基于“3S”技术的草原生物量与碳贮量遥感监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草原生态系统是我国最大的陆地生态系统,草原生产力是维护草原生态系统的物质基础,是反映草原状况最直接的指标,对草原生态系统功能的强弱起着决定性的作用,草原植被生物量动态研究一直是陆地生态学的重点和热点问题。及时准确地了解草原产草量的时空分布状况,掌握草原年际间变化动态规律,对于草原可持续利用和管理具有重要意义。目前,无论从大尺度乃至全球尺度上,还是小到某区域或草地类型的估算草原生物量及碳密度,地面样方的建模和验证数据较少,模型的可靠性和估算精度难以保证,而对地下生物量的研究也相对缺乏,长期以来是生态学研究中的一个薄弱环节,尤其是不同利用方式和草原退化、沙化程度下,地下生物量与地上生物量的关系及动态变化和规律缺少深入系统的研究。
     本文以内蒙古正蓝旗为研究区,基于“3S”技术手段,以MODIS和TM为遥感数据源,通过地面样方数据与对应的气象要素、数字高程要素等空间数据库,构建草原生物量的遥感估算模型,阐明了2005-2010年草原生物量的时空动态分布,探讨了影响草原生物量时空分布的主要控制因素,揭示了草原地下/地上生物量的大小及其分配机制,并进一步估算了不同沙化程度草原生物量及碳贮量。主要的研究结论与进展如下:
     (1)利用地面样方生物量数据结合同期MODIS、气象要素、数字高程等数据,建立传统经验统计法和B-P神经网络法的生物量遥感估算模型,通过精度验证和对比分析,优选出B-P神经网络法模型为生物量遥感估算模型,模型精度达到79%。利用B-P神经网络模型估算了正蓝旗2005-2010年的草原地上生物量,多年平均干草量为798620吨,平均生物量密度为797.36kg/hm~2,空间上呈中部高两边低的分布格局,降水量是影响草原生物量时空分布的关键因素之一。
     (2)基于2010年正蓝旗TM遥感数据,参考草原沙化分级指标体系,采用混合像元分解法将正蓝旗草地分为未沙化草地、轻度沙化草地、中度沙化草地和重度沙化草地,分类精度达到80%。结果表明,正蓝旗草原沙化主要集中在北部,沙化面积约为4483.95km~2,占总草原面积的45.88%。
     (3)根据2010年野外调查的不同沙化程度下样方生物量资料得出,未沙化草地、轻度沙化草地、中度沙化草地、重度沙化草地的平均地上生物量密度分别为214.72g/m~2、135.41g/m~2、91.42g/m~2、24.01g/m~2,平均地下生物量密度分别为2601.35g/m~2、2318.45g/m~2、413.25g/m~2、117.25g/m~2,地下/地上生物量比值在4.5-17.2间。随着沙化程度的加剧,土壤质地粗化,土壤肥力下降,影响了植物体的生长发育,从而导致草原生物量大幅降低。
     (4)在2010年正蓝旗草原沙化分类结果和草原地上生物量遥感估算结果的基础上,结合地下/地上生物量比值信息,估算了正蓝旗2010年不同沙化程度下的草原生物量及碳贮量,草原生物量约为755万吨,总碳贮量为3.4TgC,碳密度在0.99MgC/hm~2-11.12MgC/hm~2范围内。其中未沙化草地平均碳密度为4.39MgC/hm~2,碳贮量为2.31TgC;轻度沙化草地碳密度为5.61MgC/hm~2,碳贮量为0.55TgC;中度沙化草地碳密度为1.58MgC/hm~2,碳贮量为0.33TgC;重度沙化草地碳密度为1.53MgC/hm~2,碳贮量为0.22TgC。由此看出,草原沙化对草原碳固定量具有明显的负作用,草原沙化的加剧导致草原固碳能力的下降。
     (5)为了完成上述研究目标和内容,选用正蓝旗周围51个气象台站资料,以2010年年均温和年降水为例,对比分析了克里格插值法和ANUSPLIN插值法的优缺点,最终选择ANUSPLIN插值法对正蓝旗2005-2010年的各气象要素(年均温、年降水量、生长季均温、生长季降水量)进行插值计算。正蓝旗年均温在1.3℃-3.9℃间,年降水量在200mm-450mm间,年际间气温和降水量均存在较大的波动性。生长季均温在13.5℃-18.5℃间,年际间变化幅度较小;生长季降水量在130mm-380mm间,多年的平均生长季降水量占年总降水量的80%以上。
     本文在以下两个方面有所创新:
     (1)综合考虑影响草原生物量的主要因素,利用B-P神经网络法构建草原生物量遥感估算模型,深入分析了正蓝旗2005-2010年草原生物量的时空动态变化。同时,在构建草原生物量遥感估算模型过程中,地面样方数据选用多年连续观测资料建模,降低了年际间生物量波动的影响,有效地提高了估算模型的稳定性。
     (2)参照草原沙化分级指标体系,将正蓝旗草原区划分为未沙化草地、轻度沙化草地、中度沙化草地和重度沙化草地,探讨了不同沙化程度下草原地下/地上生物量的大小及其分配机制,估算了正蓝旗不同沙化程度下的草原碳贮量,揭示了草原沙化对草地生态系统碳循环的影响作用,提高了草原生物量及其碳贮量的估算精度。
Grassland ecosystem is the largest terrestrial ecosystem of China. Grassland productivity is thematerial base for maintaining grassland ecosystem, then the most direct index to reflect grassland statusand the decisive role to function of grassland ecosystem. It has been the important and hot spot ofterrestrial ecology to research grassland biomass. It is the important significance for sustainable usingand management of grassland to accurately and rapidly investigate the temporal-spatial distribution ofgrassland production and master the dynamic law of grassland. At present, whether on the large scale orglobal scale and the regional or grassland type to estimate grassland biomass and carbon storage, thedata of modeling and verification is less. It is difficult to ensure the reliability and precision of model.The relative deficiency of belowground biomass has long been one of the weak links of ecological study.Especially, there is a lack of systemic and through study on the relationship between below-andabove-ground biomass and their dynamic change under different utilization types and grasslanddegradation and desertification.
