DLC2表达调控结直肠癌发生、侵袭转移及预后的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结直肠癌是世界上最常见的恶性肿瘤之一,由于其发病率、转移率、复发率以及死亡率均较高,使其成为一种严重威胁人类生命健康的恶性肿瘤。随着影像学、外科学的进步以及术后化疗的应用,结直肠癌的预后已经有所改善,但肿瘤的复发、转移仍是术后患者死亡的主要原因,且已成为提高患者生存期及改善预后的瓶颈。因此,深入研究结直肠癌发生、侵袭、转移的分子机制并努力探索有效的对抗复发、转移的治疗手段,对于进一步提高患者的生存期及改善预后有重要意义。
     Rho GTP酶激活蛋白家族(GTPase-activating Proteins, GAPs)调控Rho GTP酶的活性。Rho GAPs的重要功能是作为信号传导的分子开关,将活化的Rho-GTP结合蛋白转变为失活的GDP结合状态,从而负性调节Rho GTP酶活性,由此参与粘附斑的形成和细胞骨架的重塑。
     DLC蛋白亚家族属于Rho GAPs家族,由三个氨基酸序列高度同源的成员构成:DLCl、DLC2和DLC3。它们也都属于多结构域蛋白,含有SAM(sterile alpha motif)、RhoGAP(Rho GTPase-activating protein)和START(StAR-related lipid-transfer)三个结构域。DLC2(Deleted in liver cancer2)又被叫作STARD13,于2003年被成功克隆的一种抑癌基因,位于染色体13q12.3。目前对于DLC2的研究尚处起步阶段,至今还没有对DLC2在结直肠癌中的表达情况进行相关研究的报道;其次,作为一个与DLC1结构上高度同源的蛋白,DLC2是否在结直肠癌的发生、侵袭转移中也发挥重要作用,这仍是需要进一步研究的问题。
     Rho家族蛋白是小G蛋白Ras超家族成员,它们是一组分子量为20KD~30KD的鸟苷酸结合蛋白,具有GTP酶活性。1985年,Rho作为Ras同源物首先被克隆出来,称Ras相关单体GTP酶,Rho具有RhoA、RhoB和RhoC三种异构体,Rho家族蛋白参与调节了细胞的多种生命过程,包括肌动蛋白的细胞骨架重组、细胞黏附、细胞运动、细胞周期进展、细胞分裂以及基因转录等。近年来研究发现,Rho家族蛋白与肿瘤发生、发展的多个方面均有联系,包括肿瘤的增殖、侵袭和转移、细胞凋亡、肿瘤新生血管的形成等。Rho家族,特别是RhoA在多种肿瘤组织中表达增加并和肿瘤恶性程度密切相关,提示其在肿瘤发生和发展中具有重要作用。目前,RhoA与恶性肿瘤侵袭与转移的关系已成为研究的热点之
     由于DLC2蛋白的RhoGAP结构域能够激活Rho蛋白的GTP酶水解活性,使Rho蛋白由有活性的GTP结合态转化为无活性的GDP结合态,因此扮演了Rho蛋白家族负性调控因子的角色。同时近来研究已经证实DLC2可以通过抑制RhoA激酶的活性,调节基质金属蛋白酶(matrix metal protease, MMP)的产生,从而改变细胞形态,影响细胞迁移。这提示DLC2可能通过调控RhoA表达从而参与结直肠癌的发生、侵袭、转移过程,但其具体作用机制尚不清楚。
     本课题首先检测结直肠癌组织及癌旁组织标本中DLC2mRNA及蛋白的表达情况,比较结直肠癌及癌旁组织之间表达差异,并且在临床病理变量中比较DLC2表达差异。然后,通过RNA干扰技术,抑制结直肠癌细胞系HT-29细胞中DLC2的表达水平,并综合利用一系列分子生物学和细胞生物学的方法研究DLC2调控结直肠癌发生、侵袭、转移的作用及分子机制。最后,我们通过检测RhoA mRNA及蛋白在结直肠癌组织、癌旁组织标本以及沉默DLC2表达的HT-29细胞系中的表达情况,初步阐述DLC2与RhoA对于结直肠癌的发生、侵袭、转移过程中可能发挥的作用。
     DLC2在结直肠癌及癌旁组织中的表达情况及其与临床指标间的关系
     目的了解DLC2在结直肠癌组织及其对应的癌旁组织中的表达情况并分析其与临床病理变量之间的关系。
     方法(1)Real-time PCR方法检测DLC2mRNA在102例新鲜结直肠癌组织及其对应的癌旁组织中的表达水平。
     (2) Western blot方法检测DLC2蛋白在102例新鲜结直肠癌及其对应的癌旁组织中的表达水平。
     (3)免疫组化方法检测102例结直肠癌组织及其对应的癌旁组织中DLC2蛋白的分布情况和阳性表达率。
     结果(1)Real-time PCR检测结果显示,在结直肠癌组织中DLC2mRNA表达水平低于相对应的癌旁组织,且具有统计学意义(p<0.05)。DLC2mRNA在临床病理变量中的表达情况:淋巴结转移阳性组低于淋巴结转移阴性组(p<0.05); TNM Ⅲ、Ⅳ期组低于TNMⅠ、Ⅱ期组(p<0.05);低、未分化组明显低于中、高分化组(p<0.01)。
     (2) Western blot印记检测结果显示,在结直肠癌组织中DLC2蛋白表达水平高于相对应的癌旁组织,但没有统计学差异(p>0.05)。DLC2蛋白在临床病理变量中的表达情况:淋巴结转移阳性组低于淋巴结转移阴性组(p<0.05); TNM Ⅲ、Ⅳ期组低于TNMⅠ、Ⅱ期组(p<0.05)。
     (3)免疫组化法检测结果显示,DLC2阳性表达主要位于结直肠癌细胞浆内,结直肠癌石蜡组织中的DLC2蛋白表达阳性率及阳性评分均数高于癌旁组织,但无统计学差异(p>0.05)。
     结论DLC2mRNA在结直肠癌组织中表达低于在癌旁组织;但是DLC2蛋白表达水平在结直肠癌和癌旁组织中无统计学差异;结直肠癌组织中DLC2mRNA和蛋白表达均与淋巴结转移和TNM分期相关;另外,DLC2mRNA表达与肿瘤组织学分级相关。
     DLC2的过表达及低表达对结直肠癌细胞生物学行为的影响
     目的利用RNA干扰技术抑制结直肠癌细胞中DLC2表达,研究DLC2对结直肠癌细胞生物学行为的影响。
     方法(1)Western blot印记检测LOVO、SW-620、HT-29、CaCo-2、 HCT-8、HCT-116六株细胞中DLC2蛋白表达水平,筛选出DLC2表达最高的HT-29细胞株进行RNA干扰。
     (2)脂质体LipofectamineTM2000转染HT-29细胞,获得HT-29、 HT-29DLC2RNAi-和HT-29DLC2RNAi+三组细胞用于后续试验。
     (3) Real-time PCR检测HT-29、HT-29DLC2RNAi-和HT29DLC2RNAi+三组结直肠癌细胞株中DLC2mRNA表达情况。
     (4) Western blot印记检测HT-29、HT-29DLC2RNAi-和DLC2RNAi+三组结直肠癌细胞株中DLC2蛋白表达量。
     (5)细胞粘附实验、划痕愈合实验、Transwell侵袭实验分别比较HT-29、HT-29DLC2RNAi-和HT-29DLC2RNAi+三组结直肠癌细胞的粘附、迁移、侵袭能力。
     (6)细胞免疫荧光实验比较HT-29、HT-29DLC2RNAi-和HT-29DLC2RNAi+三组结直肠癌细胞中DLC2蛋白表达情况并尝试比较三组细胞的形态差异。
     (7)MTT、克隆形成实验和AnnexinV-FITC/PI双染色法、流式细胞技术比较HT-29、HT-29、DC2RNAi-和HT29DLC2RNAi+三组结直肠癌细胞增殖、凋亡能力。
