人工免疫系统在非线性系统辨识与预测控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文基于免疫系统原理来研究非线性系统控制领域两大重要课题:非线性系统模型辨识及其预测控制。免疫系统是一个具有强大学习能力的分布式动态鲁棒系统,在免疫系统中种类有限的抗体能够识别种类繁杂并且处于不断进化中的抗原。抗体识别抗原的这种机制显示免疫系统具有强大的自学习、自组织能力及良好的自适应性,这正是系统辨识所渴求的特征;而基于免疫原理提出的各种优化算法是一种具有优越性能的全局优化算法,非常适合预测控制的滚动优化等各种优化问题的求解。论文主要研究内容及贡献如下:
     (1)提出一种抗体结构编码方法及基于结构编码的免疫优化算法,实现非线性系统结构辨识。该算法基于免疫系统原理,将抗体的非线性响应模型编码为动态结构树,通过结构树的克隆、选择、变异、交叉等免疫操作来实现非线性问题的免疫优化,实现了非线性系统模型的结构辨识。
     (2)提出一种抗体的混合编码方法及基于混合编码的免疫优化算法,应用于非线性系统模型的结构与参数的一体化辨识。混合编码方法将非线性表达式的结构通过动态结构树来描述,表达式的参数通过动态浮点数组来描述,代表非线性表达式的抗体的完整编码由动态结构树编码与浮点编码混合组成。该算法通过对结构编码与参数编码的免疫优化操作实现非线性表达式结构与参数的免疫优化,实现非线性系统模型的结构与参数的一体化辨识。基于结构编码与混合编码的免疫优化算法均具有卓越的全局搜索性能,不依赖过多的先验知识,应用于非线性系统辨识时,能得到结构简单、容易理解的非线性表达式模型。
     (3)提出一种基于克隆选择的免疫预测控制算法。采用比较通用的NARX形式的预测模型,通过克隆选择算法求解滚动优化问题,利用预测模型及目标函数在解空间中寻优直接获得预测时域内的最佳控制序列,避免了求解Diophantine方程与逆矩阵及复杂的推导过程。该算法对非线性系统不需要进行线性化,对带强耦合的MIMO系统不需要解耦,使用罚函数处理约束也非常方便。仿真结果表明基于克隆选择的免疫预测控制算法对外部干扰及建模误差具有很好的鲁棒性;并且不修改算法及算法参数就能对时滞系统、非最小相位系统、不稳定对象、非线性系统及MIMO系统等实现理想的控制效果,因而具有通用性,有利于预测控制的应用推广。
     (4)设计一种基于自适应免疫预测控制的智能控制仪表。该仪表将基于混合编码免疫优化的系统辨识算法与基于克隆选择的预测控制算法结合,采用基于多DSP并行实现的模块化硬件/软件结构,具有并行性、自适应性、鲁棒性、通用性及易于使用与维护等特点,有望成为优于传统PID仪表的新一代智能控制仪表。
     (5)针对船舶载重货物计量难的现状,研制了一种新型的船舶载重智能计量仪。该计量仪首次利用混合编码免疫辨识算法实现船舶载重模型的辨识,通过检测船体四个位置的吃水深度,根据辨识出的船舶重量模型计算船舶重量,从而实现装/卸货物的计量。工程实践表明,该船舶载重智能计量仪计量误差小于0.5%,完全满足船舶运输中对中低价货物的计量要求,同时为船舶载重在线测量提供了一种新型计量方法。
Based on the immune principium, two significant fields concerning about nonlinear system control: the nonlinear system model identification and the predictive control are discussed in this dissertation. The immune system is emerging as a distributed dynamic robust control system with powerful self-study ability and more and more researchers attach importance to the artificial immune algorithm based on the immune principium, which is widely employed in numerous fields. Although with finite categories, the antibody in immune system is able to identify the antigen which is of multifarious categories and continuous evolution. The mechanism, which the antibody identifies the antigen, verifies that the immune system is of powerful self-study, self-organizing and favorable self-adaptive performances which are needed by normal system identification. Diversified optimization algorithms based on the immune principium are global optimization algorithms with excellent performances which are fit for diversified optimization problems such as rolling optimization in predictive control. The main research content of this thesis and contribution are below:
     (1) A coding method for antibody structure and an immune optimization algorithm based on the structure coding are proposed here, which are applied to nonlinear system structure identification. This algorithm is based on the principium of immune system and encodes the nonlinear response model of the antibody as a dynamic structure tree, which can be utilized in the immune optimization for nonlinear problems through the immune operations such as clone, selection, mutation and crossover on the structure tree. The structure identification for nonlinear system can be achieved with the algorithm.
