海藻寡糖诱导两种红藻免疫防御反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻生活在开放的水体中,易受到病原侵袭和环境改变等因素带来的各种威胁,大规模的病害会给海藻养殖业带来巨大的经济损失。在许多高等植物和海藻免疫反应中,研究者发现寡糖类物质可作为激发子诱导植物的防御反应。本文以条斑紫菜和真江蓠为研究对象,分别考察它们的细胞壁多糖降解产物对其自身的免疫诱导作用。
     本文首先采用冷水、热水提取和不同浓度碱提取等方法,提取紫菜多糖,再以酸解法降解紫菜多糖,得到紫菜寡糖,分析其对条斑紫菜的免疫诱导活性,发现紫菜寡糖可诱导条斑紫菜产生H2O2。分离纯化活性寡糖,结果表明聚合度1~4的单硫酸化紫菜寡糖可通过激活寡糖氧化酶,引发H2O2产生,抑制由培养密度过高引发的病烂;聚合度为4~13的紫菜寡糖可能激活NADPH氧化酶相关的免疫信号通路,引起氧化爆发。
     为进一步探索寡糖诱导的海藻防御反应的研究方法,后期研究是在德国基尔霍姆赫兹海洋研究所以真江蓠为研究对象,分析琼胶寡糖对真江蓠的防御诱导作用,对比原产于中国(青岛和荣成)和入侵德国(基尔和Nordstrand)的真江蓠防御反应的异同。研究表明,琼胶寡糖可诱导真江蓠细胞中寡糖氧化酶的表达,从而催化寡糖的氧化脱氢反应,生成醛类和H2O2。真江蓠细胞中寡糖氧化酶的激活与细胞中铁离子结合蛋白和能量的传递相关。琼胶寡糖的诱导不能改变真江蓠表面的细菌数量,但可改变江蓠表面的菌落组成。对比原产地和入侵地的真江蓠,我们发现琼胶寡糖的诱导可两者发生相同的防御反应,即OA氧化酶的表达及H2O2的生成。但不同产地的真江蓠表面细菌数量和菌落组成不同:原产于中国的物种含有更多的细菌,OA可减少原产地(青岛)真江蓠表面的细菌种类,但增加入侵种(Nordstrand)的菌落种类。
     两种红藻均以其细胞壁多糖的降解产物作为激发子,由此引发的免疫反应具有相似的H2O2产生机理,即寡糖氧化酶的激活,但两者H2O2的产生过程又有很大的差异:真江蓠中H2O2的释放发生在30min内,而条斑紫菜中却持续1d以上。这一现象表明H2O2的产生虽来自同种酶的激活,但海藻内部的信号传导过程却各有不同,H2O2的产生可能并不是单一酶的激活或单一反应的产物。未来的研究可尝试从其它角度分析H2O2的来源,也可从进一步分析寡糖氧化酶的结构、功能及其激发相关的信号通路。
Porphyra lives in open ocean where environment is complex, changeful and fullof pathogen. Broad scale diseases in marine agriculture will lead to large economicalloss. Oligosaccharides working as elicitors in both high plants and algae have beenreported by many researches. The present thesis investigated the elicitor activities ofoligo-porphyran and oligoagar in Porphyra yezoensis and Gracilaria vermiculophylla,respectively.
     Water-extractions and alkaline solution-extractions were employed to obtainnatural polysccharides and oligosaccharides in cell wall of P. yezoensis,Oligosaccharides with different Mw (molecular weight) were obtained by the acidhydrolysis of porphyran from P. yezoensis. The elicitor activities of oligo-porphyranwere investigated. Results showed that oligo-porphyran induced the generation ofH2O2from P. yezoensis. Active oligo-porphyran was seperated by anion-exchangechromatography. Compound of oligo-sulphated galacans with degree ofpolymerization (DP) from1to4induced the expression of cellular oligosaccharidesoxidase, and enabled the P. yezoensis to resist rotting caused by dense incubation.Oligo-sulphated galacans (DP4~13) compound might activate NADPH oxidase,leading to oxidative burst in P. yezoensis.
     In order to learn new research methods and enforce the communication withother international research groups, the last experimental part of this thesis wascarried out in Kiel, Germany. We investigated the oligoagar (OA)-induced defence responses of G. vermiculophylla and compared the different defence responsesbetween the native (Qingdao and Rongcheng, China) and the invasive (Kiel andNordstrand, Germany) populations. We found that OA induced the generation ofH2O2from G. vermiculophylla which was related to the activation of OA oxidase: OAoxidase catalyzed the oxidation of OA, generating aldehyde and H2O2. After24htreatment of150umol/L OA, G. vermiculophylla had a significant expression of OAoxidase which was related to cellular iron-containing protein and energytransformation. However, OA-treatment couldn’t change the number of G.vermiculophylla surface bacteria, but OA changed the bacterial composition of algalsurface. Both invasive and native populations could response to OA with the similarquantities of OA oxidase expression, but the enzyme activities of native populationswere lower than that of invasive populations because of their less release of aldehydeand H2O2. The surface bacteria in the native and invasive populations are different inquality and quantity. OA reduced the degree of bacterial diversity of native populationfrom Qingdao which had much more bacteria than that in invasive population fromNordstrand, but increased that of invasive population which had fewer bacteria.