     结果(1)从LOVO、SW-620、HT-29、CaCo-2、HCT-8、HCT-116六株结直肠癌细胞中筛选出DLC2蛋白表达水平最高的HT-29细胞株,并获得满意的转染效率,成功获得DLC2表达沉默的HT-29DLC2RNAi+和无效对照的HT-29DLC2RNAi-以及空白对照HT-29细胞亚株。
     (2)Real-time PCR检测结果显示,HT29DLC2RNAi+组细胞中的DLC2mRNA表达水平明显低于HT-29及HT-29DLC2RNAi-组细胞(p<0.01),证明HT-29DLC2RNAi+组抑制效率明显高于HT-29DLC2RNAi-组。
     (3) Western blot印记检测结果显示,HT-29DLC2RNAi+组细胞中的DLC2蛋白表达水平明显低于HT-29及HT-29DLC2RNAi-组细胞(p<0.01),再次证实HT-29DLC2RNAi+组抑制效率明显高于HT29DLC2KNAi-组。
     (4)细胞粘附实验、划痕愈合实验、Transwell侵袭实验结果显示,HT-29DLC2RNAi+组细胞较HT-29和HT-29DLC2RNAi-组细胞的粘附能力增强(p<0.05);细胞迁移能力增强(p<0.05);侵袭能力显著增强(p<0.01)。
     (5)细胞免疫荧光检测结果显示,DLC2主要表达于细胞浆,且HT-29DLC2RNAi+组细胞与HT-29和HT-29DLC2RNAi-两组细胞比较,细胞膜表面有类似片状伪足样突起。
     (6)MTT、克隆形成实验和Annexin V-FITC/PI双染色法、流式细胞技术检测结果显示,HT-29、HT-29DLC2RNAi-和HT-29DLC2RNAi+三组细胞增殖能力没有统计学差异(p>0.05);而HT-29DLC2RNAi+组细胞的凋亡率以及凋亡细胞所占各周期细胞比例均明显低于HT-29、HT-29DLC2RNAi-两组细胞(p<0.01)
     结论体外抑制DLC2的表达水平可显著增强结直肠癌细胞HT-29的侵袭、转移能力和凋亡能力,但并不影响结直肠癌细胞的增殖能力。
     DLC2与RhoA在结直肠癌发生、侵袭、转移过程中的相互关系
     目的了解RhoA在结直肠癌及癌旁组织中的表达情况以及其与临床病理变量之间的关系;通过RNA干扰技术,检测RhoA在DLC2表达抑制的HT-29细胞株中的表达情况,以初步研究DLC2与RhoA两者在结直肠癌发生、侵袭、转移过程中的相互关系。
     方法
     (1) Real-time PCR方法检测RhoA mRNA在102例结直肠癌组织及其对应的癌旁组织中的表达水平;同时检测RhoA mRNA在结直肠癌细胞株HT-29、HT-29DLC2RNAi-及HT-29DLC2RNAi+三组细胞中的表达水平。
     (2) Western blot印记方法检测RhoA蛋白在102例结直肠癌组织及其对应的癌旁组织中的表达水平;同时检测RhoA蛋白在结直肠癌细胞株HT-29、HT-29DLC2RNAi-及HT-29DLC2RNAi+三组细胞中的表达水平。
     (3)免疫组化方法检测102例结直肠癌组织及其对应的癌旁组织中RhoA蛋白的分布情况及阳性表达率。
     结果
     (1) Real-time PCR检测结果显示,在结直肠癌组织中RhoA mRNA表达水平明显高于相对应的癌旁组织(p<0.01)。RhoA mRNA在临床病理变量中的表达情况:淋巴结转移阳性组明显高于淋巴结转移阴性组(p<0.01); TNMⅢ、Ⅳ期组高于TNMⅠ、Ⅱ期组(p<0.05);低、未分化组明显高于中、高分化组(p<0.01)。RhoA mRNA在HT-29DLC2RNAi+组细胞中的表达水平明显高于HT-29及HT-29DLC2RNAi-两组细胞(p<0.01)。
     (2) Western blot印记检测结果显示,在结直肠癌组织中RhoA蛋白表达水平高于相对应的癌旁组织(p<0.01)。RhoA mRNA在临床病理变量中的表达情况:淋巴结转移阳性组高于淋巴结转移阴性组(p<0.05); TNMⅢ、Ⅳ期组明显高于TNMⅠ、Ⅱ期组(p<0.01);低、未分化组明显高于中、高分化组(p<0.01)。RhoA蛋白在HT-29DLC2RNAi+组细胞中的表达水平高于HT-29及HT-29DLC2RNAi-两组细胞(p<0.05)。
     (3)免疫组化检测结果显示,RhoA阳性表达主要位于结直肠癌细胞浆内,偶见细胞膜染色;结直肠癌组织与癌旁组织相比较,RhoA阳性表达率及阳性评分均数高于对应的癌旁组织,其中阳性表达率有统计学差异(p<0.05);阳性评分均数有显著统计学差异(p<0.01)。
     结论
     RhoA mRNA及蛋白在结直肠癌组织中表达明显高于癌旁组织;RhoA mRNA和蛋白表达与淋巴结转移、TNM分期以及肿瘤分级相关;在结直肠癌细胞HT-29中,沉默DLC2表达能增加RhoA mRNA及蛋白的表达。
Colorectal cancer (CRC) is one of the most common malignant tumors in the world, because of its higher recurrence metastasis incidence and mortality rate, CRC becomes a serious threat to human life and health. With the progress of imageology, surgery and adjuvant chemotherapy, the prognosis of colorectal cancer has improved. However, the postoperative recurrence and metastasis are still the leading causes of death in patients with CRC, and have become the bottleneck of improving survival and prognosis of the patients. Therefore, further study in tumorigenesis, invasion and metastasis molecular mechanism of CRC and trying to explore the effective treatment against its recurrence and metastasis, are important to improve the long-term survival rate and prognosis of CRC patients.
     Rho GTPase activating protein family (GTPase activating Proteins, GAPs) regulated of Rho GTPase, which act by switching between an inactive GDP-bound and an active GTP-bound conformation, with the latter form could negatively regulate Rho GTPase activity, which involved in the formation of the focal adhesion and the cytoskeletal reorganization.