     (2) A hybrid coding method for antibody and an immune optimization algorithm based on the hybrid coding method are proposed here which are employed in the incorporate identification for the structure and parameters of nonlinear system model. The structure of the nonlinear expression is encoded as a dynamic structure tree though hybrid coding method, in which the parameters of the expression are described by dynamic floating point array. The operations of immune optimization for the nonlinear expression structure and parameters are achieved through the encoding of structure and parameters, which are used for the realization of incorporate identification for the structure and parameters of nonlinear system model. There are excellent performances in immune optimization algorithm based on structure coding and hybrid coding, such as predominant global searching ability, not so reliant in getting too much transcendent knowledge and easy to get an intelligible nonlinear expression model with simple structure.
     (3) A predictive immune clone algorithm based on clone selection is proposed. A predictive model based on universal form of NARX is employed and the rolling optimization problem is solved by the clone selection algorithm, in which the optimum control sequence in time domain is directly achieved by using predictive model and the searching for the optimum of the target function in solution space so that it can avoid the complex process of solving Diophantine function, inverse matrix and so on. It is no need for this algorithm to linearize the nonlinear system and to decouple the strong-coupling MIMO system. It is also convenient to use the penalty function to solve the restriction. The simulation results also verify that the algorithm exhibits corking robustness against the external interference and modeling errors. Ideal control effect can be achieved without changes of the algorithm and its parameters in time-delay system, non-minimum phase system, unstable object, non-linear system and MIMO system. It is so that why this algorithm has generality and is easy to use, which is favorable for the application and generalization of predictive control.
     (4) A novel intelligent watercraft load meter is developed against the status quo that the watercraft load is hard to measure. It is the first time for the hybrid coding immune identification algorithm to identify the watercraft load model and actualize the measuring of loading and unloading cargo. The practical engineering application verifies that the error of the proposed watercraft load meter is less than 0.5% which satisfies the requirement of measuring low price cargo in watercraft transportation completely and a novel method for watercraft load online testing is proposed at the same time.
     (5) An intelligent control meter based on adaptive immune predictive control is designed. This intelligent meter incorporates the system identification algorithm based on hybrid immune optimization and predictive control algorithm based on clone selection, whose hardware and software structure are actualized by multiple parallel DSP. It includes performances such as parallelism, adaptability, robustness, generality and easy for using and maintenance. So it will be a new generation of intelligent control meter which is more excellent than traditional PID meters.
引文
[1]诸静等.智能预测控制及其应用[M].杭州:浙江大学出版社, 2002:
    [2]李书臣,徐心和,李平.预测控制最新算法综述[J].系统仿真学报, 2004, 16(6): 1314-1318
    [3] Qin S J, Thomas A B. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7):733-764
    [4]席裕庚.预测控制[M].北京:国防工业出版社, 1993:
    [5]莫宏伟.人工免疫系统原理与应用[M].哈尔滨:哈尔滨工业大学出版社, 2002:
    [6] Zadeh L A. From Circuit Theory to System Theory[J]. Proc IRE, 1962,50(5): 856-865
    [7]张广莹.前馈神经网络在非线性系统辨识中的应用[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学控制科学与工程系, 2002: 2-13
    [8]李秀英,韩志刚.非线性系统辨识方法的新进展[J].自动化技术与应用, 2004, 23(10):5-7
    [9]王立红.神经网络辨识研究的现状[J].辽宁工学院学报, 2004, 24(3):15-17
    [10]童桦,刘一江,易理刚.神经网络在线学习补偿自适应控制及其应用[J].控制理论与应用, 2004, 21(4):579-583
    [11]谢又成,章兢,任萍,樊绍胜.基于模糊神经网络的球团密度在线测量[J].湖南大学学报(自然科学版), 2005, 32(6):52-56
    [12]王耀南,王辉,邱四海,黄守道.基于递归模糊神经网络的感应电机无速度传感器矢量控制[J].中国电机工程学报, 2004, 24(5):84-88
    [13]李世华,吴福保,李奇.一种基于动态人工神经网络的Wiener模型辨识[J].控制理论与应用, 2000, 17(1):93-95
    [14]宋轶民,张策,马文贵.基于Hopfield神经网络的线性系统参数辨识[J].控制理论与应用, 2000, 17(1):121-124
    [15]张广莹,邓正隆.小波分析在系统辨识中的应用[J].电机与控制学报, 2002, 1(1):64-67
    [16] DELYON B, JUDTISKY A, BENVENISTE A. Accuracy analysis for wavelet approximation[J]. IEEE Trans on Netural Networks, 1995, 6(2):332-348
    [17]吕立华,宋执环,李平.一种基于小波多分辨率分析的多采样率系统辨识方法[J].控制理论与应用, 2002, 19(2): 225-228.
