
    [36] BURANT CF, SREENAN S, HIRANO K, et al. Troglitazone action is independentof adipose tissue[J]. Clin Invest 1997, 100:2900-2908.
    [37] XU H, BARNES GT, YANG Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance[J]. Clin Invest 2003, 112:1821-1830.
    [38] CZINNER E, HAGYMáSI K, BLáZOVICS A. In vitro antioxidant properties of Helichrysum arenarium Moench[J]. J Ethnopharmacol. 2000 Dec;73 (3) :437-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700