玉米耐旱相关性状的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是影响玉米生产的最主要非生物胁迫因素,解决这一问题的有效策略是选育并推广耐早性品种。但是,耐旱性是一复杂的数量性状且需要特殊的环境才能被鉴定,因此传统育种方法进行耐旱性遗传改良的效率不高。随着分子标的应用与发展,可以作为一种有效辅助手段,提高传统育种效率,为玉米耐早性育种带来新的途径。本研究利用SSR标记构建基于组合N87-1(耐旱)×9526(敏感)的分子标记连锁图谱,并对该组合的183个F_(2:3)家系在对照与干旱胁迫两种环境下进行耐旱性鉴定,分析控制玉米耐旱相关性状QTL位点与遗传效应,探索玉米耐旱性的分子遗传机制,为玉米耐旱性的遗传改良提供理论和参考。取得了以下结果:
     1.在对照与干旱胁迫两种环境下,对183个F_(2:3)家系的12个耐旱相关性状(单株产量、抽雄期、吐丝期、雌雄开花间隔、株高、穗高、根数、根重、穗叶长、穗叶宽、雄穗分枝数和雄穗主轴长)进行了鉴定与统计分析。结果表明:在两种环境下,各性状的平均数在家系间存在显著差异;除雌雄开花间隔(ASI)与产量呈显著的负相关以外,多数性状与产量呈显著的正相关;在干旱胁迫环境下,除ASI以外,其余各性状的变异系数比对照增加;与产量相关系数较大的ASI、根重和雄穗主轴长等性状,可作为耐旱性鉴定的重要次级性状。
     2.利用103个共显性的SSR标记构建了覆盖玉米全基因组的分子标记连锁图谱。图谱的总长度为1512.9cM,平均间距为16.27cM。基于分子标记排列顺序与位点比较,该连锁图谱与玉米基因组数据库所公布的玉米整合图谱有较高的一致性,可以用于进一步的QTL定位研究。
     3.以复合区间作图法(LOD≥2.0),对两种环境下的12个耐旱相关性状和产量耐旱系数(DTI)进行QTL检测。总计检测到89个QTL位点,其中对照环境下43个、干旱胁迫环境下39个以及7个DTI的QTL。每个性状所检测到的QTL数目在1~7个之间,单个QTL所能解释的表型变异在4.68~34.1%之间,基因的作用方式以部分显性和超显性为主。产量、ASI、根重、穗位叶宽、穗位叶长及穗位高性状的部分QTL位点在两种环境下有较好的重复性。
     4.发现耐旱相关性状的QTL在染色体上有成簇分布的特点;初步找出了耐旱性QTL存在的重点区域。这些区域主要集中在第1连锁群上的标记bnlg2086(binl.04)与标
    
    记bnlgl347(binl.10)临近区域,第4连锁群上的标记区f日J umClll7一ne0OS(bin4.O4一
    bin4.05)与标记区间bnlg2126一umex573(bin4.os一bin4.og),第5连锁群上标一记区间b
    nlg 1 006一ume 1416(bins.0),第6连锁群上标记umel296(bin6.o6一bin6.07)临近区域,第
    7连锁群上标记区间phi034一bnlgl792(bin7.02)与bnlgl8OS一ume1O15(bin7.03李。
     5.与国外相关研究的结果比较表明,本研究所检测的耐旱相关性状QTL在第4连
    锁群上的分布频率相对偏高,可能与母本N87一1的特殊遗传背景有关。
Drought is the most important abiotic factors limiting maize production. The effective approach to solve this problem is breeding and popularizing variety for drought tolerance. However, conventional selection for drought tolerance is inefficient because that drought tolerance is a complicated quantitative trait and required special environment to identify. With the development and application of molecular markers, MAS(molecular assistant selection) supply a useful tool to the breeding for drought tolerance. In order to investigate the molecular genetic basis of drought tolerance and find useful information for genetic improvement to drought tolerance further, molecular marker linkage map was construct with F2 population derived from N87-l(drought tolerance) 9526 (drought sensitive ) by 103 SSR markers; then 183 F2:3 family lines were identified for drought tolerance under two water regimes(normal control and water stressed); in the end, quantitative trait locus(QTL) associated traits related to drought tole
    rance were identified and analyzed in this study. The major results are as follows.