     DLC (Deleted in liver cancer) protein family, as a member of Rho GAPs family, has three members DLC1DLC2and DLC3, which have the highly relevant amino acid sequence. They all contain SAM (sterile alpha motif), RhoGAP (Rho GTPase activating protein) and START (StAR related lipid transfer) domains. DLC2(Deleted in liver cancer2), also called STARD13, was cloned in2003as a tumor suppressor gene, located in chromosome13q12.3. First, researches about DLC2were still in infancy, and there were no researches about DLC2expression in colorectal cancer; Second, as a protein closely related to DLC1, whether DLC2plays an important role in CRC invasion and metastasis is still need further research.
     Rho family proteins are small G proteins of the Ras superfamily members. Rho proteins are guanylic acid binding protein. Their molecular weights are about20kd-30kd and have GTPase activity. In1985, Rho, as a Ras homologue, was first cloned and called Ras related monomer GTPase. Rho has RhoA, RhoB and RhoC three isomers, Rho family proteins were involved in regulating a variety of cell life processes, including actin cytoskeleton reorganization, cell adhesion, cell movement, cell cycle progression, cell division, and gene transcription. In recent years, studies had found that Rho family proteins were associated with many aspects of both tumorigenesis and tumor development, including tumor growth, proliferation, invasion, metastasis, cell apoptosis and tumor new blood vessels formation, etc. Rho family, especially RhoA, highly expressed in a wide variety of tumor tissues and associated with tumor malignant degree, this implied that Rho plays an important role in the tumorigenesis and metastasis. At present, RhoA and its relationship with tumor invasion and metastasis has become one of the hot spot.
     Because of the RhoGAP domain of DLC2can activate the GTPase hydrolysis activity of Rho protein, which transform the Rho protein by GTP combinated active state into GDP combinated with inactive state. Thus, DLC2plays a negative regulatory factor of the Rho protein family. Recent studies have confirmed that the role of DLC2can inhibit the activity of RhoA kinase and adjust the generation of MMP (matrix metal proteases), this may interfere the cell shape changes and migration. It also implied that DLC2might through the regulation of RhoA expression level to participate the tumorigenesis, invasion and metastasis process of CRC, but the specific mechanism is still unclear.
     In this study, we first detected DLC2mRNA and protein expression in CRC and PCIT (pericarcinomatous intestine tissues) specimens and investigated the relationships between DLC2expressions and clinicopathological parameters. Second, we investigated the role and molecular mechanism of DLC2in regulating of tumorigenesis, invasion and metastasis of CRC, comprehensive utilization of a series of molecular biology and cell biology methods after inhibiting the expression level of DLC2in HT-29by RNA interference technology. Last, we detected RhoA expression level in CRC and PCIT tissue specimens and investigated the relationships between RhoA expressions and clinicopathological parameters. Even more, we also detected the RhoA expression levels in HT-29cell lines, which DLC2expression were inhibit by RNA interference technology. Classification R656.9
     The expression of DLC2in human colorectal cancer and the relationship between DLC2expression and clinic pathological parameters
     Objective To investigate the expressions of DLC2in CRC tissues and PCIT, even more, to evaluated the expression levels of DLC2in subgroups by clinic pathological parameters.
     Methods
     (1) Real-time PCR was employed to detect DLC2mRNA expression in102CRC and PCIT specimens.
     (2) Western blot was employed to detect DLC2protein expression in102CRC and PCIT specimens.
     (3) Immunohistochemistry was employed to detect DLC2expressions in CRC and PCIT specimens.
     Results
     (1) CRC tissues revealed significantly lower level of DLC2mRNA than PCIT (p<0.05). The expression of DLC2mRNA was correlated with lymph node metastasis, tumor TNM stage and tumor histopathological degree significantly (p<0.05).
     (2) The DLC2protein expression level had no significant difference between CRC and PCIT. The expression of DLC2protein was correlated with lymph node metastasis and tumor TNM stage significantly (p<0.05).
     (3) According to the results of immunohistochemistry, the distribution of DLC2protein was mainly in the cytoplasm, and the positive expression rate and scores mean of DLC2in CRC were both higher than PCIT, however, there were no significant difference between them (p>0.05).
     Conclusion
     Our data strongly suggested that decreased DLC2expression in CRC correlates with lymph node metastasis and clinicopathologic stage of CRC, underexpression of DLC2is probably associated with poor prognosis in CRC patients.
     Target to DLC2expression effect on the biological behaviour of colorectal cancer cells by small interfering RNAi
     Objective To investigate the DLC2expression effect on the biological behaviours of the CRC cells.
     Methods
     (1) Western blot was used to detect the expression of DLC2in CRC cells:LOVO, SW-620, HT-29, CaCo-2, HCT-8and HCT-116, chosing the highest one HT-29cell in further RNAi.
     (2) Using LipofectamineTM2000transfected the small interference RNA into HT-29cell, and acquired three groups of cells:HT-29, HT-29DLC2RNAi-and HT-29DLC2RNAi+cell lines.
     (3) Real-time PCR was employed to detect the expression of DLC2mRNA in HT-29, HT-29DLC2RNAi-and HT-29DLC2RNAi+cell lines.
     (4) Western blot was employed to detect the expression of DLC2protein in HT-29, HT-29DLC2RNAi-and HT-29DLC2RNAi+cell lines.
     (5) Wound-healing assay, transwell invasion assay, adhesion test were employed to detect migration, invasion and adhesion in HT-29, HT-29DLC2RNAi-and HT-29DLC2RNAi+cell lines
     (6) Immunofluorescence assay was employed to detect the expression of DLC2and cell morphology in HT-29, HT-29DLC2RNAi-and HT-29DLC2RNAi+cell lines.
     (7) MTT, colony formation and flow ctyometry assay were employed to detect proliferation and apoptosis in HT-29, HT-29DLC2RNAi-and HT-29DLC2RNAi+cell lines.
     Results
     (1) We chosed the HT-29cell line because its expression level of DLC2was the highest in LOVO, SW-620, HT-29, CaCo-2, HCT-8and HCT-116. In addition, we got satisfactory transfection efficiency and successfully acquired HT-29DLC2RNAi+with downregulated expression of DLC2and HT-29DLC2RNAi-as invalid control, HT-29as blank control.
     (2) Real-time PCR results showed that the expression of DLC2mRNA in HT-29DLC2RNAi+cell line was much lower than HT-29and HT-29DLC2RNAi- cell lines (p<0.01), and suggested inhibition efficiency of DLC2in HT-29DLC2RNAi+
     (3) Western blot results indicated that the expression of DLC2protein in HT-29DLC2RNAi+cell line was much lower than HT-29and HT-29DLC2RNAi-cell lines (p<0.01), also confirmed that the inhibition efficiency of DLC2in HT-29DLC2RNAi+was apparently higher than HT-29DLC2RNAi-cell line.
     (4) The adhesion test demonstrated HT-29DLC2RNAi+cells had significantly higher adhesion ability than HT-29and HT-29DLC2RNAi-cells (p<0.05). Wound-healing assay showed that the closure of HT-29DLC2RNAi+was significantly more quickly than that of HT-29and HT-29DLC2RNAi-(p<0.05). Transwell invasion assay showed that the number of HT-29DLC2RNAi+cells passed through matrigel was much more as compared with HT-29and HT-29DLC2RNAi-cells (p<0.01).