     In this study, we selected Zhenglan Banner, Inner Mongolia as our study area. Based on ‘3S’technology method and special database, we built Remote Sensing estimation model for grasslandbiomass. We illustrated temporal-spatial distribution of grassland biomass during2005to2010, theninvestigated the main control factors of temporal-spatial distribution of grassland biomass, and revealedabove-and below-ground biomass and allocation, then further estimated grassland biomass and carbonstorage under the different desertification grade. The main results and progress are summarized asfollows:
     (1) The estimating model of aboveground biomass based on RS was established by traditionalexperience statistical method and B-P neural network method using ground quadrat biomass data.Through precision verification, the optimal model was B-P neural network model and model precisionwas79%. By B-P neural network model, grassland aboveground biomass was estimated at annual mean798,620ton, biomass density at797.36kg/hm~2. In region spatial distribution pattern was “middle higherand sides lower”. Precipitation was one of key factors for temporal distribution of grassland biomass.
     (2) Based on TM image at Zhenglan Banner in2010, referencing for the index system of grasslanddesertification grade, grassland was divided into nonsandy grassland, slight type grassland, moderatetype grassland, severe type grassland. Classification precision was80%. The results showed thatgrassland desertification mainly centralized on Northern region. Desertification area was4,483.95km~2,accounted for45.88%of total grassland area.
     (3) Mean aboveground biomass density of nonsandy grassland, slight type grassland, moderatetype grassland and severe type grassland was estimated at214.72g/m~2、135.41g/m~2、91.42g/m~2、24.01g/m~2, respectively. Mean belowground biomass density was estimated at2601.35g/m~2、2318.45g/m~2、413.25g/m~2、117.25g/m~2, respectively. The ratio of below-and above-ground biomass was between4.5and17.2. With aggravation of desertification degree, it made the soil texture coursing and soil fertility reduced. Then it inhibited vegetation growth and reduced grassland biomass.
     (4) On the basis of grassland desertification classification and the estimation of abovegroundbiomass by Remote Sensing, combined with the ratio of below-and above-ground biomass, grasslandbiomass and carbon storage were estimated at7.55million ton and3.4TgC, respectively. Carbondensity was between0.99MgC/hm~2and11.12MgC/hm~2. Among them, mean carbon density ofnonsandy grassland was at4.39MgC/hm~2, carbon storage was at2.31TgC. Mean carbon density ofslight type grassland was at5.61MgC/hm~2, carbon storage was at0.55TgC. Mean carbon density ofmoderate type grassland was at1.58MgC/hm~2, carbon storage was at0.33TgC. Mean carbon density ofsevere type grassland was at1.53MgC/hm~2, carbon storage was at0.22TgC. The above resultsindicated that grassland desertification has significantly negative effect of carbon fixation. Theaggravation of the desertification may lead to reduce the ability of storage carbon.
     (5) In order to complete all the above research objects and contents, taking annual meantemperature and precipitation in2010for example, selecting51meteorological station data aroundZhenglan Banner and comparing analysis of advantages and disadvantages of kriging interpolation andANUSPLIN interpolation method, we finally chose ANUSPLIN interpolation method to calculate eachmeteorological element(including annual mean temperature, annual mean precipitation, growing seasontemperature, growing season precipitation) of Zhenglan Banner during2005to2010. Annual meantemperature was between1.3℃and3.9℃, annual mean precipitation was between200mm and450mm,inter-annual temperature and precipitation had large fluctuation. Growing season temperature wasbetween13.5℃and18.5℃. The change range was smaller in different years. Growing seasonprecipitation was between130mm and380mm. It accounted for more80%of total precipitation.
     There are innovations in tow aspects as follows:
     (1) Through comprehensively main factors effecting on grassland biomass, the estimating model ofgrassland biomass by Remote Sensing was established using B-P neural network method. This papermade a profound analysis on space-time dynamic change of grassland biomass during2005to2010.Meanwhile, six years continuous observation data was selected to establish model. It reduced thefluctuation infuluences of biomass annually and effectively improved the stability of model.
     (2) Referencing for the index system of grassland desertification grade, grassland was divided intononsandy grassland, slight type grassland, moderate type grassland, severe type grassland. Weinvestigated above-and below-ground biomass and allocation on the different desertification grade, thenestimated grass carbon storage on the different desertification grade, and further revealed the effect oncarbon cycle in grassland ecosystem and improved estimation accuracy of grassland biomass and carbonstorage.
引文
1.安尼瓦尔·买买提,杨元合,等.新疆天山中段巴音布鲁克高山草地碳含量及其垂直分布.植物生态学报.2006,30(4):545-552.
    2.安韶山,常庆瑞,刘京,等.农牧交错带土地沙化的本质及其形成研究.生态学报.2003,23(1):106-111.
    3.鲍晨光,范文义,李明泽,等.地形校正对森林生物量遥感估测的影响.应用生态学报,2009(11):2750-2756.
    4.保家有,李晓松,吴波.基于沙地植被指数的荒漠化评价方法.东北林业大学学报.2008(01):69-72.
    5.毕力格图.浅析光照对草地生产的影响.内蒙古气象.2003,4:59-60.
    6.查勇,GAO J.,倪绍祥.国际草地资源遥感研究新进展.地理科学进展.2003,22(6):607-617.
    7.蔡福,明惠青,陈鹏狮,等.1961年-2004年东北地区四季降水的时空演变特征.资源科学.2008,30(10):1456-1462.
    8.柴芸.甘肃省沙化土地监测研究.甘肃农业大学学报.2003,38(3):296-303.
