褐藻中酸性多糖的结构分析及神经保护活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐藻中的多糖包含褐藻胶,褐藻多糖硫酸酯和海带淀粉等。褐藻多糖硫酸酯是一类结构复杂的硫酸化杂多糖。本文主要对海带和羊栖菜中的褐藻多糖硫酸酯中的硫酸化杂多糖,硫酸化半乳岩藻聚糖和硫酸化岩藻聚糖(三者统一称为酸性多糖)进行结构表征。探讨褐藻多糖硫酸酯的分子量,岩藻糖和半乳糖摩尔比与其抗凝血活性的构效关系。研究褐藻多糖硫酸酯中发挥神经保护的活性组分,通过马尾藻属多糖进一步确认硫酸化杂多糖为神经保护的活性组分。同时,研究了神经保护与抗氧化之间的关系。主要得到以下结论:
     1.通过对F0.5,F1和F2组分的结构研究,推断粗褐藻多糖硫酸酯具有如下结构单元:
     ①硫酸化的岩藻聚糖:主链以3-连接岩藻糖组成,少量含有4-连接岩藻糖,且硫酸化位置主要为C2或者C4位,同时在岩藻糖的C2位有部分葡萄糖醛酸基化;
     ②甘露葡萄糖醛酸聚糖:主链以2-连接甘露糖和4-连接葡萄糖醛酸交替连接组成,同时在2-连接甘露糖的C6位有部分硫酸化和C3有部分岩藻糖基化;
     ③葡萄糖醛酸聚糖:主链以3-连接葡萄糖醛酸组成,其C4位有岩藻糖基支链;
     ④硫酸化半乳聚糖:以6-连接半乳糖为主链,且硫酸化位置为C4位;
     ⑤木聚糖:以4-连接木糖为主链。
     同时,我们发现分级组分(F0.5,F1和F2)各有相似性和差异性,主要表现在以下几方面:
     (Ⅰ)在单糖组分方面,F0.5含有岩藻糖和半乳糖之外的其他单糖组分(甘露糖,葡萄糖醛酸和葡萄糖等),F1主要以岩藻糖和半乳糖为主,伴随有少量的其他单糖组分,F2主要以岩藻糖为主。
     (Ⅱ)在硫酸根方面,F0.5,F1和F2的硫酸根含量依次增加。
     (Ⅲ)在分子量方面,F0.5,F1和F2的分子量依次增加。
     (Ⅳ)但是从结构单元来讲,F0.5,F1和F2均具有硫酸化的岩藻聚糖,F0.5和F1均具有甘露葡萄糖醛酸聚糖,葡萄糖醛酸聚糖和木聚糖等。
     2.羊栖菜来源的褐藻多糖硫酸酯与海带来源的褐藻多糖硫酸酯的差异性:两者有共同的结构特征单元(岩藻聚糖,甘露葡萄糖醛酸聚糖,半乳聚糖和木聚糖等),但是其主链上的硫酸化的方式以及支链的类别不同,最为不同的是羊栖菜中的硫酸化半乳岩藻聚糖是以岩藻聚糖(岩藻寡糖)和半乳聚糖(半乳寡糖)交替连接的主链。此外,羊栖菜中含有相当量的海带淀粉。
     3.分子量和半乳糖与岩藻糖摩尔比对抗凝血活性的影响:通过阴离子交换色谱法和过氧化氢降解法,制备了七种不同分子量和四种不同半乳糖与岩藻糖摩尔比的样品。通过抗凝血活性测定,推断样品的分子量和半乳糖与岩藻糖的摩尔比影响抗凝血活性。且在APTT和TT实验中,抗凝血活性还与样品浓度有关。
     4.褐藻多糖硫酸酯及其分级组分的神经保护活性及神经保护活性与抗氧化的关系:通过对海带来源的褐藻多糖硫酸酯的分级组分,降解分级组分以及二次分级组分进行神经保护活性测定,推测神经保护活性的物质主要为杂多糖,含有相对较少的岩藻糖含量(少于20%)和硫酸根含量(少于25%),高的糖醛酸含量(多于10%)。为了验证此假设,对马尾藻属多糖进行神经保护活性测定,发现部分马尾藻属多糖没有活性,同时没有活性的马尾藻多糖缺少糖醛酸含量较高的组分,因此对所有马尾藻多糖通过阴离子交换色谱法进行分级,然而失望的是,所有分级组分均无活性,因此只能暂时推测神经保护的活性需要各组分的协同作用。最后,基于本实验的数据,我们推测去除羟自由基活性,去除DPPH自由基活性和还原能力与神经保护活性有关,但是去除超氧自由基活性与神经保护活性无关。
Polysaccharides from brown seaweeds contained mainly algin, fucoidan andlaminaran. Fucoidan was a family of complex sulfated heteropolysaccharides. Thisstudy focused on the structural elucidation of the fucoidan from Saccharina japonica,including sulfated heteropolysaccharides, sulfated galactofucan and sulfated fucan,which are named together as acidic polysaccharides. In addition, the structure of thefucoidan from Sargassum fusiforme (Hizikia fusiforme) was investigated. Then therelationships between molecular weight, the molar ratio of galactose (Gal) to fucose(Fuc) and anticoagulant activity were also discussed. Finally, sulfatedheteropolysaccharides contributed to the neuroprotective activity, which wasconfirmed by the results of fucoidan and its fractions from S. japonica and Sargassumspecies. The main results were as follows:
     1. According to the results of F0.5, F1and F2, it was concluded that the structuralfeatures of fucoidan from S. japonica were as follows:
     (1) Sulfated fucan: a backbone of (1→3)-linked Fucp majorly and (1→4)-linkedFucp minorly, sulfated at C2or C4and branched partly at C2with glucuronic acid(GlcA);
     (2) Sulfated fucoglucuronomannan: a backbone of alternating2-linked mannose(Man) and4-linked GlcAp, sulfated partly at C6of Man and branched partly at C3with Fuc;
