胶质瘤干细胞的生物学特性及其与胶质瘤血管发生的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景与目的
     虽然大家都知道,血管发生(angiogenesis)的过程对于胶质瘤的生长、恶性浸润等特性来讲是一个关键性事件,但如何发生的,研究者苦苦地探索了数十年,至今仍有争论,特别是随着本世纪初才发现的肿瘤干细胞以及与之相关的肿瘤干细胞微环境(Niche)研究的深入,对肿瘤血管的生成有了新的认识,目前有如下三种观点:
     A.肿瘤细胞诱导宿主血管内皮细胞增生,出芽,迁移后形成;
     B.先由肿瘤细胞随机排列组成,而后刺激宿主内皮细胞加入;
     C.依托肿瘤干细胞巢(Niche,微环境)转分化形成。详见英文摘要中的图1。
     本研究主要在自建的胶质瘤干/祖细胞(Glioma Stem/Progenitor Cells,GSPCs)基础上探索其与肿瘤血管生成的关系,即是否存在图1中的C模式。
     二、实验方法
     1建立GSPCs体外生长模型:用新鲜的恶性胶质瘤临床标本消化成单细胞悬液,在无血清(含生长因子)条件下于CO2箱中培养,再从呈悬浮生长的肿瘤球中用CD133免疫磁珠分离阳性细胞,单克隆后一部分液氮冻存;另一部分在含血清(不含生长因子)条件下培养,作干祖细胞和分化细胞相关标志蛋白的流式细胞及细胞化学检测,最后用GSPCs球吹打成单个细胞进行裸小鼠脑尾状核移植,观察致瘤情况。
     2建立RFP/GFP可移植性肿瘤模型与检测血管:用经病毒载体转染红色荧光蛋白(Red Fluorescent Protein,RFP)基因的GSPCs,接种于本室培育的表达绿色荧光蛋白(Green Fluorescent Protein,GFP)基因的NC裸小鼠脑内(10μl,1×106细胞),或皮下(200μl,1×106细胞),2~3周出现症状或恶病质时处死,取移植瘤组织压成簿片后在荧光显微镜下观察、或用冰冻切片在荧光激光扫描共聚焦显微镜下观察肿瘤血管.
     三、结果与分析
     1GSPCs的特征:克隆到的CD133~+细胞,在含生长因子条件下培养的肿瘤球中CD133~+细胞只占少数,多数细胞是Nestin~+细胞,免疫细胞化学染色后在共聚焦显微镜下还见到即使是CD133~+细胞,也同时表达Nestin,据此我们用于实验的细胞都称为胶质瘤干/祖细胞(Glioma Stem/Progenitor Cells,GSPCs),与神经干细胞(neuralstem cell,NSCs)比,最大的不同点是在含血清条件下培养,NSCs可分化成终末细胞,GSPCs不但到不了终末分化状态,而且还可以逆向分化成前体细胞.GSPCs接种GFP裸小鼠体内,无论是脑内还是皮下,都能100%致瘤,而且呈高侵袭性生长。
     2RFP/GFP模型特征:GSPCs-RFP细胞与GSPCs细胞一样,无论接种在脑内还是皮下,也都能100%致瘤,而且呈高侵袭性生长.因为接种的肿瘤细胞与宿主细胞分别表达RFP和GFP,根据显示的红色和绿色加以区别。在荧光显微镜和激光扫描共聚焦显微镜下,能清晰显示肿瘤细胞在对宿主组织重构过程中所发生的细胞和蛋白质分子事件是谁起的作用.
     3被荧光示踪的肿瘤血管和宿主血管:在肿瘤组织中,见到了参与组成肿瘤血管壁的细胞或血管壁,有红、绿和黄三种颜色,红、绿分别代表来自接种肿瘤细胞的子代细胞和宿主组织来源的细胞;黄色的则是红、绿两种细胞相互融合的细胞。在肿瘤组织压片,所取的组织最终压成的厚度大约在20μm,比通常5μm的病理切片要厚,因此容易看到整条的长血管,减少了病理切片取材上的局限性。在冰冻切片共聚焦显镜下见到了包括平滑肌细胞,内皮细胞等组成肿瘤血管壁的细胞共表达RFP/GFP。
     四、结论与创新点
     1作为以分化走向时段界定的CD133~+胶质瘤干细胞,只是指处于静止期的细胞,一旦启动了分化程序,则变为Nestin~+的祖细胞,即使是CD133~+细胞也因同时表达Nestin而被称之为胶质瘤干/祖细胞(GSPCs)。在与神经干细胞作为对照的实验中,首次证明了只有GSPCs具备逆向分化潜能和到不了终末分化阶段。
     2RFP/GFP双色荧光示踪的可移植性胶质瘤模型,因其能清晰显示肿瘤组织中的肿瘤细胞与宿主细胞之间的解剖位置、组织结构关系,在研究肿瘤组织重构,特别是细胞融合方面,揭示了传统的肿瘤模型无法显示二者的新关系。在国内,这一实验平台是我们课题组首先建立。
     3课题组用RFP/GFP双色荧光示踪模型,己经在国际上首先报告了GSPCs通过细胞融合和肿瘤血管拟态两方面在肿瘤组织重构中发挥了重要作用。本文则在上述基础上,在国内首先使用组织压片法展示了在传统组织切片上很少能见到的长条血管壁细胞,有单纯来源于肿瘤细胞,单纯来源于宿主细胞和既来源于肿瘤又来源于宿主的三种类型血管。第三种类型的血管不仅表现在RFP/GFP细胞水平上的镶嵌关系,而且还表现在蛋白质表达水平上的融合关系,这对进一步研究肿瘤血管的发生和转化机制有重要意义.