    1. The major traits(grain yield , male flowering, female flowering, anthesis-silking interval, plant height, ear height, ear leaf length, ear leaf width, root number, root weight, tassel branch number, tassel main axis length ) related to drought tolerance of 183 F2:3 family lines were surveyed and analysed under two water regimes. Under two water regimes , the average values of all traits are significant difference among family lines,which may be used for QTL mapping; most of these traits are significant positive correlation with yield ,but ASI has significant negative correlation with yield, under water stressed condition, yield and ASI, root weight and tassel main axis length may be used for important second drought tolerance indexes.
    2. A genetic linkage map containing 103 SSR markers was constructed, which spanned a total of 1512.9 cM with an average interval of 16.9 cM. Compared with other published maize linkage maps in chromosome bin locus, the linkage map established in this study was consistent with them. The SSR linkage can be used for QTL mapping.
    3.By composite interval mapping(LOD 2.0),82 QTL were detected for 12 traits under two water regime and 7 QTL were detected for DTI. Under water stress environment,39 QTL
    
    
    were detected; and under normal environment 43 QTL were detected. Each traits have been identified 1~7 QTL which were responsible for interpreting 4.68-34.1% of the phenotypic variance individually, and showed partial dominant effect and over dominant .QTLs of grain yield and anthesis-silking interval, ear height, ear leaf length, ear leaf width and root weight are relatively consistence across two environments
    4. This result also show that some QTLs trend to cluster the same chromosome region. The key chromosome regions for drought tolerance mostly lie on following c
    hromosome: chromosome 1, bnlg2086(binl.04) and bnlgl347(binl.lO);chromosome4, umc 1117~nc005(bin4.04~bin4.05) and bnlg2126~umcl573(bin4.08~4.09);chromosome5, bnlgl 006~umcl416(bin5.0);chromosome6,umcl296(bin6.06~bin6.07);chromosome7,phi034~bnlg 1792(bin7.02)and bnlgl805~umc1015 (bin7.03) .
    5. Compared the results with other researchers' reports, the chromosome 4 of N87-1 genomic have higher frequency of QTLs associated drought tolerance.
引文
[1] 鲍巨松,杨成书,薛吉全.玉米在水分胁迫条件下脯氨酸变化与抗早性的关系.陕西农业科学,1990,(增刊):37-39
    [2] 陈军,戴俊英,沈秀英,徐世昌.不同玉米杂交种孕穗、开花和灌浆期抗旱性研究.沈阳农业大学学报,1993,24(1):1-5
    [3] 陈军,顾慰莲,戴俊英.干旱对玉米叶片膜透性及膜脂肪酸组分的影响.植物生理学通讯,1990,6:39-41
    [4] 陈其军,王学臣,刘强.植物逆境胁迫耐受性功能基因组研究进展.生物化学与生物物理进展.2001,28(6)
    [5] 戴俊英,顾慰莲,沈秀英,郑波等.玉米不同品种各生育时期对生育及产量的影响.沈阳农业大学学报,1990,21(3):181-185
    [6] 丁雷,王学臣.干旱胁迫下ABA对气孔运动的作用机制.干旱地区农业研究,1993,11(2):50-56
    [7] 董永华,吉史平,韩发民.干旱对玉米幼苗PEP羧化酶活性的影响.玉米科学,1995.3:54-57
    [8] 付凤玲、周树峰、荣廷昭.玉米耐早系数的多元回归分析.作物学报,2003,5
    [9] 付凤玲.玉米耐早性鉴定方法研究.硕士论文.2002,四川农业大学
    [10] 高世斌、李晚忱、荣廷昭,玉米耐旱相关性状的QTLs研究,分子植物育种,2003,5
    [11] 高婷、庄亮、李润植,DNA多态性及其在植物功能基因组学研究中的应用,植物遗传资源学报,2003,4(4)374~377
    [4] 胡瑞法、Erika C.H.ment、张世煌.中国玉米研究的优先序.中国科学基金,2003,
    [12] 何小红,徐辰武,蒯建民等.数量性状基因作图精度的主要影响因子.作物学报,2001,27(4) 469-475
    [13] 洪法水,张帆.玉米幼苗萎蔫过程中某些理化性质变化的研究.西北植物学报,1999,19(1):71-75
    [14] 候建华,吕凤山.玉米苗期抗旱性鉴定研究.华北农学报,1995,10(3):89-93.