    [18]李力,方华京.小波神经网络逼近能力及Thau定理推广[J].控制与决策, 2000, 15(5):561-564
    [19]昌伯权,李天锋.一种用于函数学习的小波神经网络[J].自动化学报, 1998, 24(4):548-551
    [20]李向武,韦岗.基于小波网络的动态系统辨识方法[J].控制理论与应用, 1998, 15(4):494-500
    [21]张兆宁,喻文焕,郁惟镛.动态非线性连续时间系统的小波神经网络辨识[J],控制理论与应用, 2002, 19(5):709-712
    [22]孙炜,王耀南.模糊小波基神经网络的机器人轨迹跟踪控制[J].控制理论与应用, 2003, 20(1):49-53
    [23]彭金柱,王耀南,孙炜.基于混合学习算法的模糊小波神经网络控制[J].湖南大学学报(自然科学版), 2006, 33(2): 51-54
    [24]曹承志,鲁木平,王楠等.基于小波模糊神经网络的DTC系统参数的辨识[J].电工技术学报, 2004, 19(6):18-22
    [25]王宏伟,马广富,王子才.模糊辨识理论与应用研究[J].系统仿真学报, 2002, 12(2):87-90
    [26] Wang L X, Mendel JM. Fuzzy basis functions, universal approximation and orthogonal least squares learning[J]. IEEE Trans on Neural Networks, 1992, (3)5:807-814
    [27]肖建,白裔峰,于龙.模糊系统结构辨识综述[J].西南交通大学学报, 2006, 41(2):135-142
    [28]全永兵.非线性系统的模糊建模与控制方法研究[东北大学博士论文].沈阳:东北大学信息科学与工程学院, 2001: 4-8
    [29] Jin Y C, Jiang JD, Zhu J. Neural Network Based Fuzzy Identification and Its Application to Modeling and Control of Complex Systems [J]. IEEE Trans on SMC, 1995, 25(6): 990– 997
    [30] Zhang J, Morris J L. Process Modeling and Fault Diagnosis Using Fuzzy Neural Networks[J]. Fuzzy Sets and Systems , 1996, 79(1) : 127-140
    [31] Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Trans Syst Man Cybern, 1985, 15(1):16-32
    [32] Sugeno M, Yasukawa T. A fuzzy logical based approach to qualitative modeling[J]. IEEE Transactions On Fuzzy System, 1993, 1(l): 7- 25
    [33]蒙祖强,蔡自兴.一种基于并行遗传算法的非线性系统辨识方法[J].控制与决策, 2003, 18(3):367-374
    [34]戴义平,邓仁纲,刘炯等.基于遗传算法的汽轮机数字电液调节系统的参数辨识研究[J].中国电机工程学报, 2002, 22(7):101-104
    [35] Rodriguez-Vazquez K, Fleming P J. A genetic programming NARMAX approach to nonlinear system identification[A]. In: Second International Conference on Genetic Algorithms in Engineering Systems- Innovations and Applications[C], University of Strathclyde, Glasgow, UK :Institution of Electrical Engineers , 1997:409 -414
    [36] Winkler S, Affenzeller M, Wagner S. New Methods for the Identification of Nonlinear Model Structures Based Upon Genetic Programming Techniques [J]. Journal of Systems Science, 2005, 31(1): 5-13
    [37] Madar J, Abonyi J, Szeifert F. Genetic programming for the identification of nonlinear input-output models[J]. Industrial and Engineering Chemistry Research, 2005, 44(9): 3178-3186
    [38]徐雪松,诸静.人工免疫系统在复杂系统免疫辨识中的应用[J].控制理论与应用, 2004, 21(6):890-894
    [39]朱红霞,沈炯,李益国.一种新的动态聚类算法及其在热工过程模糊建模中的应用[J].中国电机工程学报, 2005, 25(7):34-40
    [40]林金星,沈炯,李益国.基于免疫原理的径向基函数网络在线学习算法及其在热工过程大范围工况建模中的应用[J].中国电机工程学报, 2006, 26(9): 14-19
    [41] Campelo F, Frederico G, Igarashi H, et al. A Modified Immune Network Algorithm for Multimodal Electromagnetic Problems[J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42(4): 1111-1114
    [42] Luh G C, Cheng W C. Non-linear system identification using an artificial immune system[J]. Journal of Systems &Control Engineering, 2001, 215(6): 569-585