     (3) Fucoglucuronan:3-linked GlcA, branched at C4with Fuc;
     (4) Sulfated galactan:6-linked Galp, sulfated at C4;
     (5) Xylan:4-linked xylose (Xyl).
     In addition, after compared with the results of F0.5, F1and F2, it was concludedthat the similarities and differences among F0.5, F1and F2were as follows:Firstly, F0.5contained Fuc, Gal, Man and Glc, et al., F1consisted majorly of Fuc and Gal,and F2was composed of Fuc on the aspects of monosaccharides. Secondly, the sulfatecontents and molecular weight of F0.5, F1and F2increased. Thirdly, F0.5, F1and F2all had a backbone of (1→3)-linked Fucp, and F0.5and F2had glucuronomannan,glucuronan and Xylan et al.
     2. The similarities and differences of fucoidans from S. japonica and S. fusiforme:Both fucoidans contained the same structure units (fucan, glucuronomannan, galactanand xylan et al.). Except the differences of the sulfation pattern and branched residues,the major difference was sulfated galactaofucan from S. fusiforme, which had abackbone of either alternating Gal and Fuc sulfated at C2or alternating (Gal)nand(Fuc)nsulfated at C2. Moreover, fucoidan from S. fusiforme had substantial amount oflaminaran.
     3. The relationships between molecular weight, the molar ratio of galactose (Gal) tofucose (Fuc) and anticoagulant activity: Seven fucoidans that differed with theaverage molecular weight and four fucoidan that differed with the average molecularweight and the molar ratio of Gal to Fuc were obtained by anion exchangechromatography and degradation with hydrogen peroxide and ascorbic acid. It wasconcluded that both the average molecular weigh and the molar ratio of Gal to Fucaffected the anticoagulant activity. Moreover, this activity exhibited dose dependencein the APTT and TT assays.
     4. The neuroprotective activity of fucoidan and its fraction and the relationshipbetween neuroprotective activity and antioxidant activity: After the neuroprotectiveactivities of fucoidan and its fractions from S. japonica were determined, it wasconcluded that sulfated heteropolysaccharide, which contained Fuc (less than20%),sulfate (less than25%) and uronic acid (UA)(more than10%), contributed to theneuroprotective activity. In addition, the neuroprotective activities of fucoidan fromSargassum species were also determined. It was indicated that fraction that containedhigh UA was the principal difference between the active and non-active fucoidans byanion exchange chromatography. However, all fractions did not correlate withneuroprotective effect, suggesting that the neuroprotective effect depended on a variety of factors. Finally, the hydroxyl-radical scavenging effect, the DPPH-redicalscavenging effect and reducing power, not superoxide-radical scavenging effect werecorrelated with the neuroprotective activities based on the data.