    [15] 景蕊莲,作物抗旱研究的现状与思考,干旱地区农业研究,1999,2
    [16] 姜立智,梁宗锁.干旱胁迫对植物基因的诱导及基因产物的变化.干旱地区农业研究,2001,19(3):87-92
    [17] 金慧英、房德兴,检测差异表达基因技术的研究进展,免疫学杂志,2000,16(4)
    
    
    [18] 荆家海,肖庆德.玉米叶片生长部位渗透调节和生长的生物物理参数变化.植物生理学报,1988,14(4):385-390
    [19] 卢良恕,农业抗灾减灾工程技术,河南科学技术出版社,2000
    [20] 李锦树,王洪春,王文英,朱亚芳.干旱对玉米叶片细胞滲透性及膜脂的影响.植物生理学报,1981,9(3):223-228
    [21] 李新海,刘贤德,李明顺,张世煌.玉米雌雄开花间隔天数、结穗率与产量的数量性状位点(QTL)分析.植物学报,2003,45(7):852-857
    [22] 李晚忱,付凤玲,袁佐清.玉米苗期耐性鉴定方法研究,西南农业学报,2001,14(3):29-32
    [23] 黎裕、王天宇、石云素等,玉米抗旱性的QTL分析研究进展与发展趋势,干旱地区农业研究,2004,22(1)
    [24] 刘宗华、汤继华、程伟陈.玉米高配合力自交系豫自8721的选育研究.作物杂志.2002,5
    [25] 刘贤德,李新海,张世煌.玉米开花期耐早相关性状的遗传及育种策略。玉米科学,2002.10(3):13-18
    [26] 莫惠栋.数量性状遗传基础研究的回顾与思考——后基因组时代数量遗传领域的挑战,扬州大学学报(农业与生命科学版),2003,24(2):24-31
    [27] 裴英杰,郑家玲,王金胜.用于玉米品种抗旱性鉴定的生理生化指标.华北农学报,1992,7(1):31-35
    [28] 荣廷昭、李晚忱、杨克诚等,西南生态区玉米育种,中国农业出版社,2003
    [29] 孙彩霞,沈秀英,郝建军.玉米果穗性状和生理生化指标与抗旱性相关分析.沈阳农业大学学报,1998,29(4):291-296
    [30] 王邦锡,黄久常,王辉.不同植物在水分胁迫条件下脯氨酸的积累与抗旱性的关系.植物生理学报,1989,15(1):46-51
    [31] 王畅,林秋萍,贡冬花,李普安等.夏玉米的干旱适应性及其生理机制的研究.华北农学报,1990,5(4):54-60
    [32] 王泽立.基因芯片技术在玉米遗传育种中的应用.玉米科学,2003,11(7)
    [33] 王秀全,何钟碧,刘昌明,张光祖.热带质源玉米优质、耐早自交系81565及其杂交种绵单一号的选育研究.第四届全国青年作物遗传育种学术会文集,1997:164-168
    [34] 吴景锋、于香云,试论2020年我国玉米种质改良的战略目标,作物杂志,1998,2
    [35] 吴义新 土壤干旱下玉米叶片游离脯氨酸的积累及其与抗旱性的关系.玉米科学,1996,4(1):55*58
    [36] 向道权、曹海河、曹永国、杨俊品等,玉米SSR遗传图谱构建及产量性状基因定位,遗传学报,2001,28(8):778-784
    
    
    [37] 熊志强,四川农业灾害与减灾对策,四川科学技术出版社,1999
    [38] 席章营 玉米抗早性生理生化指标及利用价值分析.河南农业大学学报,2000,34(1):7-12
    [39] 谢勤成译.玉米某些干旱适应性状的遗传Ⅰ,产量,开花及每株果穗数的关系.国外作物育种1993(3):28-29
    [40] 邢永忠,徐才国.作物数量性状基因研究进展.遗传,2001,23(5):498-502
    [41] 徐世昌,戴俊英,沈秀英,王莲芝等.水分胁迫对玉米光合性能及产量的影响.作物学报,1995,21(3):356-363
    [42] 徐云碧,朱立煌.分子数量遗传学,1994,中国农业出版社,北京
    [43] 杨俊品.玉米分子遗传图谱构建及数量性状基因定位.四川农业大学博士论文,2001
    [44] 严建兵.玉米杂种优势遗传基础及玉米与水稻比较基因组研究.[博士学位论文].华中农业大学,2003
    [45] 袁照年,罗淑平,吴光成.玉米两个生育时期抗旱性鉴定指标的研究.西北农业大学学报,1995,23(增刊):1-6
    [46] 于岭、王莱、牛吉山等.植物功能基因组研究进展.西北师范大学学报(自然科学版).2003,39(3)
    [47] 张彪译 玉米抗旱育种的性状选择.国外作物育种,1993 3:23-24
    [48] 张宝石,徐世昌,宋凤斌,张威等.玉米抗旱基因型鉴定方法和指标的探讨.玉米科学,1996,4(3):19-22
    [49] 张建华,王建军,廖新华.云南抗旱玉米资源的生态类型及分步 云南农业科
    [50] 张宪政.作物生理研究法.北京:农业出版社,1992:131-207
    [51] 张彦芹,贾玮珑,杨丽莉,徐珊珊.不同玉米品种苗期抗旱性研究.干旱地区农业研究,2001,19(1):83-86
    [52] 张凤路 D.Kriubi,玉米雌雄穗开花间隔与产量关系研究,作物学报,2002,1,76-78
    [53] 张正斌.小麦水分利用效率及相关性状的QTL研究.博士后研究工作报告,2001,中国农业科学院作物品种资源研究所
    [54] 周树峰,李晚忱,付凤玲等,57个常用玉米自交系的耐旱性鉴定 干旱地区农业研究,2002,2,127-130
    [55] 周树峰.玉米耐旱性鉴定及数量量遗传学研究.硕士论文.2003,四川农业大学
    [56] 朱军.数量性状基因定位的混合线性模型分析方法.遗传,1998,20(增刊)。
    
    
    [57] Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T,Hosokawa D, Shinozake K(1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859-1868
    [58] Agrama HAS, Moussa ME, Mapping QTLs in breeding for drought tolerance in maize(Zea may L.), Euphytica , 1996,91:89-97
    [59] Bachem CWB, van der Hoeven RS, de Bruijin. Visualization of differential gene expression using a novel method of RNA fingerpringting based on AFLP:analysis of gene expression during potato tuber development. The plant Journal 9:745-753
    [60] Barker TC, Varughese G. 1992. Combining ability and heterosis among eight complete spring hexaploid triticale lines. Crop Science 32, 340-344.
    [61] Bnzinger, G.O. Edmeades, D. Beck, Breeding for drought and nitrogen stress toleranc in maize, 1996, CIMMYT
