空时二维自适应信号处理与动目标检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空时二维自适应信号处理技术(Space-Time Adaptive Processing)能有效地改善机载相控阵雷达对地杂波抑制的性能。这项技术已经逐渐应用到机载雷达对空中和地面运动目标检测中,尤其是在机载预警雷达上的应用。
     在复杂环境下要检测运动目标我们必须对地杂波进行有效地抑制。由于载机平台的运动,机载相控阵雷达的地杂波谱在多普勒上表现出主杂波展宽和旁瓣杂波扩散,并且是空间和时间二维耦合的。传统的一维时域或空域滤波器均不能形成与地杂波相匹配的凹口,达到有效抑制杂波的目的。空时二维自适应信号处理是在空间和时间上的二维联合滤波,其滤波权系数是根据最大信杂噪比准则计算得到的。由于同时具有空间和时间自由度,它可以在二维谱平面上形成凹口有效地抑制地杂波,同时保证目标信号获得足够的增益。因此空时二维自适应滤波就成为了机载相控阵雷达抑制杂波的一项关键技术。
     考虑到实际环境和系统的复杂性,空时二维自适应处理要实际应用还有一系列的问题需要解决。本论文针对空时二维自适应处理技术在机载相控阵雷达中应用所遇到的工程实际问题以及机载雷达对运动目标检测的相关问题展开研究,提出和改进了一些信号处理算法,并针对一些具体问题给出了解决方案。本论文的研究内容主要包括以下几个方面:
     1.第二章系统地研究和分析了机载预警雷达非正侧面阵杂波的分布与系统参数的关系,分析了杂波距离非平稳性产生的主要原因。近程杂波的距离非平稳性是影响杂波抑制和动目标检测的主要因素。在准确掌握机载非正侧面阵雷达杂波谱分布规律的情况下提出了两种消除近程杂波影响的方案,用以解决杂波距离非平稳性的问题。一种方法是利用阵列天线俯仰向的阵元(或子阵)做俯仰向空域滤波抑制近程杂波以削弱杂波的距离非平稳性,其滤波权系数是由载机平台位置参数和雷达系统参数开环计算得到的。另一种方法是根据已知的雷达系统参数计算出近程杂波的距离多普勒二维分布,在STAP处理时将包含近程杂波的距离单元剔除使之不参与协方差矩阵的统计,这样就减少了样本污染对STAP的影响。这两种方法都是非自适应的,在系统误差较小的情况下可以达到很好的效果。
     2.第三章考虑实际系统中误差较大的情况,对俯仰向空域滤波的方法进行改进,提出了自适应俯仰滤波抑制地杂波的方法。对俯仰向自适应滤波权系数的计算给出了两种选样本的方式,一是在多普勒滤波后的杂波支撑区内,取多普勒通道的数据作训练样本,二是直接在脉冲域选样本。本章将先俯仰向自适应滤波后STAP处理的方法与现有的三维STAP处理的方法做了对比,实验结果证明先俯仰向滤波后STAP的方法性能较好而且运算量小。
     3.第四章研究了重叠子阵合成的降维STAP方法,对滑窗重叠子阵合成的降维方式进行了改进,提出了阵列子阵的合成方式和保留辅助列子阵的合成方式。利用了保留辅助列子阵的合成方式提出了干扰与杂波级联抑制的空时二维自适应处理方法。即先利用大子阵和辅助列子阵做空域自适应处理抑制干扰,然后再做空时二维自适应处理抑制杂波。这样既降低了空时自适应处理的维数又同时抑制了干扰。通过仿真实验证明了这种算法的性能与相同空域自由度情况下干扰和杂波同时抑制的STAP性能接近,而运算量却大大减少。
     4.第五章研究了在机载双基雷达上应用STAP技术抑制杂波的方法。对机载双基雷达杂波二维分布与双基几何构型的关系进行了分析,推导出了一个计算机载双基雷达杂波二维分布的公式,归纳出了机载双基雷达杂波谱的一些变化规律。通过研究发现,要利用STAP技术有效抑制机载双基雷达的地杂波,必须解决双基雷达杂波的距离非平稳性问题,因此提出了一种先利用阵列天线的空域自由度解距离模糊,后进行角度多普勒频移补偿的方法。这种方法有效地解决了在距离模糊的情况下消除杂波距离非平稳性的问题,为STAP技术在机载双基雷达上的应用打下了基础。
     5.第六章对影响SAR动目标检测的图像对的相干性做了研究。SAR图像对的相干性直接影响了雷达对地面动目标检测的性能。影响SAR图像相干性的因素有很多,本论文着重研究了基线和地形坡度对SAR图像相干系数的影响,利用SAR成像的基本原理,从数值上分析了基线、地形坡度等因素对相干系数的影响。针对两种不同的发射信号,分析推导出了计算相干系数的公式。本论文所给出的计算相干系数的公式对SAR运动目标检测的基线设计有参考意义。
Space Time Adaptive Processing(STAP)can effectively improve the performance of ground clutter suppression in airborne phased array radar. This technique has been gradually applied to airborne radar for air moving targets indication (AMTI) and ground moving targets indication (GMTI), especially for airborne early warning (AEW) radar.