    [43]李志勇.迭代预测控制算法及其应用研究[中南大学博士论文].长沙:中南大学信息科学与工程学院, 2006: 2-8
    [44]丁宝苍.预测控制的理论与方法[M].北京:机械工业出版社, 2008:
    [45] Richalet J, Rault A, Testud J L, et al. Algorithmic control of industrial processes[A]. In: Proceedings of the 4th IFAC symposium on identification and system parameter estimation[C], 1976: 1119–1167
    [46] Richalet J, Rault A, Testud JL, et al. Model predictive heuristic control: Applications to industrial processes[J]. Automatica, 1978, 14(5): 413–428
    [47] Garcia C E, Morshedi A M. Quadratic programming solution of dynamic matrix control (QDMC)[J]. Chemical Engineering Communications, 1986,46(n1-3):73–87
    [48] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive Control, Part I: Basic algorithm and Part II: Extensions and interpretations[J]. Automatica, 1987,23(2): 137-160
    [49] Yang Y, Gao F. Adaptive control of the filling velocity of thermoplastics injection molding [J]. Control Engineering Practice, 2000, 8(11): 1285-1296
    [50]李奇安,李平,王树青.串联系统的多前馈—反馈广义预测控制[J].控制与决策, 2002, 17(4): 402-406
    [51] Ogata K, Fujii S, Hayakawa Y. Multivariable Generalized Predictive Control with Multirate sampling Model[A]. In: Transactions of the Society of Instrument and Control Engineers[C], Japanese, 1993, 29(1): 39-45
    [52] Ogata K, Fujii S, Hayakawa Y. The Simplification of Computation and the Improvement of Tracking Performance in the Continuous-time Generalized Predictive Control[A]. In: Transactions of the Society of Instrument and Control Engineers[C], Japanese, 1993, 29(2): 188-193
    [53] Cannon M, Kouvaritakis E. Infinite horizon predictive control of constrained continuous-time linear systems [J]. Automatica, 2000, 36(7): 943-955
    [54]席裕庚,谷寒雨.有约束多目标多自由度的可行性分析及软约束调整[J].自动化学报, 1998, 24(6): 729-732
    [55] Seki H, Ogawa M, Ooyama S. Industrial application of a nonlinear model predictive control to polymerization reactors [J]. Control Engineering Practice, 2001, 9(8): 819-828
    [56]张阿卜,黄伟斌.采用遗传算法训练对角递归神经网络预测控制器[J].信息与控制, 2000, 29(1): 70-75
    [57]杜晓宁,席裕庚,李少远.分布式预测控制算法的性能分析[J].控制与决策, 2002, 17(2): 226-229
    [58] Silva, Dulce C M, Oliveira, Nuno M C. Optimization and nonlinear model predictive control of batch polymerization system [J]. Computers and Chemical Engineering, 2002, 26(4-5): 649-658
    [59] Maner B R, Dolyle F J. Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order volterra models[J]. Automatica, 1996, 32(9): 1285-1301
    [60]刘强,许晓鸣,张卫东.基于Volterra模型的非线性系统预测控制[J].控制与决策, 2000, 15(3): 339-344
    [61] Pomerleau D A, Hodouin D. A procedure for the design and evaluation ofdecentralized and model-base predictive multivariable controllers for a pellet cooling process[J]. Computers and Chemical Engineering, 2003, 27(2): 217-233
    [62]张泉灵,王树青.基于Hammerstein模型的非线性预测控制[J].浙江大学学报, 2002, 36(2): 119-122