    9.曹立国,刘普幸,张克新,等.锡林郭勒盟草地对气候变化的响应及其空间差异分析.干旱区研究.2011,28(5):789-794.
    10.陈世鐄.内蒙古草原区植被地下生物量分布的规律及其特点.内蒙古农牧学院学报.1992,13(1):1-7.
    11.陈世鐄,李银鹏,孟君,等.内蒙古几种针茅特性和生态地理分布的研究.内蒙古农业大学学报(自然科学版).1997,18(1):40-46.
    12.陈正华,麻清源,王建,等.利用CASA模型估算黑河流域净第一性生产力.自然资源学报.2008,23(2):263-273.
    13.除多,姬秋梅,德吉央宗,等.利用EOS/MODIS数据估算西藏藏北高原地表草地生物量.气象学报.2007(04):612-621.
    14.崔霞,梁天刚,刘勇.基于MOD09GA产品的草地生物量遥感估算模型.兰州大学学报(自然科学版).2009(05):79-87.
    15.董云社,齐玉春.草地生态系统碳循环过程研究进展.地理研究.2006,25(1):183.
    16.董永平,吴新宏,戎郁萍.草原遥感监测技术.北京:北京工业出版社.2004,227-244.
    17.杜子涛,占玉林,王长耀,等.基于MODIS NDVI的科尔沁沙地荒漠化动态监测.国土资源遥感.2009,80(2):14-18.
    18.樊江文,钟华平,梁飚,等.草地生态系统碳储量及其影响因素.中国草地,2003,25(6):51-58.
    19.方长明.相对稳定的草地生态系统碳库.中国科学C辑.2011,41(4):340-342.
    20.方精云,郭兆迪,朴世龙,等.1981~2000年中国陆地植被碳汇的估算.中国科学D辑.2007,37(6):804-812.
    21.方精云,刘国华,朱彪,等.北京东灵山三种温带森林生态系统的碳循环.中国科学D辑.2006,36(6):533-543.
    22.冯仲科.空间数据的最佳内插法(Kriging法)及其在GIS中应用的构想.测绘科学.1995,(3):22-26.
    23.高青山,胡自治.红豆草地下植物量和光能利用率.草业科学.1990,7(5):25-29.
    24.高清竹,万运帆,李玉娥,等.基于CASA模型的藏北地区草地植被净第一性生产力及其时空格局.应用生态学报.2007,18(11):2526-2532.
    25.高伟,鲍雅静,李政海,等.不同保护盒利用方式下羊草草原群落生物量及能量功能群构成的比较.干旱区资源与环境.2010,24(6):132-136.
    26.高娃,邢旗,刘德福.草原“三化”遥感监测技术方法和指标的研究.草原与草坪.2007,123(4):40-44.
    27.耿元波,董云社,齐玉春.草地生态系统碳循环研究评述.地理科学进展.2004,23(3):74-81.
    28.关宏强,蔡福,王阳,等.短时间序列气温要素空间插值方法精度的比较研究.气象与环境学报.2007,23(5):13-16.
    29.韩国栋.降水量和气温对小针茅(Stipa klemenzii Roshev.)草原植物群落初级生产力的影响.内蒙古大学学报(自然科学版).2002,33(1):83-88.
    30.胡中民,樊江文,钟华平,等.中国草地地下生物量研究进展.生态学杂志.2005,24(9):1095-1101.
    31.黄德华,陈佐忠,张鸿芳.贝加尔针茅、克氏针茅、线叶菊草原地下生物量的比较研究.草原生态系统研究(第2集).北京:科学出版社.1988,122-131.
    32.黄杏元等.地理信息系统概论.北京:高等教育出版社.2001,141-193.
    33.金云翔,徐斌,杨秀春,等.内蒙古锡林郭勒盟草原产草量动态遥感估算.中国科学:C辑,2011,12:1185-1195.
    34.姜恕,戚秋慧,孔德珍.内蒙古羊草大针茅草地群落生物量初步研究.草原生态系统研究(第1集).北京:科学出版社.1985,12~22.
    35.李海滨,林忠辉,刘苏峡. Kriging方法在区域土壤水分估值中的应用.地理研究.2001,20(4):446-452.
    36.李建龙,黄敬峰,王秀珍.草地遥感.北京:气象出版社.1997,132-168.
    37.李金霞,殷秀琴,包玉海.北方农牧交错带东段土地沙质荒漠化监测——以扎鲁特旗为例.中国沙漠.2007,27(2):221-228.
    38.李金亚,徐斌,杨秀春,等.锡林郭勒盟草原沙化动态变化及驱动力分析——以正蓝旗为例.地理研究.2011,30(9):1669-1682.
    39.李金亚.基于TM数据的草原沙化遥感监测方法研究与应用[李金亚硕士学位论文].北京:中国农业科学院,2011.
    40.李丽娟,王娟,李海滨.无定河流域降雨量空间变异性研究.地理研究,2002,21(4):434-440.
    41.李素英,李晓兵,莺歌,等.基于植被指数的典型草原区生物量模型——以内蒙古锡林浩特市为例.植物生态学报.2007,31(1):23-31.
    42.李晓琴,张振德,张佩民.格尔木土地荒漠化遥感动态监测研究.国土资源遥感.2006,68(2):61-78.
    43.李英年.高寒草甸植物地下生物量与气象条件的关系及周转值分析.中国农业气象.1998,19(1):36~39.
    44.李育中,李博.内蒙古锡林河流域羊草草原生物量动态的研究.中国草地.1991(1):5-8.
    45.李志涛,薛炳森.利用BP神经网络预测AE指数.空间科学学报.2007,27(5):374-378.
    46.刘爱军,韩建国.天然草原生育期遥感估测方法研究——以锡林郭勒盟草原为例.草业科学.2007,24(7):1-5.
    47.刘爱军,王晶杰,韩建国.锡林郭勒草原地上净第一性生产力遥感反演方法初探.中国草地学报.2007(01):31-38.