     The ground clutter has to be suppressed effectively before moving target indication. Due to the motion of airborne platform, the ground clutter spectra for airborne phased array radar are distributed in space-time domain. But the traditional one-dimensional filter can not form a notch that matches for the ground clutter, so it can not suppress clutter effectively. However, Space Time Adaptive Processing is a two-dimensional filter in space-time domain, whose weight is calculated by maximum SCNR criterion,so it can suppress ground clutter perfectly. Therefore, STAP becomes a key technique in airborne phased array radar for clutter suppression.
     Focusing on the engineering techniques for STAP applying to airborne phased array radar and the related problems of airborne radar for MTI, the dissertation presents and improves some signal processing algorithms. The main contents of the dissertation are described as following.
     1. Chapter 2 specifically analyzes the relationship between the clutter distribution of AEW radar and its radar system parameters, and finds out the causation of clutter range dependence. The range dependence of short-range clutter is the key factor affecting clutter suppression and MTI. Since the clutter distribution law for airborne non-side-looking array radar has been fully researched, we propose two approaches to mitigating the effect of short-range clutter. The first one is called elevation filtering approach, i.e. the short-range clutter is suppressed by utilizing the elevation elements of array antenna. The weight for elevation filtering is calculated nonadaptively. The second one is named elimination approach, i.e. the clutter range-Doppler distribution is firstly calculated in accordance with radar system parameters, and the range cells, including the short-range clutter, are eliminated before estimating covariance matrix. By doing so, the effect of training data pollution in STAP is mitigated. Both approaches are realized nonadaptively, and they can achieve good performance when the system error is negligible.
     2. Chapter 3 improves the elevation filtering approach, and presents an approach to the calculation of the elevation weight adaptively. This dissertation proposes two ways of training data strategies: in the first way, the training data is selected from the Doppler domain in the clutter support area, while in the second one, the training data is directly selected in the pulse domain. The performance of elevation filtering approach and 3-D STAP are compared, and the simulation experiment testifies that the elevation filtering STAP is superior to 3-D STAP in both performance and computational load.
     3. The reduced-dimension STAP related to overlapped-subarray synthesis is studied in Chapter 4. The dissertation contributes to this study by improving the sliding overlapped-subarray synthesis. The planar subarray synthesis and the subarray synthesis with reserved auxiliary column-subarray are presented in this dissertation. For the subarray synthesis with reserved auxiliary column-subarray, a cascaded approach in which the interference and clutter are suppressed respectively is proposed. First, the interference is suppressed adaptively by utilizing one main subarray and all the auxiliary column-subarrays, and then the clutter is suppressed by STAP. The dimension for STAP can be reduced at the same time as interference suppression, and the simulation experiment testifies that with the same spatial DOF, the performance of this cascaded algorithm approaches the performance of STAP in which interference and clutter are suppressed simultaneously. However, the computational load is reduced greatly.
     4. Chapter 5 studies the STAP application to bistatic airborne radar. This dissertation specifically analyzes the relationship between the bistatic clutter distribution and the bistatic geometry, and then deduces a formula for calculating the bistatic clutter distribution. Moreover, we find out several change laws of bistatic clutter spectra. In the author’s opinion, the range dependence of bistatic clutter has to be mitigated before STAP technique can be applied to bistatic airborne radar, therefore, we suggest that the clutter range ambiguity should be resolved by utilizing spatial DOF (degrees of freedom) firstly, and then the clutter range dependence is compensated in angle-Doppler domain. This approach effectively solves the problem of bistatic clutter range dependence in the case of range ambiguity, so it is of great help for STAP applying to bistatic airborne radar.
     5. Chapter 6 mainly studies the coherence of SAR image pairs. The coherence of SAR image pairs affects the performance of GMTI directly. There are many factors affecting the coherence of SAR image pairs, but this dissertation mainly focuses on the effect of baseline and ground slope. In accordance with SAR imaging principle, we study the relationship between coherence coefficient and baseline numerically. The presented formula for coherence coefficient calculation is of significance to baseline designing for SAR-GMTI.
引文
[1] L. E. Brennan, J. D. Mallett, I. S. Reed. Theory of adaptive radar[J]. IEEE Trans. AES. 1973, 9(2): 237-251.
    [2] I. S. Reed, J. D. mallett, and L. E. Brennan. Rapid convergence rate in adaptive arrays[J]. IEEE Trans. AES. 1974, 10(6): 853-863.
    [3] B. Widrow et. al. Adaptive antenna system[J]. Proc. IEEE. 1967, 55(12):2143-2159.
    [4] S. P. Applebaum. Adaptive arrays[J]. IEEE Tans. AP. 1976, 24(5): 585-598.
    [5] S. P. Applebaum, D. J. Chapman. Adaptive arrays with main beam constraints[J]. IEEE Trans. AP. 1976, 24(5): 650-662.