    [62] Blum A, Plant breeding for stress environments. Boca Raton, USA:CRC Press, 1988
    [63] Bolaos J, Edmeades GO. Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass and radiation utilization. Field Crops Research 1993a, 31, 233-251
    [64] Bolaos J, Edmeades GO, Eight cycles of selection for drought tolerance in lowland tropical maize. Ⅱ. Responses in reproductive behavior. Field Crops Research 1993b, 31, 253-268
    [65] Boyer J S. Leaf enlargement and metabolic rates in corn ,soybean, and sunflower at various leaf water potentials. Plant Physiology. 1970,46:233-235
    [66] Bruce WB, Folkerts O, Garnaat C, Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. The Plant Cell 2000,12, 65-80
    [67] Bruce W, Desbons P, Crasta O, Folkerts O.2001,Gene expression profiling of two related maize inbred lines with contrasting root-lodging traits, Journal of Experimental Botanty 52:459-468
    [68] Cardon LR, Bell Ji. 2001. Association study designs for complex disease. Nature Review Genetics 2:91-99
    [69] Coe E H, Placco M. Gene list and working maps. Maize Gene Coop
    
    Newslett, 1995, 694:157-191
    [70] Consoli L, Lefevre CL, Zivy M, de Vienne D, 2002. QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize, plant molecular biology 48:575-581
    [71] Damerval C, Maurice A, Josses JM, de Vienne D, Quantitative trait loci underlying gene product variation:a novel perspective for analyzing regulation of genome expression. Genetics, 1994, 137, 117-124
    [72] David F. austin and Michael Lee, Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments, Crop science, 1998, 38, 1296-1308
    [73] Dominique de Vienne, Genetics of proteome variation for OTL characterization:application to drought-stress responses in maize. Journal of Experimental Botany, 1999, 50,, 332, 303-309
    [74] Edmeades, G. O., Bolaos, J. and Lafitte, H. R, Progress in breeding for drought tolerance in maize, 1992, Proceedings of the 47~(th) Annual corn & Sorghum Research Conference
    [75] Edmeades G O, Bolaos J, Bnziger M, Ribaut J M, White J W, Reynolds M P, Lafitte H R. Improving crop yields under water deficits in the tropics. Proceedings of 2nd international crop science congress, New Delhi:Oxford and IBH, 1998:437-451
    [76] Edmeades G O, Bolaos J, Chapman S C, Lafitte H R, Bnziger M. Selection improves drought tolerance in tropical maize populations: I. Grains in biomass, grain yield and harvest index. Crop Science, 1999,39:1306-1315
    [77] Edmeades G O, Bolaos J, Chapman S C. Value of secondary traits selecting for drought tolerance in tropical maize. Proceedings of Developing Drought and Low N-tolerance Maize Symposium, CIMMYT, 1996b: 222-234
    [78] Edmeades G. O., J. Bolaos, M. Binziger, S. C. Chapman, A. Ortega C., H. R. Lafitte K, Fischer S, Pandey S. Recurrent selection under managed drought stress improves grain yields in tropical maize. Proceedings of Developing Drought and Low N-tolerance Maize Symposium, CIMMYT, 1996a: 415-425
    [79] Edmeades, G.O.,Banziger, M.,Campos,H.,Schussler, J.2003,Improveing tolerance to abiotic stress in staple crops:a random or planned process?Paper presented at Arnel Hallauer International Symposium on Plant Breeding,held at CIMMYT, Mexcio, 17-22 August,2003
    
    