    48.刘纪远,于贵瑞,王绍强,等.陆地生态系统碳循环及其机理研究的地球信息科学方法初探.地理研究.2003,22(4):397-405.
    49.刘伟,周华坤,周立.不同程度退化草地生物量的分布模式.中国草地.2005,27(2):9-15.
    50.刘志红,Tim R M,Li L T,等.基于5变量局部薄盘光滑样条函数的蒸发空间插值.中国水土保持科学.2006,4(6):23-30.
    51.刘志红,Tim R M,Li L T,等.基于ANUSPLIN的时间序列气象要素空间插值.西北农林科技大学学报(自然科学版).2008,36(10):227-234.
    52.刘志红,Li L T, Tim R M,等.专用气候数据空间插值软件ANUSPLIN及其应用.气象.2008,34(2):92-100.
    53.龙慧灵,李晓兵,黄玲梅,等.内蒙古草原生态系统净初级生产力及其与气候的关系.植物生态学报.2010,34(7):781-791.
    54.龙永红.概率论与数理统计.北京:高等教育出版社.2001,230-242.
    55.卢燕宇,吴必文,田红,等.基于Kriging插值的1961-2005年淮河流域降水时空演变特征分析.长江流域资源与环境.2011,20(5):567-573.
    56.吕达仁,陈佐忠,陈家宜,等.内蒙古半干旱草原土壤-植被-大气相互作用综合研究.气象学报.2005,63(5):571-593.
    57.吕新龙.呼伦贝尔地区草甸草原初级生产力动态研究.中国草地.1994,4:9-11.
    58.罗天祥,李文华,冷允法,等.青藏高原自然植被总生物量的估算与净初级生产量的潜在分布.地理研究.1998,17(4):337-344.
    59.罗天祥,李文华,罗辑,等.青藏高原主要植被类型生物生产量的比较研究.生态学报.1999,19(6):823-831.
    60.马文红,方精云.内蒙古温带草原的根冠比及其影响因素.北京大学学报(自然科学版).2006,42(6):774-778.
    61.马文红,韩梅,林鑫,等.内蒙古温带草地植被的碳储量.干旱区资源与环境.2006,20(3):192-195.
    62.梅安新,彭望琭,秦其明,等.遥感导论.北京:高等教育出版社.2001,240-274.
    63.内蒙古自治区统计局.内蒙古统计年鉴2011.北京:中国统计出版社,2011.
    64.潘永地,徐为根.沿海丘陵地区面雨量估算插值方法试验比较.气象科学.2005,25(2):124-132.
    65.朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局.植物生态学报.2004,28(4):491-498.
    66.钱永兰,吕厚荃,张艳红.基于ANUSPLIN软件的逐日气象要素插值方法应用与评估.气象与环境学报.2010,26(2):7-15.
    67.齐玉春,董云社,耿元波等.我国草地生态系统碳循环研究进展.地理科学进展.2003,22(4):342-352.
    68.乔平林,张继贤,林宗坚.基于神经网络的土地荒漠化信息提取方法研究.测绘学报.2004,33(1):58-62.
    69.石洪华,方国洪,孙玉茗,等.基于人工神经网络的胶州湾浮游植物生物量模拟.水道港口.2010,31(5):545-548.
    70.史峰,王小川,郁磊,等. MATLAB神经网络30个案例分析.北京:北京航空航天大学出版社.2010:1-10.
    71.孙力安,刘国彬,梁一民.不同直径土钻测定草地地下生物量方法探讨.中国草地.1994,2:32-35.
    72.苏才旦,周雷.共和盆地温性草原物候期草地生产力与气候因素的灰色关联度分析.草业科学.2009,26(5):38-43.
    73.汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程.北京:科学出版社,2006.
    74.陶伟国,徐斌,杨秀春.草原产草量遥感估算方法发展趋势及影响因素.草业学报.2007(02):1-8.
    75.陶伟国,徐斌,刘丽军,等.不同利用状况下草原遥感估产模型.生态学杂志.2007,26(3):332-337.
    76.王玉辉,周广胜.内蒙古地区羊草草原植被对温度变化的动态响应.植物生态学报.2004,28(4):507-514.
    77.王大成,王纪华,靳宁,等.用神经网络和高光谱植被指数估算小麦生物量.农业工程学报.2008,24(2):196-201.
    78.王立海,邢艳秋.基于人工神经网络的天然林生物量遥感估测.应用生态学报.2008(02):261-266.
    79.王亮,牛克昌,杨元和,等.中国草地生物量地上-地下分配格局:基于个体水平的研究.中国科学(C辑:生命科学).2010,40(7):642-649.
    80.王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究.生态环境.2007(01):108-111.
    81.王鹏新,陈晓玲,李飞鹏.典型干草原退化草地的时空分布特征及其动态监测.干旱地区农业研究.2002,20(1):92~94.
    82.王娓,彭书时,方精云.中国北方天然草地的生物量分配及其对气候的响应.干旱区研究.2008,25(1):90-97.
    83.王艳芬,汪诗平.不同放牧率对内蒙古典型草原地下生物量的影响.草地学报.1999,7(3):198-203.
    84.吴楠楠.基于DEM的山区玉米生产潜力研究[吴楠楠硕士学位论文].河南:河南大学,
    2011.
    85.吴薇,王熙章,姚发芬.毛乌苏沙地沙漠化的遥感监测.中国沙化.1997,17(4):415-420.
    86.伍卫星,王绍强,肖向明,等.利用MODIS影像和气候数据模拟中国内蒙古温带草原生态系统总初级生产力.中国科学(D辑:地球科学).2008,38(08):993-1004.
    87.徐斌,杨秀春,陶伟国,等.中国草原产草遥感监测.生态学报.2007,27(2):405-413.
    88.徐斌,杨秀春.东北草原区产草量和载畜平衡的遥感估算.地理研究.2009,28(2):402-408.