     (5) Cell immunofluorescence assay showed that DLC2positive expression was in cytoplasma and there was some protuberance likes pseudopodium in HT-29DLC2RNAi+cell membrane.
     (6) There was no significant difference in cell proliferation between HT-29, HT-29DLC2RNAi-and HT-29DLC2RNAi+cells through MTT and colony formation experiments. However, the result of flow cytometry assay showed that the HT-29DLC2RNAi+cells apoptosis ratio and the ratio of the apoptosis cells in cell cycle was much lower than HT-29and HT-29DLC2RNAi-cells (p<0.01).
     Conclusion
     The down-regulate expression of DLC2may obviously stimulate invasion, metastasis and apoptosis ability of colorectal cancer cell lines in vitro, but may not affect the proliferation of colorectal cancer cell lines.
     Association between DLC2and RhoA in tumorigenesis, invasion and metastasis of CRC
     Objective To investigate the expression of RhoA in CRC tissues and PCIT and to evaluate the expression levels of DLC2in subgroups by clinic pathological parameters.Meanwhile, investigated the expression levels of RhoA in DLC2down-regulated HT-29cells by using RNAi.
     Methods
     (1) Real-time PCR was employed to detect RhoA mRNA expression in102CRC and PCIT specimens, as well as HT-29, HT-29DLC2RNAi" and HT-29DLC2RNAi+cell lines.
     (2) Western blot was employed to detect DLC2protein expression in CRC and PCIT specimens, as well as HT-29, HT-29DLC2RNAi" and HT-29DLC2RNAi+cell lines.
     (3) Immunohistochemistry was employed to detect DLC2expressions in CRC and PCIT specimens.
     Results
     (1) CRC tissues revealed significantly higher level of RhoA mRNA than PCIT (p<0.01). The expression of RhoA mRNA was correlated with lymph node metastasis (p<0.01), tumor TNM stage (p<0.05) and tumor histopathological degree significantly (p<0.01).Even more, RhoA mRNA expression level in HT-29DLC2RNAi+was significantly higher than HT-29and HT-29DLC2RNAi-cell lines (p<0.01).
     (2) RhoA protein expression in CRC tissues also revealed significantly higher level than PCIT (p<0.01). The expression of RhoA protein was correlated with lymph node metastasis (p<0.05), tumor TNM stage (p<0.01) and tumor histopathological degree significantly (p<0.01). Even more, RhoA protein expression level in HT-29DLC2RNAi+was significantly higher than HT-29and HT-29DLC2RNAi-cell lines (p<0.05).
     (3) According to the results of immunohistochemistry, the distribution of RhoA protein was mainly in cytoplasm, cytomembrane was not common. The positive expression rate and scores mean of RhoA protein in CRC were both higher than PCIT, and there are significant differences between them (p<0.05,p<0.01).
     Conclusion
     Our data strongly suggested that RhoA expression was increased in CRC. Its expressions correlated with lymph node metastasis, TNM stage and clinicopathologic stage of CRC. Down-regulate expression of DLC2probably stimulate the up-regulate expression of RhoA in HT-29cell line.
引文
[1]JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics[J]. CA Cancer J Clin,2011,61:69-90.
    [2]万德森.我国结直肠癌的流行趋势及对策[J].中华肿瘤杂志,2011,33(7):481-483.
    [3]MACDONALD J S. Adjuvant therapy of colon cancer[J]. CA Cancer J Clin, 1999,49:202-219.
    [4]WILKE H J, Van CUTSEM E. Current treatments and future perspectives in colorectal and gastric cancer[J]. Ann Oncol,2003,14 Suppl 2:ii49-55.
    [5]TCHERKEZIAN J, LAMARCHE-VANE N. Current knowledge of the large RhoGAP family of proteins [J]. Biol Cell,2007,99:67-86.
    [6]LIAO Y C, LO S H. Deleted in liver cancer-1 (DLC-1):a tumor suppressor not just for liver[J]. Int J Biochem Cell Biol,2008,40:843-847.
    [7]YUAN B Z, MILLER M J, KECK C L, et al. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP[J]. Cancer Res,1998,58:2196-2199.
    [8]CHING Y P, WONG C M, CHAN S F, et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma[J]. J Biol Chem,2003,278:10824-10830.
    [9]ULLMANNOVA V, POPESCU N C. Expression profile of the tumor suppressor genes DLC-1 and DLC-2 in solid tumors[J]. Int J Oncol,2006,29:1127-1132.
    [10]LEUNG T H, CHING Y P, YAM J W, et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity [J]. Proc Natl Acad Sci USA,2005,102:15207-15212.
    [11]KAWAI K, SEIKE J, IINO T, et al. START-GAP2/DLC2 is localized in focal adhesions via its N-terminal region[J]. Biochem Biophys Res Commun, 2009,380:736-741.
    [12]de TAYRAC M, ETCHEVERRY A, AUBRY M, et al. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression[J]. Genes Chromosomes Cancer,2009,48:55-68.
    [13]HATCH G M, GU Y, XU F Y, et al. StARD13(Dlc-2) RhoGap mediates ceramide activation of phosphatidylglycerolphosphate synthase and drug response in Chinese hamster ovary cells[J]. Mol Biol Cell,2008,19:1083-1092.
    [14]WETTSCHURECK N, OFFERMANNS S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology [J]. J Mol Med (Berl),2002,80:629-638.
    [15]PRUITT K, DER C J. Ras and Rho regulation of the cell cycle and oncogenesis[J]. Cancer Lett,2001,171:1-10.
    [16]SAH V P, SEASHOLTZ T M, SAGI S A, et al. The role of Rho in G protein-coupled receptor signal transduction[J]. Annu Rev Pharmacol Toxicol, 2000,40:459-489.
    [17]FUKATA M, KAIBUCHI K. Rho-family GTPases in cadherin-mediated cell-cell adhesion[J]. Nat Rev Mol Cell Biol,2001,2:887-897.
    [18]SAHAI E, OLSON M F, MARSHALL C J. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility[J]. EMBO J,2001,20:755-766.
    [19]AZNAR S, VALERON P F, DEL R S V, et al. Simultaneous tyrosine and serine phosphorylation of STAT3 transcription factor is involved in Rho A GTPase oncogenic transformation[J]. Mol Biol Cell,2001,12:3282-3294.
    [20]PILLE J Y, DENOYELLE C, VARET J, et al. Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo[J]. Mol Ther,2005,11:267-274.
    [21]KAMAI T, ARAI K, SUMI S, et al. The rho/rho-kinase pathway is involved in the progression of testicular germ cell tumour[J]. BJU Int,2002,89:449-453.
    [22]刘娜,毕锋,潘阳林,等.RhoA在胃癌细胞中的表达及其作用[J].中华肿瘤杂志,2004,26(1):26-29.
    [23]王颢,陈玉霞,曹冬梅,等.RhoA基因在结直肠癌组织中的表达[J].中华医学杂志,2002,82(5):348-351.
    [24]FRITZ G, JUST I, KAINA B. Rho GTPases are over-expressed in human tumors[J]. Int J Cancer,1999,81:682-687.