    [63] Norguary S L, Palazoglu A, Romagnoli J A. Nonlinear Model Predictive Control of PH Neutralization Using Wiener Models[A]. In: Proc 13th IFAC World Cong[C], San Fransisco, 1996: 31-36
    [64]王慧燕,诸静.基于EGA的非线性预测控制器[J].控制与决策, 2002, 17(2): 252-254
    [65] Zhao Z, Xia X H. Nonlinear dynamic matrix control based on multiple operating models[J]. Journal of Process Control, 2003, 13(1): 41-56
    [66] Hannu T T, Kati V S. Internal model control of nonlinear system described by velocity-based linearizations[J]. Journal of Process Control, 2003, 13(3): 215-224
    [67] Aufderheide B, Bequette B W. Extension of dynamic matrix control to multiple models [J]. Computers and Chemical Engineering, 2003, 27(9): 1079-1069
    [68] Bemporad A, Garulli A. output-feedback Predictive Control of Constrained Nonlinear Systems Via Set-membership State Estimation[J]. Int J Contr, 2000, 73(8): 655-665
    [69] Michael P N, Costas K. Nonlinear model-state feedback control for nonminimum-phase processes [J]. Automatica, 2003, 39(7): 1295-1302
    [70] Leyla O, Kothare M V. Control of a solution copolymerization reactor using multi-model predictive [J]. Chemical Engineering Science, 2003, 58(7): 1207-1221
    [71]李德伟;席裕庚.一种基于衰减集结的鲁棒预测控制器[J].自动化学报, 2008, 34(1):48-54
    [72] Rodrigues M, Odloak D. An infinite horizon model predictive control for stable and integrating processes [J]. Computers and Chemical Engineering, 2003, 27(9): 1113-1128
    [73] Myung J P, Hyun K R. LMI-based robust model predictive control fro a continuous MMA polymerization reactor [J]. Computers & Chemical Engineering, 2001, 25(11): 1513-1520
    [74] Megias D, Serrano J, Kothare M V. Min-Max Constrained quasiinfinite horizon model predictive control using linear programming[J]. Journal of Process Control, 2002, 12(4): 495-505
    [75] Yao H, Lu Y A. A scheduling quasi-min-max model predictive control algorithm for nonlinear systems [J]. Journal of Process Control, 2003, 12(5): 589-604
    [76]张日东,王树青.基于神经网络的非线性系统预测函数控制[J].控制理论与应用, 2007, 24(6):949-953
    [77]夏长亮,修杰.基于RBF神经网络非线性预测模型的开关磁阻电机自适应PID控制[J].中国电机工程学报,2007, 27(3):57-62
    [78]张日东,王树青.基于神经网络的非线性系统多步预测控制[J].控制与决策, 2005, 20(3):332-336
    [79]张春良,梅德庆,陈子辰.微制造隔振平台振动的模糊广义预测控制[J].机械工程学报, 2007, 43(12):194-202
    [80]邢宗义,胡维礼,贾利民.基于T-S模型的模糊预测控制研究[J],控制与决策, 2005, 20(5):495-499
    [81]张军,计秉玉,谢荣华.王彪一类非线性时滞系统的模糊预测控制[J].系统仿真学报, 2004, 16(9):2083-2085
    [82]张强,李少远.基于遗传算法的约束广义预测控制[J].上海交通大学学报, 2004, 38(9):1562-1566
    [83]张兴会,杜升之,陈增强等.基于遗传算法的有约束非线性预测控制[J].仪器仪表学报, 2004, 24(4):556-557
    [84]杨建军,刘民,吴澄.基于遗传算法的非线性模型预测控制方法[J].控制与决策, 2003, 18(2):141-144
    [85] Takahashi K, Yamada T. Application of an Immune Feedback Mechanism to Control Systems[J]. JSME Int J Series C, 1998, 41(2):184-191