    [80] Frova C,P Krajewski, N di Fonzo, M Villa. Genetic analysis of drought tolerance in maize by molecular markers, I, Yield components. Theor Appl Genet, 1999,99:280-288
    [81] Gabriela M. Pastori and Christine H. Foyer. Common components, networks, and pathways of Crosstolerance to stress. The central role of "Redox" and abscisic acid-mediated controls. Plant Physiology, 2002,129,460-468
    [82] Greenberg J, Monach P, Chou J, Josephy P, Demple B. Postive control of a multilevel antioxidant defense regulon activated by superoxide-generation agents in Escherichin coli Proc Natl Acad Sci USA 87:6181-6185
    [83] Guingo E, Hebert Y, Charcosset A. Genetic analysis of root traits in maize. Agronomic, 1998,18,225-235
    [84] Hartung W, Zhang J, Davies W J. Does abscisic acid play a stress physiological role in maize plants growing in heavily compacted soil. Journal of Experimental Botany, 1994, 45:221-226
    [85] Ho J C,McCouch S R,Simth M E.Improvement of hybrid yield by advance backcross QTL analysis in elite maize.Theor Appl Genet,2002,105:440-448
    [] Ibarra-Caballero J, Villanueva-Verduzco C, Molina-Galan J, Sanchez-de-Jimenez E. Proline accumulation as a symptom of drought stress in maize: a tissue differentiation requirement. Journal of Experimental Botany, 1988,39:889-897
    [86] J. Bolaos, G.O. Edmeades, The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research, 1996,48,65-80
    [87] Jorde LB. 2000. Linkage disequilibrium and the search for complex disease genes. Genome Research 10:1435-1444
    [88] J.-M. Ribaut. D.A. Hoisington et al, Identification of quantitative traits loci under drought conditions in tropical maize, I.Flowering parameters and the anthesis-silking interval. Theor Appl Genet, 1996,92,905-914
    [89] J.-M. Ribaut. C. Jiang. D. Gonzalet-de-Leon, Identification of quantitative traits loci under drought conditions in tropical maize, Ⅱ. Yield components and marker-assisted selection strategies, Theor Appl Genet, 1997,94,887-896
    [90] J.-M. Ribaut, M. Banziger, and D. Hoisington, Genetic dissectin and plant
    
    improvement under abiotic stress conditions:drought toleranc in maize as an example, JIRCAS working Report, 2002,85-92
    [91] Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet New, 1991,8:2-37
    [92] Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet New, 1993,10:7-39
    [93] Knox M R, Ellis T H N. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations Genetcs, 2002,162:861-873
    [94] Lander ES. Botstein D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199
    [95] Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie SA. 1995.Tdentification of QTL for drought response in maize and their use in testing causal relationships between traits. Journal of Experimental Botany 46,853-865
    [96] Lee M, DNA markers and plant breeding programs. Advances in Agronomy 1995,55,265-344
    [97] Levitt J.Response of plant to environmental stresses,Water radiation, salt and other stresses[c] New York;Academic Press,1980:325-358
    [98] Li Z-Y, Chen S-Y. 2000. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theoretical Applied Genetics 100, 782-788.