     In the present research, two red seaweeds were chosen and their defenceresponses to the oligosaccharides derived from their cell wall polysaccharides wereinvestigated. For both of the two chosen algae, H2O2was induced by oligosaccharidesby a same mechanism, i.e. the activation of oligosaccharides oxidase. However, thepatterns of H2O2generation were different: the release of H2O2from P. yezoensissustained for more than one day, while that from G. vermiculophylla lasted only forhalf an hour. These results confirmed that defence responses varied in differentspecies, and also indicated that the generation of H2O2in these two red seaweeds maybe not due to the activation of only one enzyme or one signal pathway. Other causesfor H2O2release and the further analysis of oligosaccharide oxidase’s structure,function and relative signal pathways are worthy to be done in the future.
引文
[1] http://www.marinespecies.org/aphia.php?p=taxlist.
    [2]张卫兵,徐加达,端木怡燕等.日韩两国紫菜产业分析及启示.食品科学,2005(10):9-11.
    [3]童冠文.条斑紫菜经济性状研究进展.食品科学,2010(11):343-347.
    [4]张全斌,赵婷婷,綦慧敏等.紫菜的营养价值研究概况.海洋科学,2005(02):69-72.
    [5]伍华菊,张建平,夏安东等.条斑紫菜中R-藻红蛋白的生化特性.生物化学与生物物理学报,1994(05):491-497.
    [6] Kwon M J, Nam T J. Chromatographically purified porphyran from Porphyra yezoensiseffectively inhibits proliferation of human cancer cells. Food Science and Biotechnology,2007(6):873-878.
    [7] Bang H O, Dyerberg J. Fatty-acid pattern and ischemic-heart-disease. Lancet,1987(8533):633-633.
    [8] Smith J L, Summers G, Wong R. Nutrient and heavy metal content of edible seaweeds in NewZealand. New Zealand Journal of Crop and Horticultural Science,2010(1):19-28.
    [9] Hehemann J-H, Correc G, Barbeyron T et al. Transfer of carbohydrate-active enzymes frommarine bacteria to Japanese gut microbiota. Nature,2010(7290):908-U123.
    [10] Chen B L, You W L, Huang J et al. Isolation and antioxidant property of the extracellularpolysaccharide from Rhodella reticulata. World Journal of Microbiology&Biotechnology,2010(5):833-840.
    [11] Zhao T T, Zhang Q B, Qi H M et al. Extension of life span and improvement of vitality ofDrosophila melanogaster by long-term supplementation with different molecular weightpolysaccharides from Porphyra haitanensis. Pharmacological Research,2008(1):67-72.
    [12] Zhao X, Xue C H, Li Z J et al. Antioxidant and hepatoprotective activities of low molecularweight sulfated polysaccharide from Laminaria japonica. Journal of Applied Phycology,2004(2):111-115.
    [13] de la Coba F, Aguilera J, de Galvez M V et al. Prevention of the ultraviolet effects on clinicaland histopathological changes, as well as the heat shock protein-70expression in mouse skin bytopical application of algal UV-absorbing compounds. Journal of Dermatological Science,2009(3):161-169.
    [14] Boisson-Vidal C, Zemani F, Caligiuri G et al. Neoangiogenesis induced by progenitorendothelial cells: Effect of fucoidan from Marine algae. Cardiovascular&Hematological Agents inMedicinal Chemistry,2007(1):67-77.
    [15] Daggett T L, Pearce C M, Tingley M et al. Effect of prepared and macroalgal diets and seedstock source on somatic growth of juvenile green sea urchins (Strongylocentrotus droebachiensis).Aquaculture,2005(1-4):263-281.
    [16] Blouin N A, Brodie J A, Grossman A C et al. Porphyra: a marine crop shaped by stress.Trends in Plant Science,2011(1):29-37.
    [17] Boller T. Peptide signalling in plant development and self/non-self perception. CurrentOpinion in Cell Biology,2005(2):116-122.
    [18] Park C S, Kakinuma M, Amano H. Forecasting infections of the red rot disease on Porphyrayezoensis Ueda (Rhodophyta) cultivation farms. Journal of Applied Phycology,2006(3-5):295-299.
    [19] Ding H Y, Ma J H. Simultaneous infection by red rot and chytrid diseases in Porphyrayezoensis Ueda. Journal of Applied Phycology,2005(1):51-56.
    [20]朱竹君,陈海敏,骆其君等.琼胶寡糖诱导坛紫菜活性氧爆发.水产学报,2012(06).
    [21]赵谋明,刘通讯.江蓠藻的营养学评价.营养学报,1997(1):64-70.
    [22]李琴梅,戚勃.琼脂的物化特性及其在食品工业中的应用.中国食品添加剂,2009(06):170-174.
    [23] Weinberger F, Buchholz B, Karez R et al. The invasive red alga Gracilaria vermiculophylla inthe Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquatic Biology,2008(3):251-264.
    [24] Reina-Pinto J J, Yephremov A. Surface lipids and plant defenses. Plant Physiology andBiochemistry,2009(6):540-549.
    [25] Medzhitov R, Janeway C A. Decoding the patterns of self and nonself by the innate immunesystem. Science,2002(5566):298-300.
    [26] Muthamilarasan M, Prasad M. Plant innate immunity: An updated insight into defensemechanism. Journal of Biosciences,(2):433-449.
    [27] Sohal M T B S. Role of Elicitors in Inducing Resistance in Plants against Pathogen Infection:A Review. ISRN Biochemistry,2013(2013):1-10.