    [6] Johnson.R.C. Introduction to Adaptive Arrays[J]. Proceedings of IEEE. 1982,70(2):205-206.
    [7] R. Klemm. Oprimum clutter suppression in airborne phased array radar[J]. Proc. of IEEE ICASSP. Paris, France. 1982: 1509-1512.
    [8] R.Klemm. Suboptimum clutter suppressing for airborne phased array radar[J]. Proc. of IEE Int. Conf. on Radar’82, London, UK 1982: 473-476.
    [9] R. Klemm. Adaptive clutter suppression for airborne phased array radars[J]. IEE Pt. F, 1983, 130(1): 125-132.
    [10] R. Klemm. Some properties of space-time covariance matrices[C]. Int. Conf Radar, Paris, 1986: 357-362.
    [11] R.Klemm. Adaptive airborne MTI: an auxiliary channel approach[J]. IEE Proc. F, 1987, 134(3): 269-276.
    [12] R. Klemm. Airborne MTI via subgroup processing[C]. Proc. of Intel. Conf. On Radar’89, Paris, France, 1989: 43-48.
    [13] R. Klemm, J. Ender J. New aspects of airborne MTI[C]. Proc. IEEE Int. Conf. On Radar, Arlington, USA, 1990: 335-340.
    [14] R. Klemm, J. Ender J. Two-dimensional filters for radar and sonar applications[J]. Proc. of IASTED, Lugano, Switzerland, 1990: 2023-2026.
    [15] R. Klemm. Adaptive airborne MTI with two dimensional motion compensation[J]. IEE Proc. F, 1991, 138(6): 551-558.
    [16] R. Klemm. Adaptive air- and spaceborne MTI under jamming conditions[J]. Proc. of 1993 IEEE National Radar Conf., Boston, USA, 1993: 167-172.
    [17]‘IEEE AESS 1991 award to F.R.Dickey, F.M.Staudaher, and M.Labitt’, IEEE Aerosp. Electron.Syst.Mag.,32,May 1991, p.32.
    [18] R. Klemm. Adaptive airborne MTI: comparison of sideways and forward looking radar[C]. Proc. of 1995 IEEE Int. Radar Conf., Alexandria, VA, USA: 614-618.
    [19] R. Klemm. Forward looking radar/SAR: clutter and jammer rejection with STAP[C]. Proc. of EUSAR’96, Konigswinter, Germany: 485-488.
    [20] Richardson P G and Hyaward S D. Adaptive space-time processing for forward looking radar[J]. Proceeding of 1995 IEEE International radar conference,May 1995,629-634.
    [21] Zatman,M. Circular array STAP[J]. IEEE Trans. Aerosp. Electron.Syst.,2000, 36(2),510-517.
    [22]廖桂生,保铮,张玉洪.相控阵AEW雷达杂波抑制的简化辅助通道法[J].电子科学学刊,1993年9月15 (5).
    [23] Wang Yongliang, Peng Yingning and Bao zheng. Space-time processing for airborne radar with various array orientation[J]. IEE Proc.Radar, Sonar Navigation., Dec.1997,144(6):330~340.
    [24] Wang Yongliang, Bao Zheng and Liao Guisheng. Three united configurations on adaptive spatial-temporal processing for airborne surveillance radar system[C]. International conference on signal processing (ICSP’93), Beijing, 1993.381~386.
    [25] R. Dipietro. Extended factored space-time processing for airborne radar systems[C]. Proceedings of the 26th Asilomar Conference On Signals, Systems, and Computing, Pacific Grove, CA, October, 1992:425-430.
    [26]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载预警雷达空时二维滤波的一种方案及其改进[C].机载雷达研讨会北京,1992年12月.24-38.
    [27]保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报1993年9月,21(9).
    [28]廖桂生,保铮,张玉洪.机载雷达时空二维部分联合自适应处理[J].电子科学学刊15(6)1993年11月。
    [29]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载雷达空时二维信号处理[J]现代雷达.1994,2.:1-23.
    [30] H. Wang, L. Cai. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE. Trans. AES, 1994, 30(3): 660-669.
    [31] Y. Zhang, H. Wang. Further results of∑△-STAP approach to airborne surveillance radars[C]. IEEE National Radar Conference, 1997: 337-342.
    [32] R. D. Brown, R. A. Schneible, M. C. Wicks, H. Wang, Y. Zhang. STAP forclutter suppression with sum and difference beams[J]. IEEE Trans. AES, 2000, 36(2): 634-646.
    [33] J. R. Roman, M. Rangaswamy, D. W. Davis, Q. Zhang, B. Himed, J. H. Michels. Parametric adaptive matched filter for airborne radar applications[J]. IEEE Trans. Aerospace Electron. Syst., 2000, 36(2): 677-692.
    [34] Yongliang. Wang, Jianwen Chen, Zheng. Bao, Yingning Peng. Robust space-time adaptive processing or airborne radar in nonhomogeneous clutter environments[J]. IEEE Trans. Aerospace Electron. Syst., 2003, 39(1): 70-81.