1, background and objective
     It is well known that the angiogenesis is a key incident for the growth, infiltration ofglioma. However, the complete process of glioma angiogenesis remains to dispute, evenafter painful exploration for decades. Since the beginning of this century, with thegradually deep research on tumor stem cells and their Niche, some novel recognitionabout angiogenesis is being raised. At present, there mainly are three viewpoints:
     A, Neoformed tumor vessels of tumors were thought to arise by sprouting of pre-existingbrain capillaries induce by tumor cells.
     B, Tumor vessels were first arranged by tumor cells, and then host endothelial cellsjoined.
     C, From transdifferentiated tumor stem cells depending on their Niche (shown asfollowing).
     Figure1, Model of tumor angiogenesis: TC: tumor cells; EC: endothelial cells; GSCs: Gliomasstem cells; A:Zhang S Oncol Resp2006,15(1):15-20;B:Chang YS,Proc Natl Acad Sic USA2000,97(26):14608-14613;C:Ricc-Vitiani L,Natrue2010,133(pt4),973-982;Jun Dong, Stem CellRev and Rep2011,7(1):141-152.
     This paper aims to study the GSPCs and the relationship between GSPCs and gliomaangiogenesis, i.e. to verify the existence of the Model C in Figure.
     2, Methods
     1) To establish the growth model of GSPCs in vitro: fresh tumor specimens weresubjected to enzymatic dissociation into cell suspension, and cultivaed in DF containingEGF and bFGF. Then CD133~+cells, after being isolated by immunomagnetic beads,were seed into caudate nucleus of nude mice. The tumorigenesis incidence was recorded.
     2) To establish the RFP/GFP glioma model and detect blood vessels: GSCPs (25μl/1×106)transfected with Red Fluorescent Protein (RFP) were transplanted into NC nude miceexpressing Green Fluorescent Protein (GFP), intracranially or subcutaneously. Two to3weeks later, after tumorgenesis, tumor tissues were pressed into tabletting and tumorvessels were detected under under fluorescence microscope and confocal microscopy.
     3, results and discussion
     1) Characteristics of GSPCs: minority of cells in tumor spheres were CD133~+, but mostwere Nestin~+; in addition, some cells co-expressed both CD133and Nestin, accordingly,cells used in our research were called Glioma Stem/Progenitor Cells (GSPCs). The mostdifference between GSPCs and neural stem cells (NSCs) was that NSCs coulddifferentiate into mature end cells, but GSPCs could not, for the differentiated GSPCscould even differentiate backwards into progenitor cells. The tumorigenesis ratio were100%no matter GSPCs were transplanted intracranially or subcutaneously, and thetransplanted tumor grows at a highly-invasive pattern.
     2) Characteristics of RFP/GFP glioma models: the tumorigenesis ratio of GSPCs-RFP were100%, like GSPCs, no matter being transplanted intracranially or subcutaneously,with a highly-invasive growth pattern. The different fluorescence expressed by tumorcells (RFP) and host cells (GFP) make it very convenient to show their different rolesduring the tissue remodel process when observed under a fluorescence microscope orconfocal microscopy.
     3) Tumor vessels and host vessels: tumor vessels were made up of cells with red, greenor yellow fluorescence under a confocal microscopy, indicating the cellular originrespectively being tumor cells, host cells and their fusional cells. The thickness of tumortissue tabletting was about20μl, which was much thicker than common pathologicalsection, and it made the strip vessels much more visible.
     4, conclusion and Innovation
     1) CD133+glioma stem cells are only cells at quiescent periods, and once thedifferentiation program started, CD133+glioma stem cells will become Nestin+evenco-expressing CD133. We first demonstrated that GSPCs could not differentiate intomature end cells but have a potential to retro-differentiate.
     2) RFP/GFP bio-fluorescence labelled glioma models could clearly show the anatomyand histological relationships between tumor cells and host cells, which has an advantageat the research field of tumor tissue remodel and micro-environments. And theexperimental platform was reported first by us at home.
     3) With the RFP/GFP bio-fluorescence labelled glioma models, we first took advantageof tissue squash technique at home to show strip vessels, which could seldom be viewedby traditionally histological section. Our results showed that there were three types ofvessels cellular origins in tumor tissues: tumor cells, host cells and their fusional cells.
     These results had an important significance to the further study on tumor angiogenesisand transformation.
引文
1黄强,董军,王之敏.神经肿瘤学[M].北京:人民卫生出版社,2011.103-194.
    2Huse JT, Holland EC.Targeting brain cancer: advances in the molecular pathology ofmalignant glioma and medulloblastoma[J].Nat Rev Cancer.2010,10(5):319-31.
    3Hide.T, Takezaki.T, Nakamura.H,et al. Brain tumor stem cells as research andtreatment targets[J]. Brain Tumor Pathol.2008,25(2):67-72.
    4Singh SK, Clarke ID, Hide T, et al.Cancer stem cells in nervous system tumorsOncogene[J].2004;23(43):7267-7273.
    5Gilbertson.RJ,Rich.JN. Making a tumour's bed: glioblastoma stem cells and thevascular niche[J]. Nat Rev Cancer,2007,7(10):733-736.
    6Binello E, Germano IM. Targeting glioma stem cells: A novel framework for braintumors[J]. Cancer Sci.2011,102(11):1958-1966.