    [28] Staal J, Dixelius C. Tracing the ancient origins of plant innate immunity. Trends in PlantScience,2007(8):334-342.
    [29] Boller T. Chemoperception of microbial signals in plant cells. Annual Review of PlantPhysiology and Plant Molecular Biology,1995:189-214.
    [30] Hahn M G. Microbial elicitors and their receptors in plants. Annual Review of Phytopathology,1996:387-412.
    [31] Beck M, Heard W, Mbengue M et al. The INs and OUTs of pattern recognition receptors atthe cell surface. Current Opinion in Plant Biology,2002(4):367-374.
    [32] Shiu S H, Bleecker A B. Receptor-like kinases from Arabidopsis form a monophyletic genefamily related to animal receptor kinases. Proceedings of the National Academy of Sciences of theUnited States of America,2001(19):10763-10768.
    [33] Miya A, Albert P, Shinya T et al. CERK1, a LysM receptor kinase, is essential for chitinelicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the UnitedStates of America,2007(49):19613-19618.
    [34] Ishihama N, Yoshioka H. Post-translational regulation of WRKY transcription factors in plantimmunity. Current Opinion in Plant Biology,2012(4):431-437.
    [35] Jabs T, Tschope M, Colling C et al. Elicitor-stimulated ion fluxes and O-2(-) from theoxidative burst are essential components in triggering defense gene activation and phytoalexinsynthesis in parsley. Proceedings of the National Academy of Sciences of the United States ofAmerica,1997(9):4800-4805.
    [36] Garcia-Brugger A, Lamotte O, Vandelle E et al. Early signaling events induced by elicitors ofplant Defenses. Molecular Plant-Microbe Interactions,2006(7):711-724.
    [37] Zimmermann S, Nurnberger T, Frachisse J M et al. Receptor-mediated activation of a plantCa2+-permeable ion channel involved in pathogen defense. Proceedings of the National Academyof Sciences of the United States of America,1997(6):2751-2755.
    [38] Qi Z, Verma R, Gehring C et al. Ca2+signaling by plant Arabidopsis thaliana Pep peptidesdepends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+channels.Proceedings of the National Academy of Sciences of the United States of America,2010(49):21193-21198.
    [39] Reddy V S, Reddy A S N. Proteomics of calcium-signaling components in plants.Phytochemistry,2004(12):1745-1776.
    [40] Kotchoni S O, Gachomo E W. The reactive oxygen species network pathways: an essentialprerequisite for perception of pathogen attack and the acquired disease resistance in plants. Journalof Biosciences,2006(3):389-404.
    [41] Chiasson D, Ekengren S K, Martin G B et al. Calmodulin-like proteins from Arabidopsis andtomato are involved in host defense against Pseudomonas syringae pv. tomato. Plant MolecularBiology,2005(6):887-897.
    [42] Takabatake R, Karita E, Seo S et al. Pathogen-induced calmodulin isoforms in basal resistanceagainst bacterial and fungal pathogens in tobacco. Plant and Cell Physiology,2007(3):414-423.
    [43] Boudsocq M, Willmann M R, McCormack M et al. Differential innate immune signalling viaCa2+sensor protein kinases. Nature,2010(7287):418-U116.
    [44] Delledonne M, Xia Y J, Dixon R A et al. Nitric oxide functions as a signal in plant diseaseresistance. Nature,1998(6693):585-588.
    [45] Yun B-W, Feechan A, Yin M et al. S-nitrosylation of NADPH oxidase regulates cell death inplant immunity. Nature,2011(7368):264-268.
    [46] Bestwick C S, Bennett M H, Mansfield J W. Hrp mutant of Pseudomonas syringae pv.Phaseolicola induces cell wall alterations but not membrane damage leading to the hypersensitivereation in lettuce. Plant Physiology,1995(2):503-516.
    [47] Brown I, Trethowan J, Kerry M et al. Localization of components of the oxidativecross-linking of glycoproteins and of callose synthesis in papillae formed during the interactionbetween non-pathogenic strains of Xanthomonas campestris and French bean mesophyll cells.Plant Journal,1998(3):333-343.
    [48] Zhang J, Shao F, Cui H et al. A Pseudomonas syringae effector inactivates MAPKs tosuppress PAMP-Induced immunity in plants. Cell Host&Microbe,2007(3):175-185.
    [49] Clay N K, Adio A M, Denoux C et al. Glucosinolate Metabolites Required for an ArabidopsisInnate Immune Response. Science,2009(5910):95-101.
    [50] Goehre V, Jones A M E, Sklenar J et al. Molecular Crosstalk Between PAMP-TriggeredImmunity and Photosynthesis. Molecular Plant-Microbe Interactions,2012(8):1083-1092.
    [51] Tsuda K, Sato M, Glazebrook J et al. Interplay between MAMP-triggered and SA-mediateddefense responses. Plant Journal,2008(5):763-775.
    [52] Mishina T E, Zeier J. Pathogen-associated molecular pattern recognition rather thandevelopment of tissue necrosis contributes to bacterial induction of systemic acquired resistance inArabidopsis. Plant Journal,2007(3):500-513.
    [53] Tsuda K, Katagiri F. Comparing signaling mechanisms engaged in pattern-triggered andeffector-triggered immunity. Current Opinion in Plant Biology,2010(4):459-465.
    [54] Cornelis G R, Van Gijsegem F. Assembly and function of type III secretory systems. AnnualReview of Microbiology,2000:735-774.