    [35] J.Ward. Space-Time Adaptive Processing for Airborne Radar[C]. Technical Report of Lincoln Lab, US. December,1994.
    [36] G. W. Titi, D. Marshall. The ARPA/NAVY mountaintop program-Adaptive signal processin for airborne early warning radar[C]. Proc. ICASSP’96, Atlanta, GA, May 1996: 1165-1168.
    [37] M.O. Little, W.P. Berry. Real-time multichannel airborne radar measurements[C]. IEEE Proc. Int. Conf. Radar Syracuse. New York. 1997.
    [38] D. Sloper, D. Fenner, J. Arntz, E. Fogle. Multi-Channel airborne radar measurement (MCARM), MCARM flight test. Contract F30602-92-C-0161, Westinghouse Electronic Systems, April, 1996.
    [39] L. E. Brennan, et al. Comparison of space-time processing approaches using experimental airborne radar data[C]. Proceedings of the IEEE 1993 National Radar Conference, 1993: 175-781.
    [40] W. L. Melvin. Eigenbased modeling of nonhomogeneous airborne radar environments[C]. Proceedings of the IEEE 1998 National Radar Conference, Dallas, Tx, 12-13 May, 1998: 171-176.
    [41] W. L. Melvin, M. C. Wicks. Improving Practical Space-Time Adaptive Radar[C]. IEEE National Radar Conference, 1997: 48-53.
    [42] M. H. Linderman, R. W. Linderman. Real-time STAP demonstration on an embedded high performance computer[J]. IEEE Aerospace and Electronics Systems Magazine, 1998, 13(3): 15-31.
    [43] Z. Cu, R. S. Blum, W. L. Melvin, M. C. Wicks. Comparison of STAP algorithms for airborne radar[C]. Proceedings of the IEEE 1997 National Radar Conference, Syracuse, 1997: 60-65.
    [44] A. P. Dimitris, T. Tzeta, H. M. James, M. C. Wicks. Joint domain space-time adaptive processing with small training data sets[C]. Proceedings of the IEEE 1998 National Radar Conference, Dallas, Tx, 12-13 May, 1998: 99-104.
    [45] D. K. Fenner, W. F. Hoover. Test results of a space-time adaptive processing system for airborne early warning radar[C]. Proc.1996 IEEE National Radar Conf., Ann Arbor, MI, 13-16 May 1996: 88-93.
    [1]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载预警雷达空时二维滤波的一种方案及其改进[C]:机载雷达研讨会北京,1992年12月.24-38.
    [2]保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报1993年9月,21(9).
    [3]廖桂生,保铮,张玉洪.机载雷达时空二维部分联合自适应处理[J].电子科学学刊15(6)1993年11月.
    [4]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载雷达空时二维信号处理[J]现代雷达, 1994, 16(1): 38-48.
    [5] James Ward. Space-Time Adaptive Processing For Airborne Radar[C].IEE Colloquium on .April.6. 1998.:1-6.
    [6]王万林,廖桂生,张光斌.在非均匀环境下辅助通道法STAP处理的性能改善[J]西安电子科技大学学报, 2004, 31(5): 761-764
    [7] P.G..Richardson, S.D.Hayward. Adaptive Space Time Processing for Forward Looking Radar[C]. IEEE International Radar Conference.May, 1995.:629-634.
    [8] Yong-liang Wang, Zheng Bao, Ying-ning Peng. STAP with Medium PRF Mode for Non-side-looking Airborne Radar[J]. IEEE TRANS on A.E.S, 2000,36(2):609-620.
    [9] O.Kreyenkamp, R.Klemm. Doppler compensation in forward-looking STAP radar[C]. IEE Procesings-Radar Sonar and Naviqation. 148(5). Oct,2001.253-258.
    [10] Braham Himed, Zhang Yuhong and Abdelhak Hajjari. STAP With Angle-Doppler Compensation For Bistatic Airborne Radars[C] Proceedings of the IEEE Radar Conference, April 22-25, 2002, 311– 317.
    [11] Michael Zatman. Performance Analysis of the Derivative Based Updating method Adaptive Sensor Array Processing[C]. Workshop, Lincoln Lab, MA, March 2001.
    [12] S. Kogon and Michael Zatman. Bistatic STAP for airborne radar[C]. Proceedings of ASAP 2000 MIT Lincoln Lab. MA. March 2000.
    [13] Lapierre, F.D, Verly, J.G. and Van Droogenbroeck, M. New solutions to the problem of range dependence in bistatic STAP radars[C] Proceedings of the IEEE International Radar Conference Piscataway NJ, USA, May 5-8 , 2003. 452-459.
    [14] Wenchong Xie, Yongliang Wang. New solution to Range-Dependence Problem in STAP Radar with HPRF[C]. IEEE, Radar Conference, 2007.