    7黄强.胶质瘤干细胞研究的现状与未来[J].中华神经医学杂志,2007,6(9):865-868.
    8Salmaggi A, Boiardi A, Gelati M,et a1.Glioblastoma-derived tumorospheres identify apopulation of tumor stem-like cells with angiogenic potential and enhancedmultidrug resistance phenotype[J].Glia,2006,54(8):850-860.
    9De Bock K, Cauwenberghs S, Carmeliet P. Vessel abnormalization: another hallmarkof cancer? Molecular mechanisms and therapeutic implications[J]. Curr Opin GenetDev.2011,21(1):73-79.
    10Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumorangiogenesis through vascular endothelial growth factor[J]. Cancer Res,2006,66(16):7843-7848.
    11Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels astargets in cancer[J]. Curr Opin Genet Dev.2005,15(1):102-111.
    12Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease[J]. NatMed.1995,1(1):27-31.
    13Zhang S, Guo H, Zhang D,et al. Microcirculation patterns in different stages ofmelanoma growth[J]. Oncol Rep.2006,15(1):15-20.
    14魏子龙,黄强,储亮,等.对荷人脑胶质瘤裸鼠血管生成模式的研究[J].肿瘤.2007,27(6):437-440.
    15Yue WY, Chen ZP. Does vasculogenic mimicry exist in astrocytoma?[J]. J HistochemCytochem.2005,53(8):997-1002.
    16Maniotis AJ, Folberg R, Hess A,et al. Vascular channel formation by humanmelanoma cells in vivo and in vitro:vasculogenic mimicry[J]. Am J Pathol.1999,155(3):739-752.
    17Van der Schaft DW,Hillen F,Pauwels P,et al.Tumor cell plasticity in Ewing sarcoma,an alternative circulatory system stimulated by hypoxia [J]. Cancer Res.2005,65(24):11520-11528.
    18Sun B, Zhang D, Zhang S, et al. Hypoxia influences vasculogenic mimicry channelformation and tumor invasion-related protein expression in melanoma[J].CancerLett,2007,249(2):188-197.
    19陈银生,李聪,梅鑫,等.人脑胶质母细胞瘤微循模式观察.中国神经肿瘤杂志[J],2012,10(2):76-83.
    20Hakamata Y,Tahara K,Uchida H,et a1.Green fluorescent protein transgenic rat: A toolfor organ transplantation research[J]. Biochem Biophys Res Commun,2001,286(4):779-785.
    21Yang M,Li L,Jiang P,et al. Dual-color fluorescence imaging distinguishes tumor cellsfrom induced host angiogeneic vessels and stromal cells[J].Proc Natl Acad SciUSA,2003,100(24):14259-14262.
    22吴自成,黄强,邵义祥,等.人脑胶质瘤干细胞移植于表达绿色荧光蛋白裸小鼠的研究[J].中华医学杂志,2008,88(33):2317-2320.
    23Huang Q, Zhang QB, Dong J,et al. Glioma stem cells are more aggressive in recurrenttumors with malignant progression than in the primary tumor, and both can bemaintained long-term in vitro[J]. BMC Cancer.2008,8:304.
    1Carapella CM, Telera S, Oppido PA. Surgery of malignant gliomas: advances andperspectives[J]. Curr Opin Oncol.2011,23(6):624-629.
    2张全斌,黄强,兰青.脑肿瘤干细胞的热点问题及研究进展.中华医学杂志[J].2005,86:1868-1870.
    3黄强,董军,王之敏.神经肿瘤学[M].北京:人民卫生出版社,2011.103-194.
    4Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy thatoriginates from a primitive hematopoietic cell [J]. Nature Med,1997,3(7):730-737.
    5Ignatova TN, Valery GK, Eric DL, et al. Human cortical glial tumors contain neuralstem-like cells expressing astroglial and neuronal markers in vitro[J]. Glia,2002,39(3):193-206.
    6Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiatingcells[J]. Nature,2004,432(18):396-401.
    7黄强.胶质瘤生成细胞及其在胶质瘤起源中的作用.中华神经外科杂志[J].2006,22(12):773-774.
    8黄强.胶质瘤干细胞研究的现状与未来[J].中华神经医学杂志[J],2007,6(9):865-868.
    9王金鹏,黄强,张全斌等.人脑胶质瘤干细胞SHG-44s的克隆及初步鉴定[J].中国肿瘤临床,2005,11:604-606.
    10王飞,黄强,王爱东等.人胚胎神经干细胞体外培养及其增殖与分化的研究[J].江苏医药.2003,29(5):334-336.
    11Clarke MF.Neurobiology: At the root of brain cancer[J].Nature.2004,18;432:281-282.
    12Dahlstrand J,Collins V P,and Lendahl U.Expression of the class VI intermediatefilament nestin in human central nervous system tumors[J].Cancer Res,1992,52:5334-5341。
    13夏春林,杜子威,黄强等.星形细胞瘤谱系分型与肿瘤增殖水平的关系[J].中华医学杂志,1997,77:534-535.
    14Singh Sk, Clarke ID, Mizuhiko T, et al. Identification of a cancer stem cell in humanbrain tumors[J].Cancer Res,2003,63:5821~5828.
    15Recht L,Jiang TC,Savarese T,et al.Neural stem cell and neuro-oncology:quo vadis?[J].Cellular Biochem,2003,88:11-19.
    16Bachoo RM, Maher EA, Ligon KL,et al. Epidermal growth factor receptor andInk4a/Arf: convergent mechanisms governing terminal differentiation andtransformation along the neural stem cell to astrocyte axis[J].Cancer cell,2002,1(3):269-277.