    [55] Grant S R, Fisher E J, Chang J H et al. Subterfuge and manipulation: Type III effector proteinsof phytopathogenic bacteria. In: Annual Review of Microbiology.2006. pp.425-449.
    [56] Deslandes L, Rivas S. Catch me if you can: bacterial effectors and plant targets. Trends inPlant Science,2012(11):644-655.
    [57] Feng F, Zhou J-M. Plant-bacterial pathogen interactions mediated by type III effectors.Current Opinion in Plant Biology,2012(4):469-476.
    [58] Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistanceproteins. Annual Review of Plant Biology,2003:23-61.
    [59] Iwai T, Miyasaka A, Seo S et al. Contribution of ethylene biosynthesis for resistance to blastfungus infection in young rice plants. Plant Physiology,2006(3):1202-1215.
    [60] Hironari Nomura,Teiko Komori,Shuhei Uemura et al. Chloroplast-mediated activation ofplant immune signalling in Arabidopsis. Nature Communications,2012(3):10.1038/ncomms1926.
    [61] Hayward A P, Tsao J, Dinesh-Kumar S P. Autophagy and plant innate immunity: Defensethrough degradation. Seminars in Cell&Developmental Biology,2009(9):1041-1047.
    [62] Reymond P, Farmer E E. Jasmonate and salicylate as global signals for defense geneexpression. Current Opinion in Plant Biology,1998(5):404-411.
    [63] Orozco-Cardenas M L, Narvaez-Vasquez J et al. Hydrogen peroxide acts as a secondmessenger for the induction of defense genes in tomato plants in response to wounding, systemin,and methyl jasmonate. Plant Cell,2001(1):179-191.
    [64]刘纪元,佟少明,侯和胜.植物病程相关蛋白研究进展.黑龙江科技信息,2012(05):65.
    [65] Coll N S, Epple P, Dangl J L. Programmed cell death in the plant immune system. Cell Deathand Differentiation,2011(8):1247-1256.
    [66] van Doorn W G. Classes of programmed cell death in plants, compared to those in animals.Journal of Experimental Botany,2011(14):4749-4761.
    [67] Hatsugai N, Iwasaki S, Tamura K et al. A novel membrane fusion-mediated plant immunityagainst bacterial pathogens. Genes&Development,2009(21):2496-2506.
    [68] Durrant W E, Dong X. Systemic acquired resistance. Annual Review of Phytopathology,2004:185-209.
    [69] Al-Kaff N S, Covey S N, Kreike M M et al. Transcriptional and posttranscriptional plant genesilencing in response to a pathogen. Science,1998(5359):2113-2115.
    [70] Lu R, Martin-Hernandez A M, Peart J R et al. Virus-induced gene silencing in plants. Methods,2003(4):296-303.
    [71] Padmanabhan C, Zhang X, Jin H. Host small RNAs are big contributors to plant innateimmunity. Current Opinion in Plant Biology,2009(4):465-472.
    [72] Molinier J, Ries G, Zipfel C et al. Transgeneration memory of stress in plants. Nature,2006(7106):1046-1049.
    [73] Jaskiewicz M, Conrath U, Peterhaensel C. Chromatin modification acts as a memory forsystemic acquired resistance in the plant stress response. Embo Reports,2011(1):50-55.
    [74] Baldridge C W, Gerard R W. The extra respiration of phagocytosis. American Journal ofPhysiology,1933(1):235-236.
    [75] Wojtaszek P. Oxidative burst: An early plant response to pathogen infection. BiochemicalJournal,1997:681-692.
    [76] Dring M J. Stress resistance and disease resistance in seaweeds: The role of reactive oxygenmetabolism. In: Advances in Botanical Research, Vol43: Incorporating Advances in PlantPathology. Callow JA (Editor)2006. pp.175-207.
    [77] Collen J, Pedersen M. A stress-induced oxidative burst in Eucheuma-platycladum(Rohodophyta). Physiologia Plantarum,1994(3):417-422.
    [78] Weinberger F, Friedlander M. Response of Gracilaria conferta (Rhodophyta) to oligoagarsresults in defense against agar-degrading epiphytes. Journal of Phycology,2000(6):1079-1086.
    [79] Kupper F C, Kloareg B, Guern J et al. Oligoguluronates elicit an oxidative burst in the brownalgal kelp Laminaria digitata. Plant Physiology,2001(1):278-291.
    [80] Chamnongpol S, Willekens H, Moeder W et al. Defense activation and enhanced pathogentolerance induced by H2O2in transgenic tobacco. Proceedings of the National Academy ofSciences of the United States of America,1998(10):5818-5823.
    [81] Wu G S, Shortt B J, Lawrence E B et al. Disease resistance conferred by expression of a geneencoding H2O2generating glucose oxidase in transgenic potato plants. Plant Cell,1995(9):1357-1368.
    [82] Bradley D J, Kjellbom P, Lamb C J. Elicitor-induced and wound-induced oxidativecross-linking of a proline-rich plant-cell wall protein-A novel, rapid defense response. Cell,1992(1):21-30.
    [83] Casati P, Drincovich M F, Edwards G E et al. Malate metabolism by NADP-malic enzyme inplant defense. Photosynthesis Research,1999(2):99-105.
    [84] Grant J J, Loake G J. Role of reactive oxygen intermediates and cognate redox signaling indisease resistance. Plant Physiology,2000(1):21-29.