    89.徐小军,杜华强,周国模,等.基于遥感植被生物量估算模型自变量相关性分析综述.遥感技术与应用.2008(02):239-247.
    90.许冬梅,刘彩凤,谢应忠,等.盐池县草地沙化演替过程中土壤理化特性的变化.水土保持研究.2009,16(4):85-88.
    91.杨秀春,徐斌,朱晓华,等.北方农牧交错带草原产草量遥感监测模型.地理研究.2007,26(2):213-221
    92.杨昕,张玮.基于MODIS植被指数-NDVI的内蒙古锡林郭勒草场荒漠化监测方法研究.中国农学通报.2007,23(6):611-615.
    93.于飞,郑小波,谷晓平,等.复杂山地环境下气候要素空间插值精度比较研究.贵州气象.2008,32(3):3~6.
    94.张德丰. MATLAB神经网络应用设计.北京:机械工业出版社.2012.
    95.张宏斌.基于多源遥感数据的草原植被状况变化研究[张宏斌博士学位论文],北京:中国农业科学院,2007.
    96.张杰,潘晓玲,高志强,等.干旱生态系统净初级生产力估算及变化探测.地理学报.2006,61(1):15-25.
    97.张杰,张强,何金梅,等.荒漠草原牧草生物量的遥感估算及空间分布.生态学报.2007,27(6):2294-2301.
    98.张连义,张静祥,赛音吉亚,等.典型草原植被生物量遥感监测模型——以锡林郭勒盟为例.草业科学.2008,25(4):31-36.
    99.张旭东,彭镇华,漆良华,等.生态系统通量研究进展.应用生态学报.2005(10):1976-1982.
    100.张永强,唐艳鸿,姜杰.青藏高原草地生态系统土壤有机碳动态特征.中国科学D辑.2006,36(12):1140-1147.
    101.张剑,李贵才,刘先华,等.利用草场健康指数监测典型草原的植被退化.生态学杂志.2005(12):1392-1396.
    102.张喜旺.宁南山区干草原地下生物量与降水量的相关分析.当代畜牧.2002,9:44-45.
    103.张正健,刘志红,郭艳芬,等.偏最小二乘在遥感监测西藏草地生物量上的应用.草地学报.2009,17(06):735-739.
    104.赵冰茹,刘闯,王晶杰,等.锡林郭勒草地MODIS植被指数时空变化研究.中国草地.2004,26(1):1-8.
    105.赵传燕,程国栋,邹松兵,等.西北地区自然植被净第一性生产力的空间分布.兰州大学学报(自然科学版).2009,45(1):42-49,55.
    106.钟华平,樊江文,于贵瑞,等.草地生态系统碳蓄积的研究进展.草业科学.2005,22(1):4-11.
    107.周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社.
    2005.
    108.周广胜,王玉辉,许振柱,等.中国东北样带碳循环研究进展.自然科学进展.2003,13(9):917-922.
    109.周广胜,张新时.自然植被净第一性生产力模型初探.植物生态学报.1995,19(3):193-200.
    110.周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究.植物生态学报.1996,20(1):11-19.
    111.中华人民共和国农业部畜牧兽医司和全国畜牧兽医总站.中国草地资源.北京:中国科学技术出版社.1996.
    112.Aerts R., Berendse F., Klerk N.M., et al. Root production and root turnover in twodominant species of wet heathland. Oecologia.1989,81(3):374-378.
    113.Bai W M, Wan S Q, Niu S L, et al. Increased temperature and precipitation interact to affectroot production, mortality, and turnover in a temperate steppe: implications for ecosystem Ccycling. Global Change Biology.2010,16:1306-1316.
    114.Bates D., Wahba G.. Computational methods for generalised cross validation with largedata sets. In: Baker CTH and Miller GF (eds). Treatment of Integral Equations byNumerical Methods. New York: Academic Press.1982:283-296.
    115.Bates D,Lindstrom M,Wahba G. Gcvpack-routines for generalized cross validation.Communications in Statistics B-Simulation and Computation.1987,16:263-297.
    116.Brunsell N.A.,Ham J.M.,Owensby C.E. Assessing the multi-resolution information contentof remotely sensed variables and elevation for evapotranspiration in a tall-grass prairieenvironment. Remote Sensing Environment.2008,112(6):2977-2987.
    117.Butterfield H.S.,Malmstr m C.M. The effects of phenology on indirect measures ofaboveground biomass in annual grasses. International of Journal Remote Sensing.2009,30(12):3133-3146.
    118.Burke I.C., Kittle T.G.F., Lauenroth W.K., et al. Regional analysis of the central GreatPlains. Bioscience.1991,41:685-692.
    119.Burke, I.C., Lauenroth, W.K., Parton, W.J.. Regional and temporal variation in net primaryproduction and nitrogen mineralization in grasslands. Ecology.1997,78:1330–1340.
    120.Carlson T.N., Ripley, D.A.. On the relation between NDVI, fractional vegetation cover, andleaf area index. Remote Sensing of Environment.1997,62:241–252.
    121.China National Committee for the Implementation of the United Nations Convention toCombat Desertification (CCICCD), China county paper to combat desertification, ChinaForestry Publishing House,2002.
    122.Cohen W.B., Goward S.N. Landsat's Role in Ecological Applications of Remote Sensing.Bioscience.2004,54(6):535-545.
    123.Coughenour M.B., Chen D.X.. Assessment of grassland ecosystem responses toatmospheric change using linked plant–soil process models. Ecol. Appl.1997,7:802–827.
    124.Chen S.B., Rao P.. Land degradation monitoring using multi-temporal Landsat TM/ETMdata in a transition zone between grassland and cropland of northeast China. Internationaljournal of remote sensing.2008,29(7):2055-2073.
    125.Chen Y.,Lee G.,Lee P. et al.. Model analysis of grazing effect on above-ground biomass andabove-ground net primary production of a Mongolian grassland ecosystem. Journal ofHydrology.2007,333:155-164.