    17Uhrbom L, Dai C,Celestino JC,et al.Ink4a-Arf loss cooperate with KRas activation inastrocytes and neural progenitors to generate glioblastomas of various morphologiesdepending on activated Akt[J]. Cancer Res,2002,62(19):5551-5558.
    18Bjerkvig R, Tysnes BB, Aboody KS,et al. Opinion:the origin of the cancer stemcell:current controversies and new insights[J].Nature,2005,5(11):899-904.
    19Ricci-Vitiani L, Pallini R, Larocca LM,et al. Mesenchymal differentiation ofglioblastoma stem cells[J]. Cell Death Differ.2008,15(9):1491-1498.
    20Rieske P, Golanska E, Zakrzewska M,et al. Arrested neural and advancedmesenchymal differentiation of glioblastoma cells-comparative study with neuralprogenitors[J]. BMC Cancer.2009,9:54.
    21Kim SM, Kang SG, Park NR,et al. Presence of glioma stroma mesenchymal stem cellsin a murine orthotopic glioma model[J]. Childs Nerv Syst.2011,27(6):911-922.
    22朱玉德,黄强.起源细胞的分化障碍与胶质瘤发生的分子关系[J].实用肿瘤.2005,20(1):81-84.
    23Rajaraman R, Guernsey DL, Rajaraman MM,et al. Stem cells, senescence, neosis andself-renewal in cancer[J]. Cancer Cell Int.2006,6:25.
    24Liu W, Shen G, Shi Z,et al. Brain tumour stem cells and neural stem cells: stillexplored by the same approach?[J]. J Int Med Res.2008,36(5):890-895.
    25Vizirianakis IS, Chatzopoulou M, Bonovolias ID,et al. Toward the development ofinnovative bifunctional agents to induce differentiation and to promote apoptosis inleukemia: clinical candidates and perspectives[J]. J Med Chem.2010,53(19):6779-6810.
    26Diabira S, Morandi X. Gliomagenesis and neural stem cells: Key role of hypoxia andconcept of tumor "neo-niche"[J]. Med Hypotheses.2008;70(1):96-104.
    27Pérez Castillo A, Aguilar-Morante D, Morales-García JA,et al. Cancer stem cells andbrain tumors[J]. Clin Transl Oncol.2008,10(5):262-267.
    28黄强,杜子威.神经胶质细胞、神经干细胞和肿瘤干细胞之间依赖微生态环境而转化的假设[J].中华肿瘤杂志,2010,32(1):76-78.
    1Charles NA, Holland EC, Gilbertson R,et al. The brain tumor microenvironment. Glia,2011,59(8):1169-1180.
    2Denysenko T,Gennero L,Roos MA,et al.Glioblastoma cancer stem cells:heterogeneity,microenvironment and related therapeutic strategies[J]. Cell Biochem Funct.2010,28(5):343-351.
    3Voss MJ, Niggemann B, Z nker KS,et al. Tumour reactions to hypoxia[J]. Curr MolMed.2010,10(4):381-386.
    4Yamamoto N, Tsuchiya H, Hoffman RM. Tumor imaging with multicolor fluorescentprotein expression. Int J Clin Oncol.2011,16(2):84-91.
    5Yang M,Li L,Jiang P,et al. Dual-color fluorescence imaging distinguishes tumor cellsfrom induced host angiogeneic vessels and stromal cells.Proc Natl Acad SciUSA,2003,100(24):14259-14262.
    6吴自成,黄强,邵义祥,等.人脑胶质瘤干细胞移植于表达绿色荧光蛋白裸小鼠的研究.中华医学杂志,2008,88(33):2317-2320.
    7Morreale VM, Herman BH, Der-Minassian V, et al. A brain-tumor model utilizingstereotactic implantation of a permanent cannula. J Neurosurg.1993,78(6):959-65.
    8黄强,董军,王之敏.神经肿瘤学[M].北京:人民卫生出版社,2011.133-149.
    9Fomchenko EI, Holland EC. Mouse models of brain tumors and their applications inpreclinical trials. Clin Cancer Res.2006,12(18):5288-5297.
    10Huse JT, Holland EC. Genetically engineered mouse models of brain cancer and thepromise of preclinical testing. Brain Pathol.2009,19(1):132-143.
    11Katz MH, Takimoto S, Spivack D, et al. A novel red fluorescent protein orthotopicpancreatic cancer model for the preclinical evaluation of chemotherapeutics[J]. JSurg Res2003;113:151.
    12Yang M,Baranov E, Li XM, et al. Whole-body and intravital optical imaging ofangiogenesis in orthotopically implanted tumors. Proc Natal Acad Sci USA,2001,98(5):2616-2621.
    13Dong J, Dai XL, Lu ZH, et al. Incubation and application of transgenic greenfluorescent nude mice in visualization studies on glioma tissue remodeling. Chin MedJ (Engl).2012,125(24):4349-4354.
    14Robert M. Advantages of multi color fluorescent proteins for whole-body and in vivocellular imaging[J]. J Biomedical Optics,2005,10:41021-410211.
    15Hoffman RM, Zhao M. Whole-body imaging of bacterial infection and antibioticresponse. Nat Protoc.2006,1(6):2988-2994.
    16Hoffman RM. Imaging cancer dynamics in vivo at the tumor and cellular level withfluorescent proteins. Clin Exp Metastasis.2009;26(4):345-355.