    [85] Kuepper F C, Gaquerel E, Boneberg E-M et al. Early events in the perception oflipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activationof fatty acid oxidation cascades. Journal of Experimental Botany,2006(9):1991-1999.
    [86] Xu H X, Heath M C. Role of calcium in signal transduction during the hypersensitive responsecaused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell,1998(4):585-597.
    [87] Levine A, Pennell R I, Alvarez M E et al. Calcium-mediated apoptosis in a planthypersensitive disease resistance response. Current Biology,1996(4):427-437.
    [88] Alvarez M E, Pennell R I, Meijer P J et al. Reactive oxygen intermediates mediate a systemicsignal network in the establishment of plant immunity. Cell,1998(6):773-784.
    [89] Luthje S, Doring O, Heuer S et al. Oxidoreductases in plant plasma membranes. BiochimicaEt Biophysica Acta-Reviews on Biomembranes,1997(1):81-102.
    [90] Bolwell G P, Wojtaszek P. Mechanisms for the generation of reactive oxygen species in plantdefence-a broad perspective. Physiological and Molecular Plant Pathology,1997(6):347-366.
    [91] Auh C K, Murphy T M. Plasma-membrane redox enzyme is involved in the synthesis of O2-and H2O2by phytophthora elicitor stimulated rose cells.Plant Physiology,1995(4):1241-1247.
    [92] Groom Q J, Torres M A, FordhamSkelton A P et al. rbohA a rice homologue of themammalian gp91phox respiratory burst oxidase gene. Plant Journal,1996(3):515-522.
    [93] Veraestrella R, Higgins V J, Blumwald E. Plant defense response to fungal pathogens. II.G-protein-mediated changes in host plasma-membrane redox reacitons. Plant Physiology,1994(1):97-102.
    [94] Murphy T M, Auh C K. The superoxide synthases of plasma membrane preparations fromcultured rose cells. Plant Physiology,1996(2):621-629.
    [95] Welle R, Grisebach H. Phytoalexin synthesis in soybean cells-Elicitor induction of reductaseinvolved in biosynthesis of6'-deoxychalcone. Archives of Biochemistry and Biophysics,1989(1):97-102.
    [96] Johal G S, Briggs S P. Reductase-activety encoded by the HM2disease resistance gene inmaize. Science,1992(5084):985-987.
    [97] Whetten R, Sederoff R. Lignin biosynthesis. Plant Cell,1995(7):1001-1013.
    [98] Vianello A, Zancani M, Macri F. Hydrogen-peroxide formation and iron-ion oxidoreductionlinked to NADH oxidation in radish plasmalemma vesicles. Biochimica Et Biophysica Acta,1990(1):19-24.
    [99] Segal A W, Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends inBiochemical Sciences,1993(2):43-47.
    [100] Jones O T G. The regulation of superoxide production by the NADPH oxidase of neutrophilsand other mammalian-cells. Bioessays,1994(12):919-923.
    [101] Bolwell G P. The origin of the oxidative burst in plants. Biochemical Society Transactions,1996(2):438-442.
    [102] Zimmerlin A, Wojtaszek P, Bolwell G P. Synthesis of dehydrogenation polymers of ferulicacid with high specificity by a purified cell-wall peroxidase from French bean(Phaseolus-vulgarisL). Biochemical Journal,1994:747-753.
    [103] Lane B G. Oxalate, germin and the extracellular matrix of higher plants. Faseb Journal,1994(3):294-301.
    [104] Lane B G, Dunwell J M, Ray J A et al. Germin, a protein marker of early plant developmentis an oxalate oxidase. Journal of Biological Chemistry,1993(17):12239-12242.
    [105] Peng M, Kuc J. Peroxidase generated hydrogen-peroxide as a source of antifungal activity invitro and on tobacco leaf-disks. Phytopathology,1992(6):696-699.
    [106] Hurkman W J, Tanaka C K. Germin gene expression is induced in wheat leaves by powderymildew infection. Plant Physiology,1996(3):735-739.
    [107] Hurkman W J, Tanaka C K. Effect of salt stress on germin gene expression in barley roots.Plant Physiology,1996(3):971-977.
    [108] Custers J, Harrison S J, Sela-Buurlage M B et al. Isolation and characterisation of a class ofcarbohydrate oxidases from higher plants, with a role in active defence. Plant Journal,2004(2):147-160.
    [109] Kazan K, Murray F R, Goulter K C et al. Induction of cell death in transgenic plantsexpressing a fungal glucose oxidase. Molecular Plant-Microbe Interactions,1998(6):555-562.
    [110] Murray F, Llewellyn D, McFadden H et al. Expression of the Talaromyces flavus glucoseoxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. MolecularBreeding,1999(3):219-232.
    [111] Weinberger F, Leonardi P, Miravalles A et al. Dissection of two distinct defense-relatedresponses to agar oligosaccharides in Gracilaria chilensis (Rhodophyta) and Gracilaria conferta(Rhodophyta). Journal of Phycology,2005(4):863-873.
    [112] Smith T A. The diamine and polyamine oxidases of higher plants. Biochemical SocietyTransactions,1985(2):319-322.
    [113] Angelini R, Manes F, Federico R. Spatial and functional correlation betweendiamine-oxidase and peroxidase-activities and their dependence upon de-etiolation and woundingin chickpea stems. Planta,1990(1):89-96.