    [25]ABRAHAM M T, KURIAKOSE M A, SACKS P G, et al. Motility-related proteins as markers for head and neck squamous cell cancer [J]. Laryngoscope, 2001,111:1285-1289.
    [26]于月成,辛晓燕,吴维光,等.Rho和ROCK蛋白在上皮性卵巢癌中的表达及临床意义[J].现代肿瘤医学,2006,14(4):461-464.
    [27]LI X R, JI F, OUYANG J, et al. Overexpression of RhoA is associated with poor prognosis in hepatocellular carcinoma[J]. Eur J Surg Oncol,2006,32:1130-1134.
    [28]XIAORONG L, WEI W, LIYUAN Q, et al. Underexpression of deleted in liver cancer 2 (DLC2) is associated with overexpression of RhoA and poor prognosis in hepatocellular carcinoma[J]. BMC Cancer,2008,8:205.
    [29]GRISE F, BIDAUD A, MOREAU V. Rho GTPases in hepatocellular carcinoma[J]. Biochim Biophys Acta,2009,1795:137-151.
    [30]HOMMA Y, EMORI Y. A dual functional signal mediator showing RhoGAP and phospholipase C-delta stimulating activities [J]. EMBO J,1995,14:286-291.
    [31]KO F C, YEUNG Y S, WONG C M, et al. Deleted in liver cancer 1 isoforms are distinctly expressed in human tissues, functionally different and under differential transcriptional regulation in hepatocellular carcinoma[J]. Liver Int,2010,30:139-148.
    [32]DURKIN M E, ULLMANNOVA V, GUAN M, et al. Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth[J]. Oncogene,2007,26:4580-4589.
    [33]QIAO F, BOWIE J U. The many faces of SAM[J]. Sci STKE,2005,2005:re7.
    [34]LI H, FUNG K L, JIN D Y, et al. Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2[J]. Proteins, 2007,67:1154-1166.
    [35]SEKIMATA M, KABUYAMA Y, EMORI Y, et al. Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho[J]. J Biol Chem,1999,274:17757-17762.
    [36]DURKIN M E, YUAN B Z, ZHOU X, et al. DLC-1:a Rho GTPase-activating protein and tumour suppressor [J]. J Cell Mol Med,2007,11:1185-1207.
    [37]无.分子克隆实验指南精编版[J].生物技术通讯,2008,19(5):707-707.
    [38]BUSTIN S A, NOLAN T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction[J]. J Biomol Tech,2004,15:155-166.
    [39]EGGER D, BIENZ K. Protein (western) blotting[J]. Mol Biotechnol, 1994,1:289-305.
    [40]FARR A G, NAKANE P K. Immunohistochemistry with enzyme labeled antibodies:a brief review[J]. J Immunol Methods,1981,47:129-144.
    [41]梁锐,王芳,高倩,等.MAGE-A4在人大肠肿瘤中的表达及其与淋巴结转移的关系[J].实用癌症杂志,2006,21(5):487-489.
    [42]陈平圣.肿瘤侵袭转移机制及其防治对策[J].现代医药卫生,2004,20(8):595-596.
    [43]NAGARAJA G M, KANDPAL R P. Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins[J]. Biochem Biophys Res Commun, 2004,313:654-665.
    [44]KAWASAKI H, TAIRA K. Hesl is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells[J]. Nature,2003,423:838-842.
    [45]LLAVE C, XIE Z, KASSCHAU K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science (80-), 2002,297:2053-2056.
    [46]LAPOUGE K, SCHUBERT M, ALLAIN F H, et al. Gac/Rsm signal transduction pathway of gamma-proteobacteria:from RNA recognition to regulation of social behaviour[J]. Mol Microbiol,2008,67:241-253.
    [47]CHARPENTIER E, SCHROEDER R. RNA techniques for bacteria[J]. Curr Opin Microbiol,2007,10:254-256.
    [48]ALTUVIA S. Identification of bacterial small non-coding RNAs:experimental approaches[J]. Curr Opin Microbiol,2007,10:257-261.
    [49]WASSARMAN K M.6S RNA:a small RNA regulator of transcription[J]. Curr Opin Microbiol,2007,10:164-168.
    [50]TANG F, ZHANG R, HE Y, et al. MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells[J]. PLOS ONE, 2012,7:e35435.
    [51]LEUNG T H, YAM J W, CHAN L K, et al. Deleted in liver cancer 2 suppresses cell growth via the regulation of the Raf-1-ERK1/2-p70S6K signalling pathway[J]. Liver Int,2010,30:1315-1323.
    [52]LIN Y, CHEN N T, SHIH Y P, et al. DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration[J]. Oncogene, 2010,29:3010-3016.
    [53]JAFFE A B, HALL A. Rho GTPases in transformation and metastasis [J]. Adv Cancer Res,2002,84:57-80.
    [54]KAMAI T, ARAI K, TSUJII T, et al. Overexpression of RhoA mRNA is associated with advanced stage in testicular germ cell tumour[J]. BJU Int, 2001,87:227-231.
    [55]KAMAI T, TSUJII T, ARAI K, et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer [J]. Clin Cancer Res, 2003,9:2632-2641.
    [56]TAKAMI Y, HIGASHI M, KUMAGAI S, et al. The activity of RhoA is correlated with lymph node metastasis in human colorectal cancer[J]. Dig Dis Sci, 2008,53:467-473.
    [57]STAIB L, LINK K H, BLATZ A, et al. Surgery of colorectal cancer:surgical morbidity and five-and ten-year results in 2400 patients--monoinstitutional experience [J]. World J Surg,2002,26:59-66.
    [58]LUO Y, CUI J, CHEN C, et al. Clinical outcomes after surgical resection of colorectal cancer in 1,294 patients[J]. Hepatogastroenterology,2012,59:1398-1402.
    [59]GILL S, LOPRINZI C L, SARGENT D J, et al. Pooled analysis of fluorouracil-based adjuvant therapy for stage Ⅱ and Ⅲ colon cancer:who benefits and by how much?[J]. J Clin Oncol,2004,22:1797-1806.
    [60]TONG A W, ZHANG Y A, NEMUNAITIS J. Small interfering RNA for experimental cancer therapy[J]. Curr Opin Mol Ther,2005,7:114-124.
    [61]HUANG C, LI M, CHEN C, et al. Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications [J]. Expert Opin Ther Targets, 2008,12:637-645.
    [62]SHAO R G [Small interfering RNA mediated multi-target therapy of cancer][J]. Yao Xue Xue Bao,2009,44:219-225.
    [63]MIELE E, SPINELLI G P, MIELE E, et al. Nanoparticle-based delivery of small interfering RNA:challenges for cancer therapy [J]. Int J Nanomedicine, 2012,7:3637-3657.
    [64]GUO Y, WU M, CHEN H, et al. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells[J]. Science (80-),1994,263:518-520.
    [65]RODRIGUEZ L G,WU X, GUAN J L. Wound-healing assay [J]. Methods Mol Biol,2005,294:23-29.
    [66]张凌志,邸菁,王运杰,等.Trans well小室筛选高侵袭性C6细胞MMP-2和TIMP-2的表达[J].肿瘤防治杂志,2005,12(10):742-745.