    [86] Kawafuku M, Sasaki M, Takahashi K. An immune feedback mechanism based adaptive learning of neural network controller[A]. In: 6th International Conference on Neural Information Processing[C], Piscataway NJ USA, IEEE, 1999: 502-507
    [87] Takahashi K, Yamada T. Application of an immune feedback mechanism to control systems[J]. JSME Int J Series C, 1998, 41(2):184-191
    [88]丁永生,任立红.一种新颖的模糊自调整免疫反馈控制系统[J].控制与决策, 2000, 15(4): 443-446
    [89]丁永生,唐明浩.一种智能调节的免疫反馈控制系统[J].自动化仪表, 2001, 22(10): 5-7
    [90]周文祥,黄金泉,张军锋.免疫反馈算法及其在航空发动机控制中的应用[J].推进技术, 2008, 29(1): 84-88
    [91] Forrest S, Hofmeyr S A. Engineering an immune system[J]. Graft, 2001, l(4):5-9
    [92] Forrest S, Somayaja A, Ackley D. Building diverse computer system[A]. In: proceedings of the sixth workshop on hot topics in operating system[C], IEEE Computer Society Press, 1997:1-6
    [93]庞茂,周晓军,孟庆华.基于免疫学的在线故障检测算法的研究及应用[J].中国电机工程学报, 2005,25(24):149-153
    [94]王东风,韩璞.基于免疫遗传算法优化的汽温系统变参数PID控制[J].中国电机工程学报, 2003, 23(9): 212-217
    [95]王建国,李益国,明学星等.基于免疫算法的多变量控制系统PID参数优化方法研究[J].工业仪表与自动化装置, 2008, (2): 3-6
    [96]徐立芳,王科俊,莫宏伟.基于免疫克隆算法的倒立摆控制参数优化[J].计算机工程与应用, 2007, 43( 35):179-182
    [97]孙勇智,韦巍.基于人工免疫算法的电力系统最优潮流计算[J].电力系统自动化, 2002, 26(12) :30-34
    [98]左兴权,李士勇.一种基于人工免疫原理的最优模糊神经网络控制器[J].信息与控制, 2004, 33(3):380-384
    [99]李艳君, David J H,吴铁军.基于免疫优化的电力系统电压安全非线性预测控制[J].电力系统自动化, 2004, 28(16):25-31
    [100] Jun J H, Lee D W, Sim K B. Realization of cooperative strategies and swarm behavior in distributed autonomous robotic systems using artificial immune system[A]. In: Proceeding of IEEE Systems Man and Cybernetics Conference[C], Tokyo , Japan, 1999: 614– 619
    [101]刘宝,丁永生.一种基于免疫存储记忆的智能控制器的设计与实现[J].控制与决策, 2005, 20(10): 1169-1172
    [102]陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用[J],机械工程学报, 2008, 44(2):196-200
    [103] Luh G C, Cheng W C. Non-linear system identification using an artificial immune system[J]. Proceedings of the Institution of Mechanical Engineers-- Part I--Journal of Systems & Control Engineering, 2001, 215(6): 569-584
    [104] Wei Y G, Zheng D L, Wang Y. Research of An Immune Clone Selection Algorithm and its Application in Heating Furnace State Recognition[A]. In: Proceedings of 2004 International Conference on Information Acquisition, IEEE, 2004: 384-387
    [105]徐炜,贺占庄,黄士坦,杨靓.基于免疫遗传算法的递归模糊神经网络[J].吉林大学学报(信息科学版), 2005, 23(2):162-166
    [106]孙勇智,戴晓晖,韦巍.人工免疫响应的模型研究[J].浙江大学学报(工学版), 2004, 38(6): 682-686
    [107]莫宏伟,郭茂祖,毕晓君.人类免疫系统仿真与建模研究综述[J],计算机仿真, 2008, 25(1): 11-16
    [108] Burnet F M. The Clonal Selection Theory of Acquired Immunity[M]. Nashville: Vanderbilt University Press, 1959:
    [109] Jerne N K. Towards a Network Theory of the Immune System[J]. Annual Immunology, 1974, 125(C): 373-389
    [110] Famer J D, Packard N H, Perelson A S. The Immune System Adaptation and Machine Learning[J]. Physica D, 1986, 2(1-3): 187-204