    [114] Allan A C, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobaccoepidermal cells. Plant Cell,1997(9):1559-1572.
    [115] Igamberdiev A U, Popov V N, Falaleeva M I. Alternative system of succinate oxidation inglyoxysomes of higher-plants. Febs Letters,1995(3):287-290.
    [116] Milosevic N, Slusarenko A J. Active oxygen metabolism and lignification in thehypersensitive response in bean. Physiological and Molecular Plant Pathology,1996(3):143-158.
    [117] Naton B, Hahlbrock K, Schmelzer E. Correlation of rapid cell death with metabolic changesin fungus-infected, cultured parsley cells. Plant Physiology,1996(1):433-444.
    [118] Vanlerberghe G C, McIntosh L. Signals regulating the expression of the nuclear geneencoding alternative oxidase of plant mitochondria. Plant Physiology,1996(2):589-595.
    [119] Yang Y O, Shah J, Klessig D F. Signal perception and transduction in defense responses.Genes&Development,1997(13):1621-1639.
    [120] Bolwell G P. Cyclic-AMP, the reluctant messenger in plants. Trends in Biochemical Sciences,1995(12):492-495.
    [121] Assmann S M. Cyclic-AMP as a2nd messenger in higher-plant. Status and future prospects.Plant Physiology,1995(3):885-889.
    [122] Kurosaki F, Kaburaki H, Nishi A. Involvement of plasma membrane-located calmodulin inthe response decay of cyclic nucleotide-gated cation channel of cultured carrot cells. Febs Letters,1994(3):193-196.
    [123] Harding S A, Oh S H, Roberts D M. Transgenic tobacco expressing a foreign calmodulingene shows an enhanced production of active oxygen species. Embo Journal,1997(6):1137-1144.
    [124]马洪菊,宁君,王忠跃等.复合可控缓释植物抗病诱导剂.植物保护科技创新与发展,2008(学术年会论文集):200-204.
    [125] Sharp J K, McNeil M, Albersheim P. Host-pathogen interactions.27. The primary structuresof one elicitor-active and7elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucidtols isolatedfrom the mycellial walls of phytophthora-megasperma f. sp. glycinea. Journal of BiologicalChemistry,1984(18):1321-1336.
    [126] Cosio E G, Feger M, Miller C J et al. High-affinity binding of fungal beta-glucan elicitors tocell membranes of species of the plant family Fabaceae. Planta,1996(1):92-99.
    [127] Klarzynski O, Plesse B, Joubert J M et al. Linear beta-1,3glucans are elicitors of defenseresponses in tobacco. Plant Physiology,2000(3):1027-1037.
    [128] Yamaguchi T, Yamada A, Hong N et al. Differences in the recognition of glucan elicitorsignals between rice and soybean: beta-glucan fragments from the rice blast disease fungusPyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell,2000(5):817-826.
    [129] Rioux L E, Turgeon S L, Beaulieu M. Characterization of polysaccharides extracted frombrown seaweeds. Carbohydrate Polymers,2007(3):530-537.
    [130] Aziz A, Poinssot B, Daire X et al. Laminarin elicits defense responses in grapevine andinduces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-MicrobeInteractions,2003(12):1118-1128.
    [131] Menard R, Alban S, de Ruffray P et al. beta-1,3glucan sulfate, but not beta-1,3glucan,induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell,2004(11):3020-3032.
    [132] http://wenku.baidu.com/view/73c9d3196bd97f192279e9c6.html.
    [133] Barber M S, Bertram R E, Ride J P. Chtin oligosaccharides elicit lignification in woundedwheat leaves. Physiological and Molecular Plant Pathology,1989(1):3-12.
    [134] Felix G, Regenass M, Boller T. Specific perception of subnanomolar of chitin fragments bytomato cells-induction of extracellular alkalinization, changes in protein-phosphorylation, andestablishment of a refractory state. Plant Journal,1993(2):307-316.
    [135] Ren Y Y, West C A. Elicitation of deterpene biosynthesis in rice(Oryza sativa L.) by chitin.Plant Physiology,1992(3):1169-1178.
    [136] Kikuyama M, Kuchitsu K, Shibuya N. Membrane depolarization induced byN-acetylchitooligosaccharide elicitor in suspension-cultured rice cells. Plant and Cell Physiology,1997(8):902-909.
    [137] Kuchitsu K, Kosaka H, Shiga T et al. EPR evidence for generation of hydroxyl radicaltriggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor insuspension-cultured rice cells. Protoplasma,1995(1-2):138-142.
    [138] Baureithel K, Felix G, Boller T. Specific, high-affinity binding of chitin fragments to tomatocells and membranes,competitive inhibition of binding by derivatives of chitooligosaccharides anda nod factor of Rhizobium Journal of Biological Chemistry,1994(27):17931-17938.
    [139] Day R B, Okada M, Ito Y et al. Binding site for chitin oligosaccharides in the soybeanplasma membrane. Plant Physiology,2001(3):1162-1173.
    [140] Shibuya N, Ebisu N, Kamada Y et al. Localization and binding characteristics of ahigh-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma membrane fromsuspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface.Plant and Cell Physiology,1996(6):894-898.
    [141] Kohle H, Jeblick W, Poten F et al. Chitosan-elicited callose synthesis in soybean cells as aCa2+-dependent process. Plant Physiology,1985(3):544-551.
    [142] Hadwiger L A, Beckman J M. Chitosan as a component of pea fusarium solani interactions.Plant Physiology,1980(2):205-211.