    17黄强,杜子威.神经胶质细胞、神经干细胞和肿瘤干细胞之间依赖微生态环境而转化的假设.中华肿瘤杂志,2010,32(1):76-78.
    1Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med.1971,285(21):1182-1186.
    2Yung YC, Cheshier S, Santarelli JG,et al.Incorporation of naive bone marrow derivedcells into the vascular architecture of brain tumor. Microcirculation.2004,11(8):699-708.
    3Annabi B,Naud E,Lee YT,et al.Vascular progenitors derived from murine bone marrowstromal cells are regulated by fibroblast growth factor and are avidly recruited byvascularizing tumors.J Cell Biochem,2004,91(6):1146~1158.
    4Asahara T,Masuda H,Takahashi T,et al.Bone marrow origin of endothelial progenitorcells responsible for postnatal vasculogenesis in physiological and pathologicalneovascularization. Circ Res.1999,85(3):221-228
    5Eguchi M, Masuda H, Asahara T. Endothelial progenitor cells for postnatalvasculogenesis. Clin Exp Nephrol.2007,11(1):18-25.
    6Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels astargets in cancer[J]. Curr Opin Genet Dev.2005,15(1):102-111.
    7Folkman J,Beckner K.Angiogenesis imaging[J].Acad Radiol,2000,7(10):783-785.
    8Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis.Am J Pathol.2000,156(2):361-381.
    9Dong J, Zhao Y, Huang Q,et al. Glioma stem/progenitor cells contribute toneovascularization via transdifferentiation. Stem Cell Rev.2011,7(1):141-152.
    10宋武超,费喜峰,董军,等.人脑胶质瘤移植瘤中CD133+细胞表型与微生态环境关系的研究.中华肿瘤杂志,2010,32(8):564-569.
    11Larrivée B, Niessen K, Pollet I,et al. Minimal contribution of marrow-derivedendothelial precursors to tumor vasculature. J Immunol,2005,175(5):2890-2899.
    12Zhang S, Guo H,Zhang D, et al. Microcirculation patterns in different stages ofmelanoma growth. Oncol Rep,2006,15:15-20.
    13Liu W, Shen G, Shi Z,et al. Brain tumour stem cells and neural stem cells: stillexplored by the same approach?. J Int Med Res.2008,36(5):890-895.
    14Ricci-Vitiani L, Pallini R, Larocca LM,et al. Mesenchymal differentiation ofglioblastoma stem cells. Cell Death Differ.2008,15(9):1491-1498.
    15Rieske P, Golanska E, Zakrzewska M,et al. Arrested neural and advancedmesenchymal differentiation of glioblastoma cells-comparative study with neuralprogenitors. BMC Cancer.2009,9:54.
    16Filatova A, Acker T, Garvalov BK. The cancer stem cell niche(s): The crosstalkbetween glioma stem cells and their microenvironment. Biochim Biophys Acta.2012Oct16.. doi:pii: S0304-4165(12)00288-7.
    17Dong J, Huang Q. Targeting glioma stem cells: enough to terminate gliomagenesis?Chin Med J (Engl).2011,124(17):2756-2763.
    18Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels astargets in cancer[J]. Curr Opin Genet Dev.2005,15(1):102-111.
    19Wang R, Chadalavada K, Wilshire J,et al. Glioblastoma stem-like cells give rise totumour endothelium. Nature.2010,468(7325):829-833.
    20Ricci-Vitiani L, Pallini R, Biffoni M, et al. Tumour vascularization via endothelialdifferentiation of glioblastoma stem-like cells. Nature,2010,468:824-8.
    [1] Siegel R, Naishadham D, Jemal A. Cancer statistics,2012. CA Cancer J Clin.2012,62(1):10-29.
    [2] Fueyo J,Gomez-Manzano C,Yung WK.Advances in translational research inneuro-oncology.Arch Neurol,2011,68(3):303-308.
    [3] Carapella CM,Telera S,Oppido PA. Surgery of malignant gliomas: advances andperspectives [J]. Curr Opin Oncol,2011,23(6):624-629
    [4] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells [J].Nature,2001,414(6859):105-111.
    [5] Singh S K, Hawkins C, Clarke I D, et al. Identification of human brain tumourinitiating cells [J]. Nature,2004,432:396-401.
    [6] Dick JE. Looking ahead in cancer stem cell research [J].Nat Biotechnol,2009,27(1):44-46.
    [7] Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance [J].Nat Rev Cancer,2005,5(4):275-284.
    [8] Clarke MF,Dick JE,Dirks PB,et al.Cancer stem cells-perspectives on current statusand future directions:AACR Workshop on cancer stem cells[J].Cancer Res,2006,66(19):9339-9344.
    [9] Lapidot T, Sirard C, Vormoor J, et al.A cell initiating human acute myeloid leukaemiaafter transplantation into SCID mice [J]. Nature,1994,367(6464):645-648.
    [10] Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy thatoriginates from a primitive hematopoietic cell [J]. Nature Med,1997,3(7):730-737.
    [11] Sutherland H J, Blair A, Zapf R W. Characterization of a hierarchy in humanmyeloid leukemia progenitor cells [J]. Blood,1996,87(11):4754-4761.
    [12] Dick JE. Stem cell concepts renew cancer research[J].Blood,2008,112(13):4793-4807.
    [13] Al-Hajj M, Clarke M F. Self-renewal and solid tumor stem cells [J]. Oncogene,2004,23(43):7274-7282.
    [14]黄强.胶质瘤生成细胞及其在胶质瘤起源中的作用.中华神经外科杂志[J].2006,22(12):773-774.