    126.Chen, Z.Z., Wang, S.P.. Typical Steppe Ecosystems of China. Science Press, Beijing.2000.
    127.Crabtree R.,Potter C.,Mullen R. et al.. A modeling and spatio-temporal analysis frameworkfor monitoring environmental change using NPP as an ecosystem indicator. Remote SensingEnvironment.2009,113:1486-1496.
    128.Dorigo W.A.,Zurita-Milla R., Wit A.J.W. et al.. A review on reflective remote sensing anddata assimilation techniques for enhanced agroecosystem modeling. International Journal ofApplied Earth Observation and Geoinformation.2007,9(2):165-193.
    129.Dymond, J. R., Stephens, P. R., Newsome, P. F., et al. Percentage vegetation cover of adegrading rangeland from SPOT. International Journal of Remote Sensing.1992,13:1999-2007.
    130.Elden L. A note on the computation of the generalised cross-validation function forill-conditioned least squares problems. BIT.1984,24:467-472.
    131.Fan J.,Zhong H.,Harris W. et al.. Carbon storage in the grasslands of China based on fieldmeasurements of above-and below-ground biomass. Climatic Change.2008,86(3-4):375-396.
    132.Fang, J.Y., Piao, S.L., Zhou, L.M., et al. Precipitation patterns alter growth of temperatevegetation. Geophysical Research Letters.2005,32, doi:10.1029/2005GL024231.
    133.Fang J Y, Yang Y H, Ma W H, et al. Ecosystem carbon stocks and their changes in China’sgrasslands. Science China Life Sciences.2010,53(7):757-765.
    134.Feng X.M.,Zhao Y.S. Grazing intensity monitoring in Northern China steppe: IntegratingCENTURY model and MODIS data. Ecological Indicators.2009,In Press, Corrected Proof.
    135.Flombaum P., Sala O.E. A non-destructive and rapid method to estimate biomass andaboveground net primary production in arid environments. Journal of Arid Environment.2007,69:352-358.
    136.Gao X., Huete A.R., Ni W. et al. Optical–biophysical relationships of vegetation spectrawithout background contamination. Remote Sensing of Environment.2000,74:609–620.
    137.Gao J. Quantification of grassland properties: how it can benefit from geoinformatictechnologies?. International of Journal Remote Sensing.2006,27(7):1351-1365.
    138.Gamon J.A., Field C.B., Goulden M.L., et al. Relationships between NDVI, canopystructure, and photosynthesis in three Californian vegetation types. Ecological Applications.1995,5:28–41.
    139.Gamon J.A. Remote sensing in BOREAS: Lessons learned. Remote Sensing Environment.2004,89:139-162.
    140.Hanafi A., Jauffret S.. Are long-term vegetation dynamics useful in monitoring andassessing desertification processes in the arid steppe southern Tunisia. Journal of aridenvironments.2008,72:557-572.
    141.Hartkamp A.D., Kirsten D.B., Stein A.. Interpolation techniques for climate variables.Geographic Information Systems series1999-2001. Mexico D F: International Maize andWheat Improvement Center (CIMMYT).1999:1-26.
    142.Hilker T.,Coops N.C.,Wulder M.A. et al.. The use of remote sensing in light use efficiencybased models of gross primary production: A review of current status and futurerequirements. Science of the Total Environment.2008,404:411-423.
    143.Hill, J., Stellmes M., Udelhoven T., et al. Mediterranean desertification and landdegradation: Mapping related land use change syndromes based on satellite observations.Global and Planetary Change.2008,64(3-4):146-157.
    144.Hasegawa K.,Matsuyama H.,Tsuzuki H. et al.. Improving the estimation of leaf area indexby using remotely sensed NDVI with BRDF signatures. Remote Sensing Environment.2010,114:514-519.
    145.Hu Z.M., Yu G.R., Fan J.W., et al. Precipitation-use efficiency along a4500-km grasslandtransect. Global ecology and biogeography.2010,19:842-851.
    146.Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment.1988,25(3):295-309.
    147.Huete A., Justice C. Liu H.. Development of vegetation and soil indices for MODIS-EOS.Remote Sensing of Environment.1994,49:224–234.
    148.Huete A., Liu H.Q., Batchily K., et al. A comparison of vegetation indices over a global setof TM images for EOS-MODIS. Remote Sensing of Environment.1997,59:440–451.
    149.Huete A., Didan K., Miura T., et al. Overview of the radiometric and biophysicalperformance of the MODIS vegetation indices. Remote Sensing of Environment.2002,83:195–213.
    150.Hutchinson MF. A summary of some surface fitting and contouring programs for noisy data.CSIRO Division of Mathematics and Statistics, Consulting Report ACT84/6. Canberra,Australia,1984.
    151.Hutchinson M.F., Gessler P.E.. Splines-more than just a smooth interpolator. Geoderma.1994,62:45-67.
    152.Hutchinson M F. ANUDEM version5.2user guide. Canberra: The Australia NationalUniversity, Center for Resource and Environment Studies,2004.
    153.Ji L., Gallo K., Eidenshink J.C., et al. Agreement evaluation of AVHRR and MODIS16-daycomposite NDVI data sets. International journal of remote sensing.2008,29(16):4839-4861.
    154.Jobbagy, E.G., Sala, O.E.. Controls of grass and shrub aboveground production in thePatagonian steppe. Ecological Applications.2000,10:541–549.
    155.Justice C., Townshend J., Vermote E., et al. An overview of MODIS Land data processingand product status. Remote Sensing of Environment.2002,83:3-15.
    156.Kawamura K., Akiyama T., Yokota H., et al. Monitoring of forage conditions with MODISimagery in the Xilingol steppe, Inner Mongolia. International journal of remote sensing.2005,26(7):1423-1436.