    [143] Shibuya N, Minami E. Oligosaccharide signalling for defence responses in plant.Physiological and Molecular Plant Pathology,2001(5):223-233.
    [144] Nothnagel E A, McNeil M, Albersheim P et al. Host-pathogen interactions.22. Agalacturonic acid oligosaccharide from plant-cell walls elicits phytoalexins. Plant Physiology,1983(4):916-926.
    [145] Robertsen B. Elicitors of the production of lignin-like compounds in cucumber hypocotyls.Physiological and Molecular Plant Pathology,1986(1):137-148.
    [146] Bruce R J, West C A. Elicitation of lignin biosynthesis and isoperoxidase activity by pecticfragments in suspension-cultures of castor bean. Plant Physiology,1989(3):889-897.
    [147] Reymond P, Grunberger S, Paul K et al. Oligogalacturonide defense signals in plants: largefragments interact with the plasma membrane in vitro Proceedings of the National Academy ofSciences of the United States of America,1995(10):4145-4149.
    [148] Lahaye M, Robic A. Structure and functional properties of Ulvan, a polysaccharide fromgreen seaweeds. Biomacromolecules,2007(6):1765-1774.
    [149] Paulert R, Ebbinghaus D, Urlass C, Moerschbacher B M. Priming of the oxidative burst inrice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhancedresistance against powdery mildew in wheat and barley plants. Plant Pathology,2010(4):634-642.
    [150] Cluzet S, Torregrosa C, Jacquet C et al. Gene expression profiling and protection ofMedicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp.Plant Cell and Environment,2004(7):917-928.
    [151] Mabeau S, Kloareg B. Isolation and analysis of the cell walls of brown algae:Fucus spiralis,F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata, and Laminaria digitata. Journal ofExperimental Botany,1987(194):1573-1580.
    [152] Chandia N P, Matsuhiro B, Mejias E et al. Alginic acids in Lessonia vadosa: Partialhydrolysis and elicitor properties of the polymannuronic acid fraction. Journal of AppliedPhycology,2004(2):127-133.
    [153] Laporte D, Vera J, Chandia N P et al. Structurally unrelated algal oligosaccharidesdifferentially stimulate growth and defense against tobacco mosaic virus in tobacco plants. Journalof Applied Phycology,2007(1):79-88.
    [154] Li B, Lu F, Wei X et al. Fucoidan: Structure and bioactivity. Molecules,2008(8):1671-1695.
    [155] McCandle.El, Craigie J S, Walter J A. Carrageenans in gametophytic and sporophytic stagesof Chondrus crispus. Planta,1973(3):201-212.
    [156] Mercier L, Lafitte C, Borderies G et al. The algal polysaccharide carrageenans can act as anelicitor of plant defence. New Phytologist,2001(1):43-51.
    [157] Vera J, Castro J, Gonzalez A et al. Long-term protection against tobacco mosaic virusinduced by the marine alga oligo-sulphated-galactan Poly-Ga in tobacco plants. Molecular PlantPathology,2011(5):437-447.
    [158] Bouarab K, Potin P, Weinberger F et al. The Chondrus crispus Acrochaete operculatahost-pathogen association, a novel model in glycobiology and applied phycopathology. Journal ofApplied Phycology,2001(2):185-193.
    [159] Bouarab K, Potin P, Correa J, Kloareg B. Sulfated oligosaccharides mediate the interactionbetween a marine red alga and its green algal pathogenic endophyte. Plant Cell,1999(9):1635-1650.
    [160]严小军王陈.琼胶寡糖诱导菜豆活性氧相关防御及机理初探.中国生物防治学报,2011(12):254-259.
    [161] Weinberger F, Friedlander M, Hoppe H G. Oligoagars elicit a physiological response inGracilaria conferta (Rhodophyta). Journal of Phycology,1999(4):747-755.
    [162] Zambounis A, Gaquerel E, Strittmatter M et al. Prostaglandin A(2) triggers a strongoxidative burst in Laminaria: a novel defense inducer in brown algae? Algae,2012(1):21-32.
    [163] Kupper F C, Muller D G, Peters A F et al. Oligoalginate recognition and oxidative burst playa key role in natural and induced resistance of sporophytes of laminariales. Journal of ChemicalEcology,2002(10):2057-2081.
    [164] Weinberger F, Guillemin M L, Destombe C et al. Defense evolution in theGracilariacea(Rhodophyta): Substrate-regulated oxidation of agar oligosaccharides is more ancientthan the oligoagar-activated oxidative burst. Journal of Phycology,2010(5):958-968.
    [165] Zhang Q B, Qi H M, Zhao T T et al. Chemical characteristics of a polysaccharide fromPorphyra capensis (Rhodophyta). Carbohydrate Research,2005(15):2447-2450.
    [166] Lechat H, Amat M, Mazoyer J et al. Structure and distribution of glucomannan and sulfatedglucan in the cell walls of the red alga Kappaphycus alvarezii (gigartinales, rhodophyta). Journal ofPhycology,2000(5):891-902.
    [167] Dubois M, Gilles K A, Hamilton J K et al. Colorimetric method for determination of sugarsand related substances. Analytical Chemistry,1956(3):350-356.
    [168] Kawai Y, Seno N, Anno K. A modified method for chondrosulfatase assay. AnalyticalBiochemistry,1969(2):314-&.