引文
[1] Killing H. Zur biochemie der Meersalgen. ZPhysiolChem1913;83:171-197.
    [2] O'Neill AN. Degradative studies on fucoidan. Journal of American Chemistry Society1954;76:5074-5076.
    [3] Cote RH. Disaccharides from fucoidan. Journal of Chemical Society1959:2248-2254.
    [4] Nishino T, Nagumo T, Kiyohara H, Yamada H. Structural characterization of a newanticoagulant fucan sulfate from the brown seaweed Ecklonia kurome. Carbohydrate Research1991;211:77-90.
    [5] Patankar MS, Oehninger S, Barnett T, Williams RL, Clark GF. A revised structure for fucoidanmay explain some of its biological activities. Journal of Biological Chemistry1993;268:21770-21776.
    [6] Chizhov AO, Dell A, Morris HR, Haslam SM, McDowell RA, Shashkov AS, et al. A study offucoidan from the brown seaweed Chorda filum. Carbohydrate Research1999;320:108-119.
    [7] Nagaoka M, Shibata H, Kimura-Takagi I, Hashimoto S, Kimura K, Makino T, et al. Structuralstudy of fucoidan from Cladosiphon okamuranus tokida. Glycoconj J1999;16:19-26.
    [8] Marais M-F, Joseleau J-P. A fucoidan fraction from Ascophyllum nodosum. CarbohydrateResearch2001;336:155-159.
    [9] Ponce NMA, Pujol CA, Damonte EB, Flores MaL, Stortz CA. Fucoidans from the brownseaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies.Carbohydrate Research2003;338:153-165.
    [10] Anastyuk SD, Shevchenko NM, Nazarenko EL, Imbs TI, Gorbach VI, Dmitrenok PS, et al.Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandemMALDI and ESI mass spectrometry. Carbohydrate Research2010;345:2206-2212.
    [11] Vishchuk OS, Ermakova SP, Zvyagintseva TN. The Effect of Sulfated (1->3)-alpha-L-Fucanfrom the Brown Alga Saccharina cichorioides Miyabe on Resveratrol-Induced Apoptosis in ColonCarcinoma Cells. Marine Drugs2013;11:194-212.
    [12] Daniel R, Berteau O, Jozefonvicz J, Goasdoue N. Degradation of algal (Ascophyllumnodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine molluscPecten maximus. Carbohydrate Research1999;322:291-297.
    [13] Daniel Rg, Berteau O, Chevolot L, Varenne A, Gareil P, Goasdoue N. Regioselectivedesulfation of sulfated L-fucopyranoside by a new sulfoesterase from the marine mollusk Pectenmaximus Application to the structural study of algal fucoidan (Ascophyllum nodosum). EuropeanJournal of Biochemistry2001;268.
    [14] Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher A-M, et al. Further data onthe structure of brown seaweed fucans: relationships with anticoagulant activity. CarbohydrateResearch1999;319:154-156.
    [15] Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec-Jouaultb S. A disaccharide repeat unitis the major structure in fucoidans from two species of brown algae. Carbohydrate Research2001;330:529-535.
    [16] Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI. A highlyregular fraction of a fucoidan from the brown seaweed Fucus distichus L. Carbohydrate Research2004;339:511-517.
    [17] Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI. Structure offucoidan from the brown seaweed Fucus evanescens C.Ag. Carbohydrate Research2002;337:719-730.
    [18] Nishino T, Takabe Y, Nagumo T. Isolation and partial characterization of a novel β-d-galactansulfate from the brown seaweed Laminaria angustata var. longissima. Carbohydrate Polymers1994;23:165-173.
    [19] Bilan MI, Grachev AA, Shashkov AS, Thuy TT, Van TT, Ly BM, et al. Preliminaryinvestigation of a highly sulfated galactofucan fraction isolated from the brown alga Sargassumpolycystum. Carbohydrate Research2013;377:48-57.