    [99] Liang P, Pardee AB. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967-971
    [100] Lin C Y. Index selection for genetic improvement of quantitative character. Theoretical and Applied Genetics, 1978,52:49-56
    [101] Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Shinozaki-Yamaguchi, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10,1391-1406.
    [102] Long-Xi Yu, Tim L Setter, Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiologists ,2003 ,131,568-582
    
    
    [103] Mauricio R.2001.Mapping quantitative trait loci in plants:uses and caveats for evolutionary biology.Nature Review of Genetics 2:370-381
    [104] McCully ME. 1999. Roots in soil: unearthing the complexities of roots and their rhizospheres. Annual Review of Plant Physiology and Plant Molecular Biology 50, 695-718.
    [105] Michelmore RW, Paran I,Kesseli Rv.1991.Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating population.Prceedings of the National Academy of Science of the United States of America 88:9828-9832
    [106] N.N.Singh,Pervez H.Zaidi,Meena Mehta et Abiotic Stresses-The Major Constraint Limiting Maize Production and Productivity in South and Southeast Asia,Improvin Maize Productivity under Abiotic Stresses,ICAR&CIMMYT Hyderabad,Inida 2-12,Feb,2004
    [107] Ouellet F, Vazquez-Tello A,Sahran F(1998) .The wheat wsc120 promoter is cold-inducible in both monocotyle-donous and dicotyledonous species.FEBS lett 423:324-328
    [108] Ozturk ZN,Talamé V, Deyholoska M.2002.Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley.Plant Molecular Biology 48:551-573
    [109] Polidoros and Scandalios.Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione-s-transferase gene expression in maize.Physiol plant 1999,106:65-74
    [110] Quarrie SA,Lazic-Jancic V, Kovacevic,Steed A,Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize.Journal of Experimental Botany 50:1299-1306
    [111] Ristic R. and Cass D D. Dehydration avoidance and damage to the plasma and thylakoid membranes in lines of maize deffering in endogenous leaves of abscisic acid. Journal of Plant Physiology, 1993, 142:759-764
    [112] Ruan Y, Gilmore J, Conner T. 1998, Towards Arabidopsis genome anaylsis:mon itoring expression profiles of 1400 genes using cDNA microarrays. The plant journal 15:821-833
    [113] Salvi S, Tubersoa R, Chiapparino E, Maccaferri M, Toward positional cloning of Vgtl, a QTL controlling the transition from the vegetative to the reproductive phase in maize, Plant Molecular Biology, 2002, 48, 601-613
    
    
    [114] Sanguineti,Tubersoa, Landi. QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. Journal of Experimental Botany, Vol. 50, No. 337:1289-1297
    [115] Schena M, Shalon D, Davis RW, Brown PO. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270, 467 - 470
    [116] Shimkets RA,Lowe DG, Tai JT, Sehl P, 1999,Gene expression analysis by transcript profiling coupled to a gene database query.Nature Biotechnology 17:798-803
    [117] Shinozaki K, Yamaguchi-Shinozaki K. 1997. Molecular responses to drought and cold stress. Current Opinions in Biotechnology 7, 161-167.