    157.Kawamura K., Akiyama T., Watanabe O., et al. Estimation of aboveground biomass inXilingol steppe, Inner Mongolia using NOAA/NDVI. Grassland Science.2003,49:1–9.
    158.Kogan F.,Stark R.,Gitelson A. et al.. Derivation of pasture biomass in Mongolia fromAVHRR-based vegetation health indices. International of Journal Remote Sensing.2004,25(14):2889-2896.
    159.Lampinen J., Vehtari A.. Bayesian approach for Neural Networks review and case studies.Neural Networks.2001,14(3):7-24.
    160.Lauenroth W.K.. Grassland primary production: North America grasslands in perspective.In Perspectives in Grassland Ecology, Springer-Verlag.1979:3-24.
    161.Lee R., Yu F.F., Price K.P., et al. Evaluating vegetation phenological patterns in InnerMongolia using NDVI time-series analysis. International Journal of Remote Sensing.2002,23:2505–2512.
    162.Li T., Grant R.F., Flanagan L.B. Climate impact on net ecosystem productivity of asemi-arid natural grassland modeling and measurement. Agricultural and ForestMeteorology.2004,126:99-116.
    163.Li Z.,Yu G.,Xiao X. et al.. Modeling gross primary production of alpine ecosystems in theTibetan Plateau using MODIS images and climate data. Remote Sensing Environment.2007,107(3):510-519.
    164.Liberti M., Simoniello T., Carone M.T., et al. Mapping badland areas using LANDSATTM/ETM satellite imagery and morphological data. Geomorphology.2009,106:333-343.
    165. Liu H Q, Huete A R. A feedback based modification of the NDVI to minimize canopybackground and atmospheric noise. IEEE Tans. Geosci Remote Sens.1995,33:457-465.
    166.Lu D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon.International of Journal Remote Sensing.2005,26(12):2509-2525.
    167.Lu D. The potential and challenge of remote sensing-based biomass estimation.International of Journal Remote Sensing.2006,27(7):1297-1328.
    168.Ma W H, Liu Z L, Wang Z H et al. Climate change alters interannual variation of grasslandaboveground productivity: evidence from a22-year measurement series in the InnerMongolian grassland. J Plant Res.2010,123:509-517.
    169.Ma W H, Fang J Y, Yang Y H, et al. Biomass carbon stocks and their changes in northernChina’s grasslands during1982-2006. Science China Life Sciences.2010,53(7):841-850.
    170.MacKay D.J.C.. A practical Bayesian framework for back propagation networks NeuralComp. Neural Computation.1992:4(3):448-472.
    171.Matsushita B.,Tamura M. Integrating remotely sensed data with an ecosystem model toestimate net primary productivity in East Asia. Remote Sensing Environment.2002,81:58-66.
    172.Miller D.. Looking back to move ahead: integrating indigenous nomadic knowledge intothe modern range profession in China. Paper presented at the Society for RangeManagement Annual Meeting, Session on Rangeland Professionals and Society: FutureDirections, February20, Kailua-Kona, Hawaii, USA,2001.
    173.Mokany K., Raison R.J., Prokushkin A.S.. Critical analysis of root: shoot ratios interrestrial biomes. Global change biology.2006,11:1-13.
    174.Myneni R.B., Dong J., Tucker C.J., et al. A large carbon sink in the woody biomass ofnorthern forests. Proceedings of the National Academic Sciences of the United States ofAmerica.2001,98:14784–14789.
    175.Nemani R.R., Keeling C.D., Hashimoto H., et al. Climate-driven increases in globalterrestrial net primary production from1982to1999. Science.2003,300:1560–1563.
    176.Ni J. Carbon storage in terrestrial ecosystems of China-estimates at different spatialresolutions and their responses to climate change. Climatic Change.2001,49:339-358.
    177.Ni J.. Plant functional types and climate along a precipitation gradient in temperategrasslands, north-east China and south-east Mongolia. Journal of Arid Environments.2003,53:501-516.
    178.Ni J. Estimating net primary productivity of grasslands from field biomass measurementsin temperate northern China. Plant Ecology.2004,174:217-234.
    179.Prince S D, Tucker C J. Satellite remote sensing of rangelands in Botswana NOAA/AVHRRand herbaceous vegetation. International Journal of Remote Sensing.1986,7(11):1555-1570.
    180.Paruelo J. M., Golluscio R. A.. Range assessment using remote sensing in NorthwestPatagonia (Argentina). Journal of Range Management.1994,47:498-502.
    181.Paruelo J.M.,Epstein H.E.,Lauenroth W.K. et al.. ANPP Estimates from NDVI for thecentral grassland region of the United States. Ecology.1997,78(3):953-958.
    182.Peter M, Chris D. Mapping Precipitation in Switzerland with ordinary and indicatorKriging. Journal of Geographic Information and Decision Analysis.1998,2(2):65-76.
    183.Piao S., Fang J., Liu H. et al.. NDVI-indicated decline in desertification in China in thepast two decades. Geophysical Research Letters.2005,32: L6402.
    184.Piao S., Fang J., Zhou L. et al.. Interannual variations of monthly and seasonal normalizeddifference vegetation index (NDVI) in China from1982to1999. Journal of GeophysicalResearch.2003,108(D14):4401.
    185.Piao S., Fang J., Zhou L. et al.. Changes in biomass carbon stocks in China’s grasslandsbetween1982and1999. Global Biogeochemical Cycles.2007,21: B2002.
    186.Piao S., Fang J., Zhou L. et al.. Changes in vegetation net primary productivity from1982to1999in China. Global Biogeochemical Cycles.2005,19: B2027.
    187.Piao S.L.,Mohammat A., Fang J.Y., et al. NDVI-based increase in growth of temperategrasslands and its responses to climate changes in China. Global environmental change.2006,16:340-348.
    188.Piao S.L., Friedlingstein P., Ciais P., et al. Growing season extension and its impact onterrestrial carbon cycle in the Northern Hemisphere over the past2decades. GlobalBiogeochemical Cycles.2007,21, GB3018.