    [15] Takahashi K,Yamanaka S.Induction of pluripoten stem cells from mouse embryonicand adult fibroblast cultures by defined facctors[J].Cell,2006,126(4):663-676.
    [16] Liang Y, Zhong Z, Huang Y, et al. Stem-like cancer cells are inducible by increasinggenomic instability in cancer cells[J],J Biol Chem,2010,285(7):4931-4940.
    [17] Chen Li, Shen R,Ye Y,et al. Precancerous stem cells have the potential for bothbenign and malignant differentiation [J].PLoS One,2007,2(3): e293.
    [18] Hu M, Polyak K. Microenvironmental regulation of cancer development[J]. CurrOpin Genet Dev,2008,18(1):27-34.
    [19] Su X,Ye J,Hsueh EC,et al.Tumor microenvironments direct the recruitment andexpansion of human Th17cells[J]. J Immunol,2010,184(3):1630-1641.
    [20] Cho RW,Clarke MF.Recent advances in cancer stem cells [J].Curr Opin Genet Dev,2008,18(1):48-53.
    [21] Kemper K,Sprick MR,de Bree M,et al.The AC133epitope, but not the CD133protein is lost upon cancer stem cell differentiation[J].Cancer Res,2010,70(2):719-729.
    [22] Beier D,Hau P,Proescholdt M,et al.CD133(+) and CD133(-)glioblastoma-derived cancer stem cells show differential growth characteristics andmolecular profiles[J].Cancer Res,2007,67(9):4010-4015.
    [23] Günther HS,Schmidt NO,Phillips HS,et al.Glioblastoma-derived stem cell-enrichedcultures form distinct subgroups according to molecular and phenotypic criteria[J].Oncogene,2008,27(20):2897-2909.
    [24] Wang J,Sakariassen P,Tsinkalovsky O,et al.CD133negative glioma cells formtumors in nude rats and give rise to CD133positive cells[J].Int J Cancer,2008,122(4):761-768.
    [25] Joo KM,Kim SY,Jin X,et al.Clinical and biological implications of CD133-positiveand CD133-negative cells in glioblastoma[sJ].Lab Invest,2008,88(8):808-815.
    [26] Cho DY, Lin SZ, Yang WK, et al.The Role of Cancer Stem Cells(CD133+)inMalignant Gliomas[J].Cell Transplant.2011;20(1):121-125.
    [27] Zhang SJ, Ye F, Xie RF,et al.Comparative studyon the stem cell phenotypes of C6cells under different cultureconditions[J].Chin Med J(Engl),2011,124(19):3118-3126.
    [28] Lottaz C,Beier D,Meyer K,et al.Transcriptional profiles of CD133+and CD133-glioblastoma-derived cancer stem cell lines suggest different cells oforigin[J].Cancer Res,2010,70(5):2030-2040.
    [29] Tchoghandjian A,Baeza N,Colin C,et al.A2B5cells fromhuman glioblastoma havecancer stem cell properties[J].BrainPathol,2010,20(1),211-221.
    [30] Ogden AT,Waziri AE,Lochhead R,et a.Identification of A2B5+CD133-tumor-initiating cells in adult human gliomas[J].Neurosurgery,2008,62(2):505-514.
    [31] Christensen K,Aaberg-Jessen C,Andersen C,et al.Immuno-histochemical expressionof stem cell,endothelial cell,andchemosensitivity markers in primary gliomaspheroids culturedin serum-containing and serum-freemedium[J]. Neurosurgery,2010,66(5):933-947.
    [32] Annovazzi L,Mellai M,Caldera V,et al.SOX2expression and amplification ingliomas and glioma cell lines [J].Cancer Genomics Proteomics,2011,8(3):139-147.
    [33] Broadley KW,Hunn MK,Farrand KJ,et al.Side Populationis Not Necessary orSufficient for a Cancer Stem Cell Phenotype in Glioblastoma Multiforme [J].StemCells,2011,299(3):452-461.
    [34] Hendrix M J,Seftor E A,Seftor R E,et al.Reprogramming metastatic tumour cellswith embryonic microenvironments[J].Nat Rev Cancer,2007,7:246-255.
    [35] Mitsiadis T A,Barrandon O,Rochat A,et al.Stem cell niches in mammals[J].Exp CellRes,2007,313:3377-3385.
    [36]Chen R,Nishimura MC,Bumbaca SM,et al.A hierarchy of self-renewing tumor-initiating cell types in glioblastoma[J].Cancer Cell,2010,17(4):362-375.
    [37] Liotta LA, Kohn EC. The microenvironment of the tumour-host interface[J]. Nature.2001,17;411(6835):375-379.
    [38]Denysenko T,Gennero L,Roos MA,et al.Glioblastoma cancer stem cells:heterogeneity, microenvironment and related therapeutic strategies[J].Cell BiochemFunct.2010,28(5):343-351.
    [39] Voss MJ, Niggemann B, Z nker KS,et al. Tumour reactions to hypoxia[J]. Curr MolMed.2010,10(4):381-386.
    [40] Zhu P, Ning Y, Yao L,et al. The proliferation, apoptosis, invasion of endothelial-likeepithelial ovarian cancer cells induced by hypoxia. J Exp Clin Cancer Res.2010,29(1):124-131.
    [41] John M. Heddleston, Zhizhong Li,et al. The Hypoxic Microenvironment MaintainsGlioblastoma Stem Cells and Promotes Reprogramming towards a Cancer StemCell Phenotype.[J] Cell Cycle.2009,15;8(20):3274–3284.