    [15] Jin Xu, Biao Chen. A GLRT Based STAP For the Range Dependent Problem[C]. IEEE Radar Conference on ASSP. Volume 2, April 2007.:II-905 - II-908.
    [16] James T.Caldwell, Todd B.Hale. Space-Time Adaptive Processing For Forward Looking Arrays[C]. Proc of Radar Conference, April, 2004.:513-519.
    [17] T.B.Hale, M.A.Temple, M.C. Wicks. Clutter Suppressing Using Elevation Interferometry Fused with Space-time Adaptive Processing[J]. ELECTRONICS LETTERS 37(12), June, 2001. 793-794.
    [18] Phillip M.Corbell, Todd B. Hale. 3-Dimensional STAP Performance Analysis Using the Cross-Spectral Metric[C]. Proc of Radar Conference, April, 2004.:610-615.
    [19] Phillip M.Corbell, Jimmie J. Perez, Muralidhar Rangaswamy. Enhancing GMTI Performance in Non-Stationary Clutter Using 3D STAP[C].IEEE Radar Conference,April,2007. 647-652.
    [20] Robert C. DiPietro. Extended Factored Space-Time Processing for Airborne Radar Systems[C]. Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems and Computers. vol.1, 26-28 Oct. 1992.425– 430.
    [1] T.B.Hale, M.A.Temple, M.C. Wicks Clutter Suppressing Using Elevation Interferometry Fused with Space-time Adaptive Processing[J]. ELECTRONICS LETTERS 37(12), June, 2001. 793-794.
    [2] Phillip M.Corbell, Todd B. Hale. 3-Dimensional STAP Performance Analysis Using the Cross-Spectral Metric[C]. Proc of Radar Conference,April,2004.:610-615.
    [3] Phillip M.Corbell, Jimmie J. Perez, Muralidhar Rangaswamy Enhancing GMTI Performance in Non-Stationary Clutter Using 3D STAP[C]. IEEE Radar Conference,2007:637-652.
    [4]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载雷达空时二维信号处理[J]现代雷达, 1994, 16(1): 38-48.
    [5] Dan E. Dudgeon,Russell M.Mersereau. Multidimensional Digital Signal Processing[M].Prentice-Hall, Inc., Englewood Cliffs, New Jersey.1984.
    [6]廖桂生,阵列信号处理[S]. PPT讲义,2005.:73:76.
    [7]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载雷达空时二维信号处理[J]现代雷达, 1994, 16(1): 38-48.
    [8] James Ward. Space-Time Adaptive Processing For Airborne Radar[C].IEEColloquium on .April.6. 1998.:1-6.
    [9] Philippe Ries, Fabian D.Lapierre, Jacque G..Verly Framework and Taxonomy for Radar Space-Time Adaptive Processing (STAP) Methods [J] IEEE TRANS on A.E.S, 2007, 43(3):1084-1099.
    [10]王彤,保铮,廖桂生.机载火控雷达慢速目标检测[J]电子与信息学报, 2002, 24(2): 222-231.
    [11] R. Klemm. Adaptive airborne MTI: comparison of sideways and forward looking radar[C]. Proc. of 1995 IEEE Int. Radar Conf., Alexandria, VA, USA: 614-618.
    [12] R. Klemm. Forward looking radar/SAR: clutter and jammer rejection with STAP[C]. Proc. of EUSAR’96, Konigswinter, Germany: 485-488.
    [13]王永良,彭应宁.空时自适应信号处理[M].清华大学出版社. 2000.:26-45.
    [14] Robert C. DiPietro, Extended Factored Space-Time Processing for Airborne Radar Systems[C]. Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems and Computers. vol.1, 26-28 Oct. 1992,.425– 430.
    [15] O.Kreyenkamp, R.Klemm. Doppler compensation in forward-looking STAP radar[C] IEE Proc. of Radar, Sonar and Navig, 148,5 (October, 2001), 253-258.
    [16] Braham Himed, Zhang Yuhong and Abdelhak Hajjari. STAP with Angle-Doppler Compensation For Bistatic Airborne Radars[C]. Proceedings of the IEEE Radar Conference, April 22-25, 2002, 311– 317.
    [17] Jin Xu, Biao Chen. A GLRT Based STAP For the Range Dependent Problem[C]. IEEE International Conference on ASSP,April, 2007.: II-905 - II-908.
    [18] Lapierre, F.D, Verly, J.G. and Van Droogenbroeck, M. New solutions to the problem of range dependence in bistatic STAP radars[C]. Proceedings of the IEEE International Radar Conference Piscataway NJ, USA, May 5-8 , 2003. 452-459.
    [19] Michael Zatman. Performance Analysis of the Derivative Based Updating method[C]. Adaptive Sensor Array Processing Workshop, Lincoln Lab, MA, March 2001.
    [1]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000:26-94.
    [2]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载雷达空时二维信号处理[J]现代雷达1994,16(2): 17-27.
    [3] Xu Zhiyong, Bao Zheng, Liao Guisheng. A Method of Designing Irregular Subarray Architectures for Partially Adaptive Processing[C] Proc. of the 1996CIE International Conference of Radar, Beijing, China, 1996: 461-464.