    [169] Yaphe W, Arsenaul.Gp. Improved resorcinol reagent for determination of fructose and of3.6-anhydrogalactose in polysaccharides. Analytical Biochemistry,1965(1):143-&.
    [170] Bradford M M. Rapid and sensititve method for quantitation of microgram quantities ofprotein utilizing principle of protein-dye binding. Analytical Biochemistry,1976(1-2):248-254.
    [171]李克成.单一聚合度和特定N-乙酰化壳寡糖的分离及抗氧化活性研究.博士学位论文:33.
    [172] Zhimou Guo A L, Yongping Zhang, Qing Xu,Xingya Xue, Feifang Zhang,Xinmiao Liang.‘‘Click saccharides’’: novel separation materials for hydrophilic interaction liquid chromatography.Chemical Communications,2007(24):2491-2493.
    [173] Zhang J J, Zhang Q B, Wang J et al. Analysis of the monosaccharide composition offucoidan by precolumn derivation HPLC. Chinese Journal of Oceanology and Limnology,2009(3):578-582.
    [174] http://liferaydemo.unl.edu/web/biochem/BradfordAssaySite.
    [175]张明,宋淑亮,吉爱国.岩藻糖降解方法的研究进展.中药材,2009(2):314-317.
    [176] Miller W L, Kester D R. Hydrogen peroxide measurement in seawater by(p-hydroxyphenyl)acetic acid dimerization. Analytical Chemistry,1988(24):2711-2715.
    [177] Bestwick C S, Brown I R, Bennett M H R et al. Localization of hydrogen peroxideaccumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pvphaseolicola. Plant Cell,1997(2):209-221.
    [178] Cedillo-Rivera R, Ramirez A, Munoz O. A rapid colorimetric assay with the tetrazolium saltMTT and phenazine methosulfate (PMS) for viability of Entamoeba histolytica. Archives ofmedical research,1992(2):59-61.
    [179] Al Claiborne I F. Chemical and enzymic intermediates in the peroxidation of o-dianisidine byhorseradish peroxidase.1. Spectral properties of the products of dianisidine oxidation.BioChemistry,1979(11):2324-2329.
    [180] http://www.nlm.nih.gov/cgi/mesh/2011/MB_cgi?mode=&term=Respiratory+burst
    [181] Umemoto N, Kakitani M, Iwamatsu A et al. The structure and function of a soybeanbeta-glucan-elicitor-binding protein. Proceedings of the National Academy of Sciences of theUnited States of America,1997(3):1029-1034.
    [182] Mackintosh C, Lyon G D, Mackintosh R W. Protein phosphatise inhibitors activateantifungal defense responses of soybean cotyledons and cell cultures. Plant Journal,1994(1):137-147.
    [183] Rakwal R, Shii K, Agrawal G K et al. Protein phosphatase inhibitors activate defenseresponses in rice (Oryza sativa) leaves. Physiologia Plantarum,2001(2):151-157.
    [184] Manley S L. Phytogenesis of halomethanes: A product of selection or a metabolic accident?Biogeochemistry,2002(2):163-180.
    [185] Palmer C J, Anders T L, Carpenter L J et al. Iodine and halocarbon response of Laminariadigitata to oxidative stress and links to atmospheric new particle production. EnvironmentalChemistry,2005(4):282-290.
    [186] Weinberger F, Coquempot B, Forner S et al. Different regulation of haloperoxidation duringagar oligosaccharide-activated defence mechanisms in two related red algae, Gracilaria sp andGracilaria chilensis. Journal of Experimental Botany,2007(15-16):4365-4372.
    [187] Uppalapati S R, Fujita Y. Carbohydrate regulation of attachment, encystment, andappressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis(Rhodophyta). Journal of Phycology,2000(2):359-366.
    [188] Zhang W Y, Chen H, Wang S J et al. An acidic polysaccharide with xylose branches fromPorphyra yezoensis. Chinese Science Bulletin,2001(3):207-210.
    [189] Zhou C S, Ma H L. Ultrasonic degradation of polysaccharide from a red algae (Porphyrayezoensis). Journal of Agricultural and Food Chemistry,2006(6):2223-2228.
    [190]朱竹君,骆其君,严小军等.琼胶寡糖聚合度对坛紫菜抗性诱导的影响.海洋学报,2012(6):205-209.
    [191] Paz M A, Blumenfe.Oo, Rojkind M et al. Determination of carconyl compounds withN-methyl benzothiazolone hydrazone. Archives of Biochemistry and Biophysics,1965(3):548-&.
    [192] http://zh.wikipedia.org/wiki/%E6%B0%B0%E5%8C%96%E7%89%A9.
    [193] http://zh.wikipedia.org/wiki/%E7%BE%B0%E5%9F%BA%E6%B0%B0%E5%8C%96%E7%89%A9%E9%97%B4%E6%B0%AF%E8%8B%AF%E8%85%99.
    [194] http://zh.wikipedia.org/wiki/2-E B C E A D E F B E B A E A.
    [195] http://zh.wikipedia.org/wiki/%E8%A7%A3%E5%81%B6%E8%81%94%E8%9B%8B%E7%99%BD.
    [196] Oates B R, Cole K M. Comparative-studies on hair-cells of two agarophyte red algae,Gelidium vagum(Gelidiales, Phodophyta) and Gracilaria pacifica(Gracilariales, Rhodophyta).Phycologia,1994(6):420-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700