    [20] Rioux L-E, Turgeon SL, Beaulieu M. Structural characterization of laminaran andgalactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry2010;71:1586-195.
    [21] Rocha HAO. Structural and Hemostatic Activities of a Sulfated Galactofucan from the BrownAlga Spatoglossum schroederi: AN IDEAL ANTITHROMBOTIC AGENT? Journal of BiologicalChemistry2005;280:41278-41288.
    [22] Lee J-B, Takeshita A, Hayashi K, Hayashi T. Structures and antiviral activities ofpolysaccharides from Sargassum trichophyllum. Carbohydrate Polymers2011;86:995-999.
    [23] Hemmingson JA, Falshaw R, Furneaux RH, Thompson K. Structure and antiviral activity ofthe galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). Journal of AppliedPhycology2006;18:185-193.
    [24] Sakai T, Kimura H, Kojima K, Shimanaka K, Ikai K, Kato I. Marine bacterial sulfatedfucoglucuronomannan (SFGM) lyase digests brown algal SFGM into trisaccharides. Mar Biotechnol(NY)2003;5:70-78.
    [25] Li B, Wei X-J, Sun J-L, Xu S-Y. Structural investigation of a fucoidan containing afucose-free core from the brown seaweed, Hizikia fusiforme. Carbohydrate Research2006;341:1135-1146.
    [26] Bilan MI, Grachev AA, Shashkov AS, Kelly M, Sanderson CJ, Nifantiev NE, et al. Furtherstudies on the composition and structure of a fucoidan preparation from the brown alga Saccharinalatissima. Carbohydrate Research2010;345:2038-2047.
    [27] Wang P, Zhao X, Lv Y, Liu Y, Lang Y, Wu J, et al. Analysis of structural heterogeneity offucoidan from Hizikia fusiforme by ES-CID-MS/MS. Carbohydrate Polymers2012;90:602-607.
    [28] Haroun-Bouhedja F, Ellouali M, Sinquin C, Boisson-Vidal C. Relationship between SulfateGroups and Biological Activities of Fucans. Thrombosis Research2000;100:453-459.
    [29] Pereira MS, R.Melo F, A.S.Mour o1P. Is there a correlation between structure andanticoagulant action of sulfated galactans and sulfated fucans? Glycobiology2002;12:573-580.
    [30] Soeda S, Kozako T, Iwata K, Shimeno H. Oversulfated fucoidan inhibits the basic fibroblastgrowth factor-induced tube formation by human umbilical vein endothelial cells: its possiblemechanism of action. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research2000;1497:127-134.
    [31] Koyanagi S, Tanigawa N, Nakagawa H, Soeda S, Shimeno H. Oversulfation of fucoidanenhances its anti-angiogenic and antitumor activities. Biochemical Pharmacology2003;65:173-179.
    [32] Teruya T, Konishi T, Uechi S, Tamaki H, Tako M. Anti-proliferative activity of oversulfatedfucoidan from commercially cultured Cladosiphon okamuranus TOKIDA in U937cells. InternationalJournal of Biological Macromolecules2007;41:221-226.
    [33] Karmakar P, Pujol CA, Damonte EB, Ghosh T, Ray B. Polysaccharides from Padinatetrastromatica: Structural features, chemical modification and antiviral activity. CarbohydratePolymers2010;80:513-520.
    [34] Shimizu J, Wada-Funada U, Mano H, Matahira Y, Kawaguchi M, Wada M. Proportion ofMurine cytotoxic T Cells is Increased by High Molecular-Weight Fucoidan Extracted from OkinawaMozuku (Cladosiphon okamuranus). Journal of Health Science2005;51:394-397.
    [35] Azofeifa K, Angulo Y, Lomonte B. Ability of fucoidan to prevent muscle necrosis induced bysnake venom myotoxins: Comparison of high-and low-molecular weight fractions. Toxicon2008;51:373-380.
    [36] Park S-B, Chun K-R, Kim J-K, Suk K, Jung Y-M, Lee W-H. The differential effect of highand low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. PhytotherapyResearch2010;24:1384-1391.