    [4]许志勇,保铮,廖桂生.一种非均匀邻接子阵结构及其部分自适应处理性能分析[J]电子学报1997, 25(9):20-24.
    [5] Hu Hang, Qin Weicheng. Research on Subarray Partitioning of Planar Phased Array with Adaptive Digital Beamforming[C]. Proc. of 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, China, 2007: 691-694.
    [6]谢文冲,王永良.一种子阵划分方法及子阵级STAP性能分析[J]数据采集与处理2007, 22(3): 273-277.
    [7] Hu Hang, Qin Weicheng, Feng Shou. Optimizing the Architecture of Planar Phased Array by Improved Genetic Algorithm[C]. Proc. of 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou,China, 2007: 676-679.
    [8] Richard Klemm. Applications of Space-Time Adaptive Processing[M]. The Institution of Electrical Engineers, London.2004.:156-163.
    [9]胡航,李绍滨,邓新红.重叠子阵平面相控阵ADBF的方向图控制[J].系统工程与电子技术2007, 29(12): 2001-2005.
    [10] Jeffrey S. Herd. Sean M. Duffy. Hans Steyskal. Design Considerations and Results for an Overlapped Subarray Radar Antenna[C]. Proc. of IEEE Aerospace Conference, Big Sky, MT, March 2005: 1087 - 1092.
    [11] T.B. Hale, M.A. Temple, M.C. Wicks. Clutter suppression using elevation interferometry fused with space-time adaptive processing[J]. ELECTRONICS LETTERS, 2001, 37(12):793 -794.
    [12]王万林,廖桂生.机载预警雷达三维空时自适应处理及其降维研究[J].系统工程与电子技术. 2005, 27(3): 431-434.
    [13] T.B.Hale, M.A. Temple, J.F. Raquet. Localized Three-Dimensional Adaptive Spatial-Temporal Processing for Airborne Radar[C]. Proc. of IEE Radar Sonar and Navigation, Feb 2003,150(1): 18-22.
    [14] Wicks M, Wang H. Adaptive Array Technology for Clutter Rejection in Airborne Radar[C]. The Record of 1993 IEEE National Radar Conference, Massachusetts, USA, Apr.1993.233~238.
    [15] Klemm R. Adaptive air-and spaceborne MTI under Jammer conditions[C]. The Record of IEEE National Radar Conf.,Massachusetts, Apr. 1993. 167~172.
    [16] Wang Yongliang, Peng Yingning. Method for Simultaneous Clutter and Jammer Rejection[J]. IEE Electronics Letters,1995,31(44):1190~1192.
    [17] Wang Yongliang, Peng Yingning. Space-time Joint Processing Method for Simultaneous for Clutter and Jamming in Airborne Radar.[J] IEE Electronics Letters,1996,32(3):258~259.
    [18] Wang Yongliang, Peng Yingning. An Effective Method for Simultaneous for Clutter and Jamming in Airborne Phased Array Radar[C]. IEEE ISPAST. Boston,Otc.1996.349~352.
    [19] R. Dipietro. Extended factored space-time processing for airborne radar systems[C]. Proceedings of the 26th Asilomar Conference On Signals, Systems, and Computing, Pacific Grove, CA, October, 1992:425-430.
    [1]汤子跃,张守融.双站合成孔径雷达原理[M].北京:科学出版社,2003.
    [2] David Meloy Fromm, John P. Crockett, L.Bruce Palmer. BiRASP-The Bistatic Range-dependent Active System Performance Prediction Model [M]. Report for Department of the Navy. September, 1996.
    [3]王永良,魏进武,陈建文.双基地机载预警雷达空时二维杂波建模及特性分析[J].电子学报,2001, 29(12A):1940~1943.
    [4]鲁远耀,张平,李国春.机载双基雷达STAP动目标检测的杂波特性分析[J]系统工程与电子技术, 2006, 28(2):231-233.
    [5] Richard Klemm. Comparison between Monostatic and Bistatic Antenna Configurations for STAP[J] IEEE Transaction on Aerospace and Electronic Systerm, 2000, 36(2):596-608.
    [6]鲁远耀,张平,李国春.双基雷达空时自适应处理的杂波特性[J].测试技术学报2005, 19(4):360-364.
    [7]宁蔚,廖桂生.双基机载雷达对地面杂波的背面效应及其在GMTI中的应用[J]电子学报,2005,.33(12):2242-2245.
    [8] William L.Melvin, Michael J.Callahan, Michael C.Wicks. Adaptive Clutter Cancellation in Bistatic Radar[C] // signals, systems and computers: 2. Grove: IEEE International. 2000:1125-1130.
    [9] William L.Melvin, Michael J.Callahan, Michael C.Wicks. Bistatic STAP: Application to Airborne Radar[C] Proceedings of the IEEE Radar Conference,April 22-25, 2002, 1-7.