    [67]AOKI V, SOUSA J X Jr, FUKUMORI L M, et al. Direct and indirect immunofluorescence[J]. An Bras Dermatol,2010,85:490-500.
    [68]WINTHER J. Photodynamic therapy effect in an intraocular retinoblastoma-like tumour assessed by an in vivo to in vitro colony forming assay [J]. Br J Cancer, 1989,59:869-872.
    [69]GUO S, KEMPHUES K J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributee[J]. Cell,1995,81:611-620.
    [70]FIRE A, XU S, MONTGOMERY M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998,391:806-811.
    [71]HAMMOND S M, BERNSTEIN E, BEACH D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature, 2000,404:293-296.
    [72]SCHERR M, MORGAN M A, EDER M. Gene silencing mediated by small interfering RNAs in mammalian cells[J]. Curr Med Chem,2003,10:245-256.
    [73]LIOTTA L A. Tumor invasion and metastases:role of the basement membrane. Warner-Lambert Parke-Davis Award lecture[J]. Am J Pathol,1984,117:339-348.
    [74]WIJNHOVEN B P, DINJENS W N, PIGNATELLI M. E-cadherin-catenin cell-cell adhesion complex and human cancer[J]. Br J Surg,2000,87:992-1005.
    [75]DOILLON C J, GAGNON E, PARADIS R, et al. Three-dimensional culture system as a model for studying cancer cell invasion capacity and anticancer drug sensitivity [J]. Anticancer Res,2004,24:2169-2177.
    [76]SCOTTON C J, WILSON J L, MILLIKEN D, et al. Epithelial cancer cell migration:a role for chemokine receptors?[J]. Cancer Res,2001,61:4961-4965.
    [77]SU J L, YEN C J, CHEN P S, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression[J]. Br J Cancer,2007,96:541-545.
    [78]FUKUSHIMA Y, OHNISHI T, ARITA N, et al. Integrin alpha3betal-mediated interaction with laminin-5 stimulates adhesion, migration and invasion of malignant glioma cells[J]. Int J Cancer,1998,76:63-72.
    [79]褚晓源,陈龙邦.细胞粘附分子与肿瘤的侵袭转移[J].医学研究生学报,2000,13(1):42-45.
    [80]李春辉,潘理会,李春雨,等.细胞粘附分子与肿瘤侵袭转移的关系[J].承德医学院学报,2002,19(1):64-66.
    [81]LIOTTA L A, RAO C N, WEWER U M. Biochemical interactions of tumor cells with the basement membrane[J]. Annu Rev Biochem,1986,55:1037-1057.
    [82]MU X, CHEN Y, WANG S, et al. Overexpression of VCC-1 gene in human hepatocellular carcinoma cells promotes cell proliferation and invasion[J]. Acta Biochim Biophys Sin (Shanghai),2009,41:631-637.
    [83]SHIOZAKI H, TAHARA H, OKA H, et al. Expression of immunoreactive E-cadherin adhesion molecules in human cancers[J]. Am J Pathol,1991,139:17-23.
    [84]佟玲,王文萍,邢玉庆.肿瘤转移的分子机制研究进展[J].肿瘤学杂志,2004,10(3):185-187.
    [85]SAIKI I, FUJII H, YONEDA J, et al. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation[J]. Int J Cancer,1993, 54:137-143.
    [86]MARSHALL J. Transwell((R)) invasion assays [J]. Methods Mol Biol, 2011,769:97-110.
    [87]HEALY K D, HODGSON L, KIM T Y, et al. DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms [J]. Mol Carcinog,2008,47:326-337.
    [88]HEASMAN S J, RIDLEY A J. Mammalian Rho GTPases:new insights into their functions from in vivo studies[J]. Nat Rev Mol Cell Biol,2008,9:690-701.
    [89]WENNERBERG K, DER C J. Rho-family GTPases:it's not only Rac and Rho (and I like it)[J]. J Cell Sci,2004,117:1301-1312.
    [90]WONG C M, YAM J W, CHING Y P, et al. Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma[J]. Cancer Res,2005,65:8861-8868.
    [91]WELF E S, HAUGH J M. Signaling pathways that control cell migration: models and analysis[J]. Wiley Interdiscip Rev Syst Biol Med,2011,3:231-240.
    [92]WONG C C, WONG C M, KO F C, et al. Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma[J]. PLOS ONE,2008,3:e2779.
    [93]GIANCOTTI F G, TARONE G. Positional control of cell fate through joint integrin/receptor protein kinase signaling[J]. Annu Rev Cell Dev Biol,2003,19:173-206.
    [94]SIMPSON C D, ANYIWE K, SCHIMMER A D. Anoikis resistance and tumor metastasis[J]. Cancer Lett,2008,272:177-185.
    [95]HANKS S K, RYZHOVA L, SHIN N Y, et al. Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility[J]. Front Biosci,2003,8:d982-996.
    [96]NAGAPRASHANTHA L D, VATSYAYAN R, LELSANI P C, et al. The sensors and regulators of cell-matrix surveillance in anoikis resistance of tumors[J]. Int J Cancer,2011,128:743-752.
    [97]THOMPSON E W, NEWGREEN D F, TARIN D. Carcinoma invasion and metastasis:a role for epithelial-mesenchymal transition?[J]. Cancer Res,2005, 65:5991-5995; discussion 5995.
    [98]ZANOTTI S, GIBERTINI S, BRAGATO C, et al. Fibroblasts from the muscles of Duchenne muscular dystrophy patients are resistant to cell detachment apoptosis[J]. Exp Cell Res,2011,317:2536-2547.
    [99]MORO L, DOLCE L, CABODI S, et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines[J]. J Biol Chem,2002,277:9405-9414.
    [100]蔡军,易静.Rho GTPases和细胞凋亡[J].生命科学,2004,16(3):160-164.
    [101]SAHAI E, MARSHALL C J. RHO-GTPases and cancer[J]. Nat Rev Cancer, 2002,2:133-142.
    [102]BENITAH S A, VALERON P F, VAN A L, et al. Rho GTPases in human cancer:an unresolved link to upstream and downstream transcriptional regulation[J]. Biochim Biophys Acta,2004,1705:121-132.
    [103]FIORDALISI J J, KELLER P J, COX A D. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility[J]. Cancer Res, 2006,66:3153-3161.
    [104]KUSAMA T, MUKAI M, IWASAKI T, et al.3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis[J]. Gastroenterology,2002,122:308-317.
    [105]WONG C M, LEE J M, CHING Y P, et al. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma[J]. Cancer Res,2003,63:7646-7651.
    [106]RIDLEY A J, PATERSON H F, JOHNSTON C L, et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling[J]. Cell, 1992,70:401-410.
    [107]RIDLEY A J, HALL A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors[J]. Cell, 1992,70:389-399.
    [108]SCHWARTZ M A, TOKSOZ D, KHOSRAVI-FAR R. Transformation by Rho exchange factor oncogenes is mediated by activation of an integrin-dependent pathway [J]. EMBO J,1996,15:6525-6530.
    [109]CLARK E A, GOLUB T R, LANDER E S, et al. Genomic analysis of metastasis reveals an essential role for RhoC[J]. Nature,2000,406:532-535.