    [118] Stuber C.W.Edwards M D,Wendel J F.1987.Molecular-marker-facilitated investigations of quantitative traits loci in maize.Ⅱ.Factors influencing yield and its component traits. Crop Sci,27:639-648
    [119] Stuber C.W, Lincoln S E,Wolff D W, Helentjaris T, Lander E S. 1992.Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers.Genetics, 132:823-839
    [120] Sun Y, Helentjaris T, Zinselmeier C, Habben JE. 2001. Utilizing gene expression profiles to investigate maize response to drought stress. In: 1999 Proceedings of the 54th Annual Corn and Sorghum Research Conference (in press).
    [121] Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92:191-203
    [122] Thiellement H, Bahrman N, Damerval C, Plomion C. 1999. Proteomics for genetic and physiological studies in plants. Electrophoresis 20:2013-2026
    [123] Thornsberry JM, Goodman MM, Doebley J, Krsovich S, Dwarf8 polymorphisms associated with variation in flowering time. Nature Genetics 28:286-289
    [124] Touzet P, Winkler RG, Helentjaris T. 1995. Combined genetic and physiological analysis of a locus contributing to quantitative variation. Theoretical and applied genetics 91:200-205
    [125] Tuberosa R, Salvi S, Phillips RL, Bulked segregant analysis confirms the
    
    importance of the region near umc89a for days to pollen shed in maize. Maize Cenetics Cooperative Newsletter 1998a, 72,71-72
    [126] Tuberosa R, Parentoni S, Kim TS, Sanguineti MC, Phillips RLMapping QTLs for ABA concentration in leaves of a maize cross segregating for anthesis date. Maize Genetic Cooperation NewsTetter, 1988b, 72,72-73
    [127] Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S, Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Molecular Biology, 2002,48,691-712
    [128] Tuberosa R, Salvi S, Mapping QTLs Regulating Morpho-physiological Traits and Yield:Case Studies, Shortcomings and Perspectives in Drought-stressed Maize, Annals of Botany, 2002,89,941-963
    [129] Veldboom LR, Lee M, Woodman WL, Molecular marker-facilitated studies in an elite maize population. I Linkage analysis and determination of QTLs for morphological traits. Theor Appl Genet, 1994,88,7-16
    [130] Verslues PE, Sharp RE. 1999. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. Ⅱ. Metabolic source of increased proline deposition in the elongation zone. Plant Physiology 119, 1349-1360
    [131] Vuylsteke M, Mank R, Brugmans B. 2OOOa Chromosomal regions involved in hybrid performance and heterosis:their AFLP identification and practical use in prediction models. Heredity 85:208-218.
    [132] Wang H, Datla R, Georges F, Loewen M, Cutler A(1995).Promoters from kinl and cor6.6, two homologous Arabidopsis thaliana genes:transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Mol Biol 28:615-617
    [133] Weerathaworn P, Soldati A, Stamp P. 1992. Anatomy of seedling roots of tropical maize (Zea mays L.) cultivars at low water supply. Journal of Experimental Botany 43, 1015-1021.
    [134] Wesley B. Bruce, Gregory O. Edmeades et,.al Molecular and physiological
    
    approaches to maize improvement for drought tolerance Journal of Experimental Botany, 2002, 366, , 13-25
    [135] Yano Masahiro, Sasaki Takuji. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology, 1997, 35:145-153
    [136] Yan J Q,Zhu J,He C,et al.Molecular dissection of developmental behavior of plant height in rice.Genetics, 1998,150(11): 1257-1265
    [137] Zeng Z B. 1994.Precision mapping of quantitative trait loci Gentics, 136:1457-1468
    [138] Zhu T, Budworth P, Han B,Brown D,Chang HS.Zou GZ.2001.Toward elucidating the global gene expression patterns of developing Arabidopsis:Parallel analysis of 8300 genes by a high-density oligonucleotide probe array.Plant physiology and biochemistry 39:221-242.
    [139] Zinselmeier C, Jeong BR, Boyer JS. 1999. Starch and the control of kernel number in maize at low water potentials. Plant Physiology 121, 25-36.
    [140] Zinselmeier C, Habben JE, Westgate ME, Boyer JS. 2000. Carbohydrate metabolism in setting and aborting maize ovaries. In: Westgate ME, Boote KJ, eds. Physiology and modeling kernel set in maize. CSSA Special Publication No. 29. Madison, WI: CSSA, 1-13.
    [141] Maize Genetics and Genomics Database(玉米基因组数据库)(http://www. maizegdb. org)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700