    [10] Braham Himed. Effects of Bistatic Clutter Dispersion on STAP Systems[C]. 2002 IEE Savoy Place, London WC2R 0BL,UK 360~364.
    [11]魏进武,王永良,陈建文.双基机载预警雷达空时自适应处理方法[J].电子学报,2001,29(12A):1936~1939.
    [12]魏进武,王永良,陈建文.双基地机载预警雷达杂波抑制方法性能分析[J].空军雷达学院学报.2001, 15 (4):1~5.
    [13]付学斌,何树权.双基地雷达多普勒频移概率分析[J].火控雷达技术, 2003,32(2):44~49.
    [14]王乐宁,王永良,戴国宪甄蜀春.双基机载预警雷达系统动态杂波自由度研究[J].现代雷达,2001,10(5):14~18.
    [15]鲁远耀,李国春,张平.双基STAP雷达杂波非平稳特性消除的新方法[J].现代雷达.2006,28(4):38~41.
    [16] K.P.Ong, B.Mulgrew. Doppler Compensation for JDL for Airborne Bistatic Radar[C]. Sensor Array and Multichannel Signal Processing Workshop Proceedings .Aug,2002.:82-86.
    [17] Chin Heng, Lim, Elians Aboutanios, Bernard Mulgrew. Modified JDL With Doppler Compensation For Airborne Bistatic Radar[C]. IEEE international Radar Conference, May, 2005.:854-858.
    [18] O.Kreyenkamp, R.Klemm. Doppler compensation in forward-looking STAP radar[C]. IEE Proc. of Radar, Sonar and Navig, 148,5 (October,2001), 253-258.
    [19] Chin Heng, Lim, Elians Aboutanios and Bernard Mulgrew. Modified JDL With Doppler Compensation For Bistatic airborne Radar[C]. IEEE International Radar Conference,May 9-12, 2005 ,854– 858.
    [20] Braham Himed, Zhang Yuhong and Abdelhak Hajjari. STAP With Angle-Doppler Compensation For Bistatic Airborne Radars[C]. Proceedings of the IEEE Radar Conference, April 22-25, 2002, 311– 317.
    [21] Braham Himed. Effects of Bistatic Clutter Dispersion on STAP Systems[C]. IEE Proceedings Radar Sonar and navigation 150(1).Feb, 2003.:28-32.
    [22] Richard Klemm. Ambiguities in Bistatic STAP Radar[C]. Geoscience and Remote Sensing Symposium, Proceedings, July. 24-28, 2000, 1009– 1011.
    [23] Fabian D.Lapierre, Jacques G. Verly. Computationally-Efficient Range-Dependence Compensation Method for Bistatic Radar STAP[C].IEEE International Radar Conference.May,2005. 713-719.
    [24] G.M. Herbert and P.G. Richardson. Benefits of space-time adaptive processing (STAP) in bistatic airborne radar[C]. IEE proceedings Radar, sonar and navigation, 150, 1, (February 2003) , 13-17.
    [25] Vijay Varadarajan and Jeffey L.Krolik. Joint Space-Time Interpolation for Distorted linear and Bistatic Array Geometries[J] IEEE TRANS on S.P, 2006, 54(3):848-860.
    [26] F.Colone, M.Labriola, F.Poli, P.Lombardo. A Pre-Doppler Approach for Reduced Loss Bistatic STAP[C]. International Conference on Radar, Oct,2006.:1-4.
    [27] Michael Zatman. Performance Analysis of the Derivative Based Updating method[C] Adaptive Sensor Array Processing Workshop, Lincoln Lab, MA, March 2001.
    [28] S. Kogon and Michael Zatman. Bistatic STAP for airborne radar’[C]. Proceedings of ASAP 2000 MIT Lincoln Lab. MA. March 2000.
    [29] Lapierre, F.D, Verly, J.G. and Van Droogenbroeck, M. New solutions to the problem of range dependence in bistatic STAP radars[C]. Proceedings of the IEEE International Radar Conference Piscataway NJ, USA, May 5-8 , 2003. 452-459.
    [30] Fabiola Colone, Marco Fornari, Pierfrancesco Lombardo. A spectral slope-based approach for mitigating bistatic STAP clutter dispersion[C]. IEEE Radar Conference,Waltham, MA, USA, April 17-20, 2007.
    [31] B.Wardrop, D.M.Ground, P.Matthewson. Bistatic Radar Using Adaptive Digital Beamforming[C]. 1990, IEEE. Radar Conference: 192~195.
    [32] Philip G. Tomlinson. Modeling and Analysis of Monostatic/Bistatic Space-Time Adaptive Processing For Airborne and Space-Based Radar[C].IEEE 1999 National Radar Conference, Boston. MA, April 20~22:102~107.
    [33] Braham Himed, James H.Michels,Yuhong Zhang. Bistatic STAP Performance Analysis in Radar Applications[C]. 2001 IEEE Radar Conference:198~203.
    [34] Michael P. Hartnett, Mark E.davis. Bistatic Surveillance Concept of Operations[C]. 2001 IEEE conference: 75~80.