    [42] de Almeida Sassi F, Lunardi Brunetto A, Schwartsmann G, et al. Glioma Revisited:From Neurogenesis and Cancer Stem Cells to the Epigenetic Regulation of theNiche[J]. J Oncol.2012;2012:537861.doi:10.1155/2012/537861.
    [43] Kim Y, Lin Q,Glazer PM,et al. Hypoxic tumor microenvironment and cancer celldifferentiation[J].Curr Mol Med,2009,9:425-434.
    [44]Fraga A, Ribeiro R, Medeiros R. Tumor hypoxia: the role of HIF. Actas Urol Esp.2009;33(9):941-951.
    [45]Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome.Cancer Metastasis Rev.2007;26(2):225-239.
    [46]宗建春,吴诚义.低氧诱导人乳腺癌细胞VEGF的表达及机制[J].重庆医科大学学报,2005,30(2):206-209.
    [47]Erkan M, Reiser-Erkan C, Michalski CW,et al. Cancer stellate cell interactionsperpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma.Neoplasia.2009;11(5):497-508.
    [48]Acker T, Diez-Juan A, Aragones J,et al. Genetic evidence for a tumor suppressor roleof HIF-2alpha. Cancer Cell.2005,8(2):131-141.
    [49]Li Z, Bao S, Wu Q,et al. Hypoxia-inducible factors regulate tumorigenic capacity ofglioma stem cells.Cancer Cell.2009,15(6):501-513.
    [50]Pietras A, Hansford LM, Johnsson AS,et al. HIF-2alpha maintains anundifferentiated state in neural crest-like human neuroblastoma tumor initiatingcells. Proc Natl Acad Sci U S A.2009,106(39):16805-16810.
    [51]Pietras A, Gisselsson D, Ora I,et al. High levels of HIF-2alpha highlight an immatureneural crest-like neuroblastoma cell cohort located in a perivascular niche. J Pathol.2008,214(4):482-488.
    [52]Seidel S, Garvalov BK, Wirta V,et al. A hypoxic niche regulates glioblastoma stemcells through hypoxia inducible factor2alpha. Brain.2010,133(Pt4):983-995.
    [53]Calabrese C, Poppleton H, Kocak M,et al. A perivascular niche for brain tumor stemcells. Cancer Cell.2007,11(1):69-82.
    [54]Hambardzumyan D, Becher OJ, Rosenblum MK,et al. PI3K pathway regulatessurvival of cancer stem cells residing in the perivascular niche following radiation inmedulloblastoma in vivo. Genes Dev.2008,22(4):436-448.
    [55] Liotta LA, Kohn EC, Petricoin EF. The microenvironment of the tumour-hostinterface [J]. Nature,2001,411(17):375-378.
    [56] Melillo G, Semenza GL. Meeting report: exploiting the tumor microenvironment fortherapeutics [J].Cancer Res,2006,66(9):4558-4560.
    [57] Witz IP.Tumor-microenvironment interactions: the selectinselectin ligand axis intumor-endothelium cross talk [J].Cancer Treat Res,2006,130(25):125-140.
    [58] Hall B, Dembinski J, Sasser AK, et al. Mesenchymal stem cells in cancer:tumor-associated fibroblasts and cell-based delivery vehicles[J]. Int J Hematol,2007,86(1):8-16.
    [59] Ghebeh H, Dermime S. Comment on “Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells”[J].J Immunol,2007,179(2):732,733.
    [60] Henry LR, Lee HO, Lee JS, et al. Clinical implications of fibroblast activationprotein in patients with colon cancer [J]. Clin Cancer Res,2007,13(6):1736-1741.
    [61] Lamagna C, Aurrand-Lions M, Imhof BA. Dual role of macrophages in tumorgrowth and angiogenesis [J]. J Leukoc Biol,2006,80(4):705-713.
    [62] Luo Y, Zhou H, Krueger J, et al. Targeting tumor-associated macrophages as a novelstrategy against breast cancer [J]. J Clin Invest,2006,116(8):2132-2141.
    [63] Bussolati B, Grange C, Tei L, et al. Targeting of human renal tumor-derivedendothelial cells with peptides obtained by phage display[J].J Mol Med,2007,85(8):897-906.
    [64] Lu C, Bonome T, Li Y, et al. Gene alterations identified by expression profiling intumor-associated endothelial cells from invasive ovarian carcinoma[J]. Cancer Res,2007,67(4):1757-1768.
    [65] L Addison C. Modulation of response to tumor therapies by the extracellularmatrix[J]. Future Oncol,2006,2(3):417-429.
    [66] Howell GM, Grandis JR. Molecular mediators of metastasis in head and necksquamous cell carcinoma[J]. Head Neck,2005,27(8):710-717.
    [67] Bonfil RD, Chinni S, Fridman R, et al. Proteases, growth factors, chemokines, andthe microenvironment in prostate cancer bone metastasis[J].Urol Oncol,2007,25(5):407-411.
    [68] Boeuf L, Houle F, Huot F, et al. Regulation of vascular endothelial growth factorreceptor2-mediated phosphorylation of focal adhesion kinase by heat shock protein90and Src kinase activities [J]. Journal of Biological Chemistry,2004,279(37):39175-39185.
    [69] Gajewski TF. Failure at the effector phase: immune barriers at the level of themelanoma tumor microenvironment [J]. Clin Cancer Res,2007,13(18):5256-5261.