    189.Qin D.H.. Assessment on Environment of Western China (Synopsis). Science Press, Beijing:
    2002.
    190.Sala O.E., Parton W.J., Joyce L.A., et al. Primary production of the central grassland regionof the United States. Ecology.1988,69:40–45.
    191.Ram J., Singh J.S., Singh S.P.. Plant biomass, species diversity primary and net primaryproduction in a central HIMALAYAN high altitude grassland. Journal of ecology.1989,77:456-468.
    192.Santini M., Caccamo G., Laurenti A., et al. A multi-component GIS framework fordesertification risk assessment by an integrated index. Applied geography.2009:1-22.
    193.Schimel D.S. Terrestrial biogeochemical cycles: Global estimates with remote sensing.Remote Sensing Environment.1995,51:49-56.
    194.Schimel, D.S., House, J.I., Hibbard, K.A., et al. Recent patterns and mechanism of carbonexchange by terrestrial ecosystems. Nature.2001,414,169–172.
    195.Scurlock J.M.O., Hall D.O.. The global carbon sink: a grassland perspective. GlobalChange Biology.1998,4:229-233.
    196.Scurlock J.M.O., Johnson K.,Olson R.J. Estimating net primary productivity fromgrassland biomass dynamics measurements. Global Change Biology.2002,8:736-753.
    197.Seastedt T.R.,Coxwell C.C., Ojima D.S., et al. Controls of plant and soil carbon in asemihumid temperate grassland. Ecology application.1994(4):344-353.
    198.Seaquist J.W., Olsson L., Ard c J. A remote sensing-based primary production model forgrassland biomes. Ecological Modelling.2003,169:131-155.
    199.Sherry R.A., Zhou X., Gu S., et al. Divergence of reproductive phenology under climatewarming. Proceedings of the National Academy of Sciences of the United States of America.2007,104:198–202.
    200.Shi Y.F., Shen Y.P., Li D.L., et al. Discussion on the present climate change from warm-dryto warm-wet in northwest china. Quaternary Sciences.2003,23:152–164.
    201.Shiyomi M, Akiyama T, Wang S P, et al. A grassland ecosystem model of the Xilingolsteppe, Inner Mongolia, China. Ecological Modelling.2011,222:2073-2083.
    202.Taylor B F, et al. Determination of seasonal and interannual variation in NeW Zealandpasture growth from NOAA data. Remote Sensing of Environment.1985,18:177-192.
    203.Todd S.W., Hotfer R.M., Milchunas D.G. Biomass estimation on grazed and ungrazedrangland using spectral indices. International Journal of remote sensing.1998,19(3):427-438.
    204.Tucker C.J., Vanpraet C.L., Sharman M.J., et al. Satellite remote sensing of totalherbaceous biomass production in the Senegalese Sahel:1980–1984. Remote Sensing ofEnvironment.1985,17:233–249.
    205.Wahba G. How to smooth curves and surfaces with splines and cross-validation. Proc.24thConference on the Design of Experiments. US Army Research Office79-2, ResearchTriangle Park, NC:1979,167-192.
    206.Wang X., Piao S., Ciais P., et al. Spring temperature change and its implication in thechange of vegetation growth in North America from1982to2006. Proceedings of theNational Academy of Sciences.2011,108(4):1240–1245.
    207.Wardlow B. D. and Egbert S. L. A comparison of MODIS250m EVI and NDVI data forcrop mapping: a case study for southwest Kansas. International journal of remote sensing.2010,31(3):805-830.
    208.Wu Z.T., Dijkstra P., Koch G.W., et al. Responses of terrestrial ecosystems to temperatureand precipitation change: a meta-analysis of experimental manipulation. Global changebiology.2011,17:927-942.
    209.Wylie B.K., Meyer D.J., Tieszen L.L. et al.. Satellite mapping of surface biophysicalparameters at the biome scale over the North American grasslands: A case study. RemoteSensing Environment.2002,79:266-278.
    210.Xie Y., Sha Z., Yu M., et al.. A comparison of two models with Landsat data for estimatingabove ground grassland biomass in Inner Mongolia, China. Ecological Modelling.2009,220(15):1810-1818.
    211.Xu B, Yang X C, Tao W G, et al. MODIS-based Remote Sensing Monitoring of GrassProduction in China. International Journal of Remote Sensing,2008,29(17-18):5313-5327.
    212.Yan C.Z., Song X., Zhou Y.M., et al. Assessment of Aeolian desertification trends from1975’s to2005’s in the watershed of the Longyangxia Reservoir in the upper reaches ofChina’s Yellow River. Geomorphology.2009,112:205-211.
    213.Yang L.M., Wylie B.K., Tieszen L.L., et al. An analysis of relationships among climateforcing and time-integrated NDVI of grasslands over the U.S. northern and Central GreatPlains. Remote Sensing of Environment.1998,65:25-37.
    214.Yang Y.H.,Fang J.Y.,Pan Y.D. et al.. Aboveground biomass in Tibetan grasslands. Journalof Arid Environment.2009,73:91-95.
    215.Yang Y H, Fang J Y, Ma W H, et al. Large-scale pattern of biomass partitioning acrossChina’s grasslands. Global Ecology and Biogeography.2010,19:268-277.
    216.Zha Y., Gao J., Ni S.X., et al. A spectral reflectance-based approach to quantification ofgrassland cover from Landsat TM imagery. Remote sensing of environment.2003,87:371-375.
    217.Zhang X., Friedl A.M., Schaaf B.C., et al. Monitoring vegetation phenology using MODIS.Remote Sensing of Environment.2003,84:471–475.
    218.Zhou L.M., Tucker C.J., Kaufmann R.K., et al. Variations in northern vegetation activityinferred from satellite data of vegetation index during1981to1999. Journal of GeophysicalResearch.2001,106(17):20069–20083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700