    [37] Nakazato K, Takada H, Iha M, Nagamine T. Attenuation of N-nitrosodiethylamine-inducedliver fibrosis by high-molecular-weight fucoidan derived from Cladosiphon okamuranus. Journal ofGastroenterology and Hepatology2010;25:1692-1701.
    [38] Anastyuk SD, Shevchenko NM, Ermakova SP, Vishchuk OS, Nazarenko EL, Dmitrenok PS,et al. Anticancer activity in vitro of a fucoidan from the brown alga Fucus evanescens and itslow-molecular fragments, structurally characterized by tandem mass-spectrometry. CarbohydratePolymers2012;87:186-194.
    [39] Hu K, Liu Q, Wang S, Ding K. New oligosaccharides prepared by acid hydrolysis of thepolysaccharides from Nerium indicum Mill and their anti-angiogenesis activities. CarbohydrateResearch2009;344:198-203.
    [40] Li N, Zhang Q, Song J. Toxicological evaluation of fucoidan extracted from Laminariajaponica in Wistar rats. Food and Chemical Toxicology2005;43:421-426.
    [41] Kim K-J, Lee O-H, Lee H-H, Lee B-Y. A4-week repeated oral dose toxicity study offucoidan from the Sporophyll of Undaria pinnatifida in Sprague–Dawley rats. Toxicology2010;267:154-158.
    [42] Pereira MS, Vilela-Silva A-CES, Valente A-P, Moura o PAS. A2-sulfated,3-linked-L-galactan is an anticoagulant polysaccharide. Carbohydrate Research2002;337:2231-2238.
    [43] Pereira MS, Mulloy B, Moura PAS. Structure and Anticoagulant Activity of Sulfated Fucans.The Journal of Biological Chemistry1999;274:7656-7667.
    [44] Cumashi A, Ushakova NA, Preobrazhenskaya ME, D'Incecco A, Piccoli A, Totani L, et al. Acomparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activitiesof nine different fucoidans from brown seaweeds. Glycobiology2007;17:541-552.
    [45] Clément M-J, Tissot B, Chevolot L, Adjadj E, Du Y, Curmi PA, et al. NMR characterizationand molecular modeling of fucoidan showing the importance of oligosaccharide branching in itsanticomplementary activity. Glycobiology2010;20:883-894.
    [46] Yanase Y, Hiragun T, Uchida K, Ishii K, Oomizu S, Suzuki H, et al. Peritoneal injection offucoidan suppresses the increase of plasma IgE induced by OVA-sensitization. Biochemical andBiophysical Research Communications2009;387:435-439.
    [47] Mestechkina NM, Shcherbukhin VD. Sulfated Polysaccharides and Their AnticoagulantActivity:A Review. Applied Biochemistry and Microbiology2010;46:291-298.
    [48] H.Pomin V. An Overview About the Structure-Function Relationship of Marine SulfatedHomopolysaccharides with Regular Chemical Structures. Biopolymers2009;91:601-609.
    [49] Kusaykin M, Bakunina I, Sova V, Ermakova S, Kuznetsova T, Besednova N, et al. Structure,biological activity, and enzymatic transformation of fucoidans from the brown seaweeds.Biotechnology Journal2008;3:904-915.
    [50] Wijesekara I, Pangestuti R, Kim S-K. Biological activities and potential health benefits ofsulfated polysaccharides derived from marine algae. Carbohydrate Polymers2011;84:14-21.
    [51] Wijesinghe WAJP, Jeon Y-J. Biological activities and potential industrial applications offucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review.Carbohydrate Polymers2012;88:13-20.
    [52] Balboa EM, Conde E, Moure A, Falque E, Dominguez H. In vitro antioxidant properties ofcrude extracts and compounds from brown algae. Food Chemistry2013;138:1764-1785.
    [53] Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, andbiological properties of sulfated fucans and an overview of enzymes active toward this class ofpolysaccharide. Glycobiology2003;13:29R-40R.
    [54] Pomin VH, Mour ao PAS. Structure, biology, evolution, and medical importance of sulfatedfucans and galactans. Glycobiology2008;18:1016-1027.