    [111] Varela F J, Stewart J. Dynamics of a Class of Immune Network Global Stability of Idiotype Interactions[J]. Theoretical Biology, 1990, 144(1): 93-101
    [112] Perelson A S. Immune Network Theory[J]. Immunological review, 1989, 110(8): 5~36
    [113] Bersini H, Varela F J. Hints for Adaptive Problem Solving Gleaned from Immune Networks[A]. In: Proceedings of the First Workshop on Parallel Problem Solving from Nature[C], 1990: 343-354
    [114] Hunt J, Cooke D. Learning using an artificial immune system[J]. Journal of Network and Computer Applications, 1996, 19(2): 189-219
    [115] Dasgupta D, Attoh-Okine N. Immunity-based System: A survey[A]. In: Proc 1997 IEEE int Conf on Systems Man and Cybernetics, Orlando, USA, 1997: 869-874
    [116] Dipankar D. Artificial Immune Systems and Their Applications[M]. New York: Springer-Verlag, 1999:
    [117] De Castro L N, Timmis J. Artificial Immune Systems: A New Computational Intelligence Approach[M]. London: Springer-Verlag, 2002:
    [118]何珍梅,徐雪松.人工免疫系统研究综述[J].华东交通大学学报, 2007, 24(4):79-83
    [119]张泽明,人工免疫算法及其应用研究[中国科学技术大学博士论文].合肥:中国科学技术大学, 2007:
    [120]左兴权,李士勇,李远贵.人工免疫系统研究的新进展[J].计算机测量与控制, 2002, 10(11): 701-705
    [121]徐雪松.基于人工免疫系统的函数优化及其在复杂系统中的应用研究[浙江大学博士论文].杭州:浙江大学, 2004:
    [122] Stadler P F , Schuster P, Perleson A S. Immune networks modeled by replicatorequations[J]. Math Biol, 1994, (33): 111 - 137
    [123] Hirayama H, Okita Y. Mathematical introduction of dynamic behavior of an idio -type network of immune reactions[J]. IEICE Trans Fundamentals, 2000, E83– A(11): 2357– 2369
    [124] Tang Z, Yamaguchi T, Tashima K, Ishizu K A O, Multiple T K. A multiple valued immune network and its applications[J]. IEICE Trans Fundamentals, 1999, E82-A(6) :1102– 1108
    [125]李涛,刘赛,苏贝.人工免疫记忆模型研究[J].计算机技术与发展, 2006, 16(7):29-31
    [126] Abbattista F, Gioia G D, Santo G D, Fanelli A M. An associative memory based on the immune networks[A]. In: IEEE International Conference on Neural Networks[C], Washington DC, USA, 1996:519-523
    [127] Rumehart D, Hinton G, McCelland J. A general framework for parallel distributed processing[A]. In: Parallel Distributed Processing[C], London, MIT Press, 1986:
    [128] Epstein J M, Axtell R L. Growing Artificial Societies--Social Science from the Bottom Up[M]. New York: MIT Press, 1996:138-152
    [129] De Castro L N, Fernando J. An Evolutionary Immune Network for Data Clustering[A]. In: Proceedings of 6th Brazilian Symposium on Neural Networks[C], the IEEE Computer Society Press, 2000:84-89
    [130] Timmis J, Neal M. A resource limited artificial immune system for data analysis[J]. Knowledge-Based-Systems, 2001,(14): 121-130
    [131] Forrest S, Perelson A S, Allen L, Cherukurj R. Self– Non-self Discrimination in a Computer[A]. In: Proceedings of IEEE Symposium on Research in Security and Privacy[C], Oakland, 1994: 202-212