    [110]OLSON M F, ASHWORTH A, HALL A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1[J]. Science (80-), 1995,269:1270-1272.
    [111]TSUBAKIMOTO K, MATSUMOTO K, ABE H, et al. Small GTPase RhoD suppresses cell migration and cytokinesis [J]. Oncogene,1999,18:2431-2440.
    [112]PERONA R, MONTANER S, SANIGER L, et al. Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins[J]. Genes Dev,1997,11:463-475.
    [113]ADJEI A A. Blocking oncogenic Ras signaling for cancer therapy[J]. J Natl Cancer Inst,2001,93:1062-1074.
    [114]FRITZ G, KAINA B, AKTORIES K. The ras-related small GTP-binding protein RhoB is immediate-early inducible by DNA damaging treatments [J]. J Biol Chem, 1995,270:25172-25177.
    [115]CANNIZZARO L A, MADAULE P, HECHT F, et al. Chromosome localization of human ARH genes, a ras-related gene family [J]. Genomics, 1990,6:197-203.
    [116]PRENDERGAST G C. Actin' up:RhoB in cancer and apoptosis[J]. Nat Rev Cancer,2001,1:162-168.
    [117]JIANG K, SUN J, CHENG J, et al. Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis[J]. Mol Cell Biol, 2004,24:5565-5576.
    [118]ZALCMAN G, CLOSSON V, LINARES-CRUZ G, et al. Regulation of Ras-related RhoB protein expression during the cell cycle[J]. Oncogene,1995, 10:1935-1945.
    [119]FRITZ G, BRACHETTI C, BAHLMANN F, et al. Rho GTPases in human breast tumours:expression and mutation analyses and correlation with clinical parameters[J]. Br J Cancer,2002,87:635-644.
    [120]RIDLEY A J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking [J]. Trends Cell Biol,2006,16:522-529.
    [121]ALLAL C, PRADINES A, HAMILTON A D, et al. Farnesylated RhoB prevents cell cycle arrest and actin cytoskeleton disruption caused by the geranylgeranyltransferase I inhibitor GGTI-298[J]. Cell Cycle,2002,1:430-437.
    [122]KLEER C G, VAN G K L, ZHANG Y, et al. Characterization of RhoC expression in benign and malignant breast disease:a potential new marker for small breast carcinomas with metastatic ability[J]. Am J Pathol,2002,160:579-584.
    [123]潘阳林,毕锋,刘娜,等.Rho家族蛋白在胃癌细胞系中的表达及意义[J]. 解放军医学杂志,2003,28(6):517-519.
    [124]刘相萍,王海波,刘延军,等.RhoA、RhoC基因在结直肠癌组织中的表达及其意义[J].中华实验外科杂志,2008,25(7):888-890.
    [125]王颢,陈玉霞,等.RhoA基因在结直肠癌组织中的表达[J].中华医学杂志,2002,82(5):348-351.
    [1]陈平圣.肿瘤侵袭转移机制及其防治对策[J].现代医药卫生,2004,20(8):595-596.
    [2]JAFFE A B, HALL A. Rho GTPases:biochemistry and biology[J]. Annu Rev Cell Dev Biol,2005,21:247-269.
    [3]HEASMAN S J, RIDLEY A J. Mammalian Rho GTPases:new insights into their functions from in vivo studies[J]. Nat Rev Mol Cell Biol,2008,9:690-701.
    [4]CORBETT K D, ALBER T. The many faces of Ras:recognition of small GTP-binding proteins[J]. Trends Biochem Sci,2001,26:710-716.
    [5]GRISE F, BIDAUD A, MOREAU V. Rho GTPases in hepatocellular carcinoma[J]. Biochim Biophys Acta,2009,1795:137-151.
    [6]RIDLEY A J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking [J]. Trends Cell Biol,2006,16:522-529.
    [7]WENNERBERG K, DER C J. Rho-family GTPases:it's not only Rac and Rho (and I like it)[J]. J Cell Sci,2004,117:1301-1312.
    [8]ELLENBROEK S I, COLLARD J G Rho GTPases:functions and association with cancer[J]. Clin Exp Metastasis,2007,24:657-672.
    [9]XU X R, HUANG J, XU Z G, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver[J]. Proc Natl Acad Sci U S A, 2001,98:15089-15094.
    [10]ULLMANNOVA V, POPESCU N C. Expression profile of the tumor suppressor genes DLC-1 and DLC-2 in solid tumors[J]. Int J Oncol,2006,29:1127-1132.
    [11]PLAUMANN M, SEITZ S, FREGE R, et al. Analysis of DLC-1 expression in human breast cancer[J]. J Cancer Res Clin Oncol,2003,129:349-354.
    [12]WONG C M, LEE J M, CHING Y P, et al. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma[J]. Cancer Res, 2003,63:7646-7651.
    [13]WISTUBA I I, BEHRENS C, VIRMANI A K, et al. Allelic losses at chromosome 8p21-23 are early and frequent events in the pathogenesis of lung cancer [J]. Cancer Res,1999,59:1973-1979.
    [14]CHINEN K, ISOMURA M, IZAWA K, et al. Isolation of 45 exon-like fragments from 8p22-->p21.3, a region that is commonly deleted in hepatocellular, colorectal, and non-small cell lung carcinomas [J]. Cytogenet Cell Genet, 1996,75:190-196.
    [15]YUAN B Z, MILLER M J, KECK C L, et al. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP[J]. Cancer Res,1998,58:2196-2199.
    [16]TCHERKEZIAN J, LAMARCHE-VANE N. Current knowledge of the large RhoGAP family of proteins[J]. Biol Cell,2007,99:67-86.
    [17]HOMMA Y, EMORI Y. A dual functional signal mediator showing RhoGAP and phospholipase C-delta stimulating activities [J]. EMBO J,1995,14:286-291.
    [18]KO F C, YEUNG Y S, WONG C M, et al. Deleted in liver cancer 1 isoforms are distinctly expressed in human tissues, functionally different and under differential transcriptional regulation in hepatocellular carcinoma[J]. Liver Int, 2010,30:139-148.
    [19]CHING Y P, WONG C M, CHAN S F, et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma[J]. J Biol Chem,2003,278:10824-10830.
    [20]DURKIN M E, ULLMANNOVA V, GUAN M, et al. Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth[J]. Oncogene,2007,26:4580-4589.
    [21]DURKIN M E, YUAN B Z, ZHOU X, et al. DLC-l:a Rho GTPase-activating protein and tumour suppressor [J]. J Cell Mol Med, 2007,11:1185-1207.
    [22]HEALY K D, HODGSON L, KIM T Y, et al. DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms[J]. Mol Carcinog,2008,47:326-337.
    [23]SEKIMATA M, KABUYAMA Y, EMORI Y, et al. Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho[J]. J Biol Chem,1999,274:17757-17762.
    [24]KAWAI K, KIYOTA M, SEIKE J, et al. START-GAP3/DLC3 is a GAP for Rho A and Cdc42 and is localized in focal adhesions regulating cell morphology [J]. Biochem Biophys Res Commun,2007,364:783-789.