    [55] Pomin VH. Structural and functional insights into sulfated galactans: a systematic review.Glycoconjuate Journal2010;27:1-12.
    [56] Fitton JH. Therapies from Fucoidan; Multifunctional Marine Polymers. Marine Drugs2011;9:1731-1760.
    [57] Jiao G, Yu G, Zhang J, Ewart H. Chemical Structures and Bioactivities of SulfatedPolysaccharides from Marine Algae. Marine Drugs2011;9:196-223.
    [58] Wang W, Wang S-X, Guan H-S. The Antiviral Activities and Mechanisms of MarinePolysaccharides: An Overview. Marine Drugs2012;10:2795-2816.
    [59] Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and Bioactivity. Molecules2008;13:1671-95.
    [60] Usov AI, Bilan MI. Fucoidans-sulfatedd polysaccharides of brown algae. Russian ChemicalReviews2009;78:785-799.
    [61] PA M, MS P. Searching for alternatives to heparin: sulfated fucans from marine invertebrates.Trends in Cardiovascular Medicine1999;9:225-232.
    [62]陈生弟.帕金森病.第一版.北京:人民卫生出版社,2006,2.
    [63] Rhodes SL, Ritz B. Genetics of iron regulation and the possible role of iron in Parkinson'sdisease. Neurobiology of Disease2008;32:183-195.
    [64] Licker V, K vari E, Hochstrasser DF, Burkhard PR. Proteomics in human Parkinson's diseaseresearch. Journal of Proteomics2009;73:10-29.
    [65] Egea J, García AG, Verges J, Montell E, López MG. Antioxidant, antiinflammatory andneuroprotective actions of chondroitin sulfate and proteoglycans. Osteoarthritis and Cartilage2010;18,Supplement1:S24-S7.
    [66] Sugahara K, Mikami T. Chondroitin/dermatan sulfate in the central nervous system. CurrentOpinion in Structural Biology2007;17:536-545.
    [67] Marchionini DM, Lehrmann E, Chu Y, He B, Sortwell CE, Becker KG, et al. Role of heparinbinding growth factors in nigrostriatal dopamine system development and Parkinson's disease. BrainResearch2007;1147:77-88.
    [68] Do H, Pyo S, Sohn EH. Suppression of iNOS expression by fucoidan is mediated byregulation of p38MAPK, JAK/STAT, AP-1and IRF-1, and depends on up-regulation of scavengerreceptor B1expression in TNF-alpha-and IFN-gamma-stimulated C6glioma cells. The Journal ofnutritional biochemistry2010;21:671-679.
    [69] Rhee KH, Lee KH. Protective effects of fucoidan against γ-radiation-induced damage ofblood cells. Archives of Pharmacal Research2011;34:645-651.
    [70] Wang J, Jin W, Zhang W, Hou Y, Zhang H, Zhang Q. Hypoglycemic property of acidicpolysaccharide extracted from Saccharina japonica and its potential mechanism. CarbohydratePolymers2013;95:143-147.
    [71] Tissot B, Montdargent B, Chevolot L, Varenne A, Descroix S, Gareil P, et al. Interaction offucoidan with the proteins of the complement classical pathway. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics2003;1651:5-16.
    [72] Magalhaes KD, Costa LS, Fidelis GP, Oliveira RM, Nobre LTDB, Dantas-Santos N, et al.Anticoagulant, Antioxidant and Antitumor Activities of Heterofucans from the Seaweed Dictyopterisdelicatula. International Journal of Molecular Sciences2011;12:3352-2365.
    [73] Lee S-H, Ko C-I, Jee Y, Jeong Y, Kim M, Kim J-S, et al. Anti-inflammatory effect of fucoidanextracted from Ecklonia cava in zebrafish model. Carbohydrate Polymers2013;92:84-89.
    [74] Guerra Dore CMP, Faustino Alves MGdC, Pofirio Will LSE, Costa TG, Sabry DA, de SouzaRego LAR, et al. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare withanticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydrate Polymers2013;91:467-475.
    [75] H I, H N, H A, C Z, T M, H. I. Antitumor activity and immunological properties of marinealgal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae.1993.p.2045-2052.