    [132] Helman P, Forrest S. An efficient algorithm for generation random antibody strings[博士学位论文]. New Mexico: New Mexico Univ , 1994:
    [133] De Castro L N, Vonzuben F J. The Clonal Selection Algorithm with Engineering Applications[A]. In: Genetic and evolutionary computation conference[C], Las vegas, USA, 2000:36-37
    [134] De Castro L N, Vonzuben F J. Learning and Optimization Using the Clonal Selection Principle[J]. IEEE Transactionson Evolutionary Computation, 2002, 6(3): 239-251
    [135] Chun J S, Kim M K, Jung H. K. Shape optimization of electromagnetic devices using immune algorithm[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1876-1879
    [136]王磊,潘进,焦李成.免疫规划[J].计算机学报, 2000, 23(8): 806-812
    [137] Jiao L, Wang L. A Novel Genetic Algorithm Based on Immunity[J]. IEEE And Cybernetics--PartA-- Systems and Humans, 2000, 30(5): 552-561
    [138]凌军.基于免疫原理的入侵检测模型和方法研究[武汉大学博士学位论文].武汉:武汉大学无线电物理专业, 2003:
    [139] Koza J R. Genetic Programming--On the programming of Computers by Means of Natural Evolution[M]. Cambridge: MIT Press , 1992:
    [140]刘勇,康立山等.非数值并行算法:遗传算法[M].北京:科学出版社, 1995: 178-197
    [141] Madar J, Abonyi J, Szeifert M. Genetic Programming for System Identification[A]. In: Intelligent Systems Design and Applications (ISDA 2004)conference[C], Budapest, Hungary, 2004:
    [142]杨智,量子遗传算法优化RBF神经网络及在热工辨识中的应用[J].中国电机工程学报, 2008, 28(17):234-236
    [143]黄道平,朱学峰.一种预测优化解耦补偿器的设计[J].自动化学报, 2000, 26(2): 250-253
    [144]蒙文川,邱家驹,张彦虎.约束优化问题的免疫混沌算法[J].浙江大学学报(工学版), 2007, 41(2): 299-303
    [145]曹一家,程时杰.进化算法在工程应用中的若干实用技术[J].电力系统自动化, 2001 , 25 (1) : 60– 63
    [146]张雄伟, DSP芯片的原理与开发应用[J].北京:电子工业出版社, 1997:2-10
    [147]苏奎峰,吕强,耿庆等. TMS320F2812原理与开发[M].北京:电子工业出版社, 2005: 156-225
    [148] TI Inc. TMS320F2810, TMS320F2812 Digital Signal Processors Data Manual. http://www. ti. com/litv/pdf/ SPRS174I. pdf, 2003, 7
    [149] TI Inc. TMS320C6727B, TMS320C6726B, TMS320C6722B, TMS320C6720 Floating-Point Digital Signal Processors. http: //www. ti. com /litv / pdf/ SPRS370E. pdf, 2003:
    [150]刘笃喜,徐修明,许建社等. Modbus协议在分布式伺服测角系统中的应用[J].机床与液压, 2007, 35(1):157-159
    [151]饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社, 2003:
    [152]秦国防,常小明.基于CAN总线的煤矿远程电力通信系统的设计[J].工矿自动化, 2006, (3):76-79
    [153] TI Inc. TMS320F28x DSP Enhanced Controller Area Network(eCAN) Reference Guide. http://www. ti. com/litv/pdf/ SPRU074A.pdf, 2003, 6
    [154]许杭,白瑞林,严惠. CAN总线上层协议的设计[J].计算机工程, 2007, 33(24): 258-260
    [155] TI Inc. TMS320F28x DSP Serial Peripheral Interface(SPI) Reference Guide. http://www. ti. com/litv/pdf/SPRU059A. pdf, June 2003
    [156]张钢,散装货物运输中水尺计重的原则和方法[J].中国航海, 2006, 69(4): 35-38
    [157]麻常见,张守生,船舶水尺计重新技术的开发与应用[J].水运管理, 2006, 28(3):7-9
    [158]王锦法,水尺计量存在问题的探讨.天津航海, 2005, (1): 24-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700