    [25]STAPLETON D, BALAN I, PAWSON T, et al. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization[J]. Nat Struct Biol,1999,6:44-49.
    [26]CHI S W, AYED A, ARROWSMITH C H. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain[J]. EMBO J, 1999,18:4438-4445.
    [27]QIAO F, BOWIE J U. The many faces of SAM[J]. Sci STKE, 2005,2005:re7.
    [28]LI H, FUNG K L, JIN D Y, et al. Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2[J]. Proteins, 2007,67:1154-1166.
    [29]KIM T Y, HEALY K D, DER C J, et al. Effects of structure of Rho GTPase-activating protein DLC-1 on cell morphology and migration[J]. J Biol Chem, 2008,283:32762-32770.
    [30]ZHONG D, ZHANG J, YANG S, et al. The SAM domain of the RhoGAP DLC1 binds EF1A1 to regulate cell migration[J]. J Cell Sci,2009,122:414-424.
    [31]THORNTON S, ANAND N, PURCELL D, et al. Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis[J]. J Mol Med (Berl),2003,81:536-548.
    [32]LIU G, GRANT W M, PERSKY D, et al. Interactions of elongation factor lalpha with F-actin and beta-actin mRNA:implications for anchoring mRNA in cell protrusions[J]. Mol Biol Cell,2002,13:579-592.
    [33]MOORE R C, DURSO N A, CYR R J. Elongation factor-lalpha stabilizes microtubules in a calcium/calmodulin-dependent manner [J]. Cell Motil Cytoskeleton, 1998,41:168-180.
    [34]GROSS S R, KINZY T G. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology [J]. Nat Struct Mol Biol, 2005,12:772-778.
    [35]MURRAY J W, EDMONDS B T, LIU G, et al. Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends[J]. J Cell Biol, 1996,135:1309-1321.
    [36]ALPY F, LEGUEUX F, BIANCHETTI L, et al. [START domain-containing proteins:a review of their role in lipid transport and exchange][J]. Med Sci (Paris), 2009,25:181-191.
    [37]STRAUSS J F 3rd, KISHIDA T, CHRISTENSON L K, et al. START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells[J]. Mol Cell Endocrinol,2003,202:59-65.
    [38]ZHANG M, LIU P, DWYER N K, et al. MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria[J]. J Biol Chem, 2002,277:33300-33310.
    [39]SOCCIO R E, BRESLOW J L. StAR-related lipid transfer (START) proteins:mediators of intracellular lipid metabolism[J]. J Biol Chem, 2003,278:22183-22186.
    [40]NG D C, CHAN S F, KOK K H, et al. Mitochondrial targeting of growth suppressor protein DLC2 through the START domain[J]. FEBS Lett,2006,580:191-198.
    [41]KAWAI K, YAMAGA M, IWAMAE Y, et al. A PLCdeltal-binding protein, p122RhoGAP, is localized in focal adhesions[J]. Biochem Soc Trans,2004,32:1107-1109.
    [42]KAWAI K, SEIKE J, IINO T, et al. START-GAP2/DLC2 is localized in focal adhesions via its N-terminal region[J]. Biochem Biophys Res Commun, 2009,380:736-741.
    [43]QIAN X, LI G, ASMUSSEN H K, et al. Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities[J]. Proc Natl Acad Sci U S A,2007,104:9012-9017.
    [44]LIAO Y C, SI L, DEVERE W R W, et al. The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1[J]. J Cell Biol,2007,176:43-49.
    [45]KAWAI K, KITAMURA S Y, MAEHIRA K, et al. START-GAP1/DLC1 is localized in focal adhesions through interaction with the PTB domain of tensin2[J]. Adv Enzyme Regul,2010,50:202-215.
    [46]CHAN L K, KO F C, NG I O, et al. Deleted in liver cancer 1 (DLC1) utilizes a novel binding site for Tensin2 PTB domain interaction and is required for tumor-suppressive function[J]. PLOS ONE,2009,4:e5572.
    [47]YAM J W, KO F C, CHAN C Y, et al. Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression[J]. Cancer Res, 2006,66:8367-8372.
    [48]KIM T Y, JONG H S, SONG S H, et al. Transcriptional silencing of the DLC-1 tumor suppressor gene by epigenetic mechanism in gastric cancer cells [J]. Oncogene,2003,22:3943-3951.
    [49]YUAN B Z, DURKIN M E, POPESCU N C. Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers [J]. Cancer Genet Cytogenet,2003,140:113-117.
    [50]SENG T J, LOW J S, LI H, et al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation[J]. Oncogene,2007,26:934-944.
    [51]NG I O, LIANG Z D, CAO L, et al. DLC-1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC-1 [J]. Cancer Res,2000,60:6581-6584.
    [52]GUAN M, ZHOU X, SOULITZIS N, et al. Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer:potential clinical applications[J]. Clin Cancer Res,2006,12:1412-1419.
    [53]YUAN B Z, ZHOU X, DURKIN M E, et al. DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity[J]. Oncogene,2003,22:445-450.
    [54]YUAN B Z, JEFFERSON A M, BALDWIN K T, et al. DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas [J]. Oncogene, 2004,23:1405-1411.
    [55]ZHANG Q, YING J, ZHANG K, et al. Aberrant methylation of the 8p22 tumor suppressor gene DLC1 in renal cell carcinoma[J]. Cancer Lett,2007,249:220-226.
    [56]XIAORONG L, WEI W, LIYUAN Q, et al. Underexpression of deleted in liver cancer 2 (DLC2) is associated with overexpression of RhoA and poor prognosis in hepatocellular carcinoma[J]. BMC Cancer,2008,8:205.
    [57]WONG C C, WONG C M, KO F C, et al. Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma[J]. PLOS ONE,2008,3:e2779.
    [58]WONG C M, YAM J W, CHING Y P, et al. Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma[J]. Cancer Res,2005,65:8861-8868.
    [59]ZHOU X, THORGEIRSSON S S, POPESCU N C. Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells[J]. Oncogene,2004,23:1308-1313.
    [60]GOODISON S, YUAN J, SLOAN D, et al. The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells[J]. Cancer Res, 2005,65:6042-6053.
    [61]LEUNG T H, CHING Y P, YAM J W, et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity [J]. Proc Natl Acad Sci USA,2005,102:15207-15212.
    [62]NAGARAJA G M, KANDPAL R P. Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins[J]. Biochem Biophys Res Commun,2004,313:654-665.
    [63]HOLEITER G, HEERING J, ERLMANN P, et al. Deleted in liver cancer 1 controls cell migration through a Dial-dependent signaling pathway [J]. Cancer Res, 2008,68:8743-8751.
    [64]LEUNG T H, YAM J W, CHAN L K, et al. Deleted in liver cancer 2 suppresses cell growth via the regulation of the Raf-1-ERK1/2-p70S6K signalling pathway[J]. Liver Int,2010,30:1315-1323.
    [65]YIN H L, JANMEY P A. Phosphoinositide regulation of the actin cytoskeleton[J]. Annu Rev Physiol,2003,65:761-789.
    [66]DURKIN M E, AVNER M R, HUH C G, et al. DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development[J]. FEBS Lett,2005,579:1191-1196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700