    [76] Caipang CMA, Lazado CC, Berg I, Brinchmann MF, Kiron V. Influence of alginic acid andfucoidan on the immune responses of head kidney leukocytes in cod. Fish Physiology andBiochemistry2010;37:603-612.
    [77] Jhamandas JH, Wie MB, Harris K, MacTavish D, Kar S. Fucoidan inhibits cellular andneurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. European Journal ofNeuroscience2005;21:2649-2659.
    [78] Zhao TT, Zhang QB, Qi HM, Liu XG, Li Z. Extension of life span and improvement ofvitality of Drosophila melanogaster by long-term supplementation with different molecular weightpolysaccharides from Porphyra haitanensis. Pharmacological Research2008;57:67-72.
    [79]张全斌,赵婷婷,綦慧敏,李智恩,徐祖洪,张虹, et al.紫菜多糖在制备预防和治疗神经系统疾病药物中的应用.2006:200610047907.9.
    [80]王晓民,罗鼎真,张全斌.褐藻多糖硫酸酯在预防和治疗帕金森病中的应用.2007:200710099008.8.
    [81] Luo D, Zhang Q, Wang H, Cui Y, Sun Z, Yang J, et al. Fucoidan protects againstdopaminergic neuron death in vivo and in vitro. European Journal of Pharmacology2009;617:33-40.
    [82] Cui Y-Q, Zhang L-J, Zhang T, Luo D-Z, Jia Y-J, Guo Z-X, et al. Inhibitory effect of fucoidanon nitric oxide production in lipopolysaccharide-activated primary microglia. Clinical andExperimental Pharmacology and Physiology2010;37:422-428.
    [83] Gao Y, Dong C, Yin J, Shen J, Tian J, Li C. Neuroprotective Effect of Fucoidan onH2O2-Induced Apoptosis in PC12Cells Via Activation of PI3K/Akt Pathway. Cellular and MolecularNeurobiology2012;32:523-529.
    [84] Nishibori N, Sagara T, Hiroi T, Sawaguchi M, Itoh M, Her S, et al. Protective effect ofUndaria pinnatifida sporophyll extract on iron induced cytotoxicity and oxidative stress in PC12neuronal cells. Phytopharmacology2012;2:271-284.
    [85] Jingjing Z, Quanbin Z, Jing W, Xuelian S, Zhongshan Z. Analysis of the MonosaccharideComposition of Fucoidan by Precolumn Derivation HPLC. Chinese Journal of Oceanology andLimnology2009;27:1-5.
    [86] T.Bitter, H.M.Muir. A modified uronic acid carbazole reaction. Analytical Biochemistry1962;4:330-334.
    [87] Wang J, Zhang Q, Zhang Z, Zhang H, Niu X. Structural studies on a novel fucogalactansulfate extracted from the brown seaweed Laminaria japonica. International Journal of BiologicalMacromolecules2010;47:126-131.
    [88] Nagasawa K, Inoue Y, Tokuyasu T. An Improved Method for the Preparation of Chondroitinby Solvolytic Desulfation of Chondroitin Sulfates. The Journal of Biochemistry1979;86:1323-1329.
    [89] Jin W, Wang J, Ren S, Song N, Zhang Q. Structural analysis of a heteropolysaccharide fromSaccharina japonica by electrospray mass spectrometry in tandem with collision-induced dissociationtandem mass spectrometry (ESI-CID-MS/MS). Marine Drugs2012;10:2138-152.
    [90] Toida T, Sato K, Sakamoto N, Sakai S, Hosoyama S, Linhardt RJ. Solvolyticdepolymerization of chondroitin and dermatan sulfates. Carbohydrate Research2009;344:888-893.
    [91] Chen S, Xue C, Yin La, Tang Q, Yu G, Chai W. Comparison of structures and anticoagulantactivities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohydrate Polymers2011;83:688-696.
    [92] Duarte MER, Cardoso MA, Noseda MD, Cerezo AS. Structural studies on fucoidans from thebrown seaweed Sargassum stenophyllum. Carbohydrate Research2001;333:281-293.
    [93] Saad OM, Leary JA. Delineating Mechanisms of Dissociation for Isomeric HeparinDisaccharides Using Isotope Labeling and Ion Trap Tandem Mass Spectrometry. American Society forMass Spectrometry2004;15:1274-1286.