    [35] Dipietro, R. C. Extended factored space-time processing for airborne radarsystem[C]. Proceedings of the 26th Asilomar Conference on Signals Systems and Computers, Oct.1992, 425-430.
    [1] Graham L C.Synthetic Interferometric radar for topographic mapping[J]. Proceedings of the IEEE, 1974,62(6):763:768.
    [2] Lanari R,et al. Generation of digital elevation modes by using SIR-C/X-SAR multifrequency two-pass interferometry: the etna case study[J].IEEE Transaction on Geoscience and Remote Sensing, 1996,34(5):1097-1114.
    [3]王彤,保铮,廖桂生.分布式小卫星干涉高程测量[J].系统工程与电子技术26(7),2004:859-862.
    [4] Mittermayer J, Krieger G, et al. Interferometric performance estimation for the interferometric cartwheel in combination with a transmitting SAR-satellite[A]. IGARSS’2001[C]. Piscataway, NJ,USA:IEEE, 2001. v7:2955-2957.
    [5] Massonnet D. Capabilities and limitations of the interferometric cartwheel[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(3): 506-520.
    [6] Curtis W.Chen. Performance Assessment of Along-Track Interferometry for Detecting Ground Moving Targets[C]. 2004 IEEE Radar Conference
    [7] C.Prati and F.Rocca. Improvement slant range resolution of stationary objects with multiple SAR surveys[J]. IEEE Transactions on Aerospace and Electronic Systerms.VOL.29.January 1993
    [8] E.Rodriguez and J.M.Martin.Theory and design of interferometric synthetic aperture radars[C].IEE Proceedings-F,Vol.139.NO.2,April 1992.
    [9] Tong Wang, Zheng Bao, Zhenhua Zhang, Jinshan Ding. Improving Coherence of Complex Image Pairs Obtained by Along-Track Bistatic SARs Using Range-Azimuth Prefiltering[J]. IEEE Transactions on Geoscience and Remote Sensing. Vol.46.No.1, 2008.
    [10] Zhenhua Zhang, Tong Wang, Jinshan Ding, Zheng Bao. A New Approach to Improve Coherence in SAR/GMTI[C]. Processing of Distributed Micro-satellite Systems.IEEE Radar Coference,2006.
    [11] Lee H,Liu J G. Spatial Decorrelation due to topography in the interferometric SAR coherence imagery[C]. IGARSS’1999.Piscataway, NJ,IEEE,1999.485-487.
    [12] Fabio Gatelli.The Wavenumber Shift in SAR Interferometry[J]. IEEE Trans.on Geoscience and Remote Sensing.VOL.32.NO.4.JULY.1994.
    [13] Howard A.Zebker and John Villasenor. Decorrelation in Interferometric RadarEchoes[J].IEEE Trans.on Geoscience and Remote Sensing.VOL 30,NO.5,SEP 1992.
    [14] Hoonyol Lee, Jian Guo Liu. Spatial Decorrelation due to Topography in the Interferometric SAR Coherence Imagery[C]. IEEE Trans.1999.
    [15] Hoonyol Lee,and Jian Guo Liu. analysis of Topographic Decorrelation in SAR Interferometry Using Ratio Coherence Imagery[J]. IEEE Trans.on Geoscience and Remote Sensing.VOL 39,NO.2,FEB 2001.
    [16]保铮,邢孟道王彤.雷达成像技术[M],北京:电子工业出版社2005.4.
    [17] M.Schwabish,D.Geudtner. Improvement of Phase and Coherence Map Quality Using Azimuth Prefiltering:Example from ERS-1 ans X-SAR[C].,1995 IEEE Radar Conference.
    [18] Antonio Moccia. Spaceborne,Along-Track SAR Interferometry:Performance Analysis and Mission Scenarios[J].IEEE Transactions on Aerospace and Electronic Systerms VOL.37.NO.1 January 2001.
    [19] Peati C, and Rocca F. Improving Slant-Range Resolution with Multiple SAR Surveys[J].IEEE Trans.on AES,1993,29(1):135-143.
    [20] Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):950-959.
    [21]徐华平,周荫清,李春升.分布式小卫星SAR回波信号的相关性[J].电子学报,vol.33 No.6,2005.
    [22]朱岱寅,朱兆达.利用线性相位模型提高干涉SAR图像相干性及改进相干性估计[J].电子学报.33(9):1594-1598.
    [23] Gabreil A K. Crossed orbit interferometry: theory and experimental results from SIR-B[J]. Journal of Remote Sensing, 1988, 9(8):857-872.
    [24] Zebker H A, et al. Accuracy of topographic maps derived from ERS-1 interferometric radar[J].IEEE Transactions on Geoscience Remote Sensing, 1994,32(4):823-836.
    [25] Franceschetti G, et al. Effect of antenna mast motion on X-SAR/SRTM performance[J]. IEEE Transaction on Geoscience and Remote Sensing, 2000,38(5):2361-2372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700