    [70] Khosravi Shahi P, Fernández Pineda I.. Tumoral angiogenesis: review of theliterature[J]. Cancer Invest,2008,26(1):104-108.
    [71] Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med.1971,285(21):1182-1186.
    [72] Ratcliffe PJ, Pugh CW, Maxwell PH. Targeting tumors through the HIF system.
    [J]. Nat Med.2000,6(12):1315-1316.
    [73] Folkins C, Man S, Xu P, et al. Anticancer therapies combining antiangiogenic andtumor cell cytotoxic effects reduce the tumor stem-like cell fraction in gliomaxenograft tumors. Cancer Res.2007;67(8):3560-3564.
    [74] Veeravagu A, Hsu AR, Cai W,et al. Vascular endothelial growth factor and vascularendothelial growth factor receptor inhibitors as anti-angiogenic agents in cancertherapy.[J]. Recent Pat Anticancer Drug Discov.2007,2(1):59-71.
    [75]Bulnes S, Lafuente JV. VEGF immunopositivity related to malignancy degree,proliferative activity and angiogenesis in ENU-induced gliomas[J]. J Mol Neurosci.2007,33(2):163-172.
    [76] Karcher S, Steiner HH, Ahmadi R,et al. Different angiogenic phenotypes in primaryand secondary glioblastomas. Int J Cancer.2006,118(9):2182-2189.
    [77] Brekken RA, Overholser JP, Stastny VA, et al.Selective inhibition of vasculaendothelial growth factor(VEGF) receptor2(KDR/FIk-1) activity by a monoclonaantiVEGF antibody blocks tumor growth in mice.Cancer Res.2000,60(18):5117-5124.
    [78] Li G,Chen Z,Hu YD,et al.Autocrine factors sustain glioblastoma stem cellself-renewal.Oncol Rep,2009,21(2):419-424.
    [79] Park DM,Rich JN.Biology of glioma cancer stem cells.Mol Cells,2009,28(1):7-12.
    [80] de la Torre NG, Buley I, Wass JA,et al. Angiogenesis and lymphangiogenesis inthyroid proliferative lesions: relationship to type and tumour behaviour. EndocrRelat Cancer.2006,13(3):931-44.
    [81] El-Assal ON, Yamanoi A, Ono T,et al. The clinicopathological significance ofheparanase and basic fibroblast growth factor expressions in hepatocellularcarcinoma. Clin Cancer Res.2001,7(5):1299-305.
    [82] Nomi M,Miyake H,Sugita Y,et al.Role of growth factors and endothelial cells intherapeutic angiogenesis and tissue engineering.Curr Stem Cell Res Ther.2006,1(3):333-43.
    [83]Ganter MT,Cohen MJ,Brohi K,et al.Angiopoietin-2,marker and mediator ofendothelial activation with prognostic signnificance early after trauma?[J].Ann Surg,2008,247(2):320-326.
    [84] Lee OH, Xu J, Fueyo J,et al. Angiopoietin-2decreases vascular endothelial growthfactor expression by modulating HIF-1alpha levels in gliomas[J]. Oncogene.2008,27(9):1310-1314.
    [85] Hu B, Jarzynka MJ, Guo P, et al. Angiopoietin2induces glioma cell invasion bystimulating matrix metalloprotease2expression through the alphavbeta1integrin andfocal adhesion kinase signaling pathway[J]. Cancer Res,2006,66(2):775-783.
    [86] Fitch MJ, Campagnolo L, Kuhnert F,et al. Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells[J]. Dev Dyn.2004,230(2):316-324.
    [87] Campagnolo L, Leahy A, Chitnis S,et al. EGFL7is a chemoattractant for endothelialcells and is up-regulated in angiogenesis and arterial injury[J]. Am J Pathol.2005,167(1):275-284.
    [88] Li Z, Bao S, Wu Q, et al. Hypoxia-inducible factors regulate tumorigenic capacity ofglioma stem cells[J]. Cancer Cell,2009,15(6):501-513.
    [89] Bruno S, Bussolati B, Grange C, et a1. CD133+renal progenitor cells contribute totumor angiogenesis. Am J Pathol,2006,169(6):2223-2235.
    [90] Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis andbeyond[J].Cancer Metastasis Rev.2007,26(3-4):489-502.
    [91] Folkman J,Beckner K.Angiogenesis imaging[J].Acad Radiol,2000,7(10):783-785.
    [92] Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis andbeyond[J].Cancer Metastasis Rev.2007,26(3-4):489-502.
    [93] Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis.Am J Pathol.2000,156(2):361-381.
    [94] Sun B, Zhang D, Zhang S,et al. Hypoxia influences vasculogenic mimicry channelformation and tumor invasion-related protein expression in melanoma. Cancer Lett.2007,249(2):188-197.
    [95] Hendrix MJ, Seftor EA, Hess AR,et al. Vasculogenic mimicry and tumour-cellplasticity: lessons from melanoma. Nat Rev Cancer.2003,3(6):411-421.
    [96] Shervington A, Lu C. Expression of multidrug resistance genes in normal and cancerstem cells. Cancer Invest.2008,26(5):535-542.
    [97] Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumorangiogenesis through vascular endothelial growth factor. Cancer Res.2006;66(16):7843-7848.
    [98] Wang R, Chadalavada K, Wilshire J,et al. Glioblastoma stem-like cells give rise totumour endothelium. Nature.2010,468(7325):829-833.
    [99] Ricci-Vitiani L, Pallini R, Biffoni M, et al. Tumour vascularization via endothelialdifferentiation of glioblastoma stem-like cells. Nature,2010,468:824-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700