    [94] Xue J, Song L, Khaja SD, Locke RD, West CM, Laine RA, et al. Determination of linkageposition and anomeric configuration in Hex-Fuc disaccharides using electrospray ionization tandemmass spectrometry. Rapid Communications in Mass Spectrometry2004;18:1947-1955.
    [95] Choi J-i, Kim H-J, Lee J-W. Structural feature and antioxidant activity of low molecularweight laminarin degraded by gamma irradiation. Food Chemistry2011;129:520-523.
    [96] Shevchenko NM, Anastyuk SD, Gerasimenko NI, Dmitrenok PS, Isakov VV, ZvyagintsevaTN. Polysaccharide and lipid composition of the brown seaweed Laminaria gurjanovae. RussianJournal of Bioorganic Chemistry2007;33:88-98.
    [97] Rioux LE, Turgeon SL, Beaulieu M. Structural characterization of laminaran andgalactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry2010;71:1586-1595.
    [98] Anastyuk SD, Imbs TI, Shevchenko NM, Dmitrenok PS, Zvyagintseva TN. ESIMS analysisof fucoidan preparations from Costaria costata, extracted from alga at different life-stages.Carbohydrate Polymers2012;90:993-1002.
    [99] Synytsya A, Kim W-J, Kim S-M, Pohl R, Synytsya A, Kvasni ka F, et al. Structure andantitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida.Carbohydrate Polymers2010;81:41-48.
    [100] Foley SA, Mulloy B, Tuohy MG. An Unfractionated Fucoidan from Ascophyllum nodosum:Extraction, Characterization, and Apoptotic Effects in Vitro. Journal of Nature Products2011:110829092019063.
    [101] Barros Gomes Camara R, Silva Costa L, Pereira Fidelis G, Duarte Barreto Nobre LT,Dantas-Santos N, Lima Cordeiro S, et al. Heterofucans from the Brown Seaweed Canistrocarpuscervicornis with Anticoagulant and Antioxidant Activities. Marine Drugs2011;9:124-138.
    [102] Chandía NP, Matsuhiro B. Characterization of a fucoidan from Lessonia vadosa(Phaeophyta) and its anticoagulant and elicitor properties. International Journal of BiologicalMacromolecules2008;42:235-240.
    [103] Wijesinghe WAJP, Athukorala Y, Jeon Y-J. Effect of anticoagulative sulfated polysaccharidepurified from enzyme-assistant extract of a brown seaweed Ecklonia cava on Wistar rats. CarbohydratePolymers2011;86:917-921.
    [104] Mour o PAS, Boisson-Vidal C, Tapon-Bretaudière J, Drouet B, Bros A, Fischer A-M.Inactivation of Thrombin by a Fucosylated Chondroitin Sulfate from Echinoderm. ThrombosisResearch2001;102:167-176.
    [105] Croci D, Cumashi A, Natalia A Ushakova, Preobrazhenskaya M, Piccoli A. Fucuans, but notFucomannoglucuronans, Determine the Biological Activities of Sulfated Polysaccharides fromLaminaria saccharina Brown Seaweed. Plos One2011. p. e17283.
    [106] Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes.Phytochemistry1989;28:1057-1060.
    [107] Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on theautoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry1992;40:945-948.
    [108] Yen G-C, Chen H-Y. Antioxidant Activity of Various Tea Extracts in Relation to TheirAntimutagenicity. Journal of Agricultural and Food Chemistry1995;43:27-32.
    [109] Wang J, Zhang Q, Zhang Z, Song H, Li P. Potential antioxidant and anticoagulant capacityof low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal ofBiological Macromolecules2010;46:6-12.
    [110] Halliwell B, Gutteridge JMC, Aruoma OI. The deoxyribose method: A simple “test-tube”assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry1987;165:215-219.
    [111] Shon M-Y, Kim T-H, Sung N-J. Antioxidants and free radical scavenging activity ofPhellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chemistry2003;82:593-597.
    [112] Mau JL, Chang CN, Huang SJ, Chen CC. Antioxidant properties of methanolic extractsfrom Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chemistry2004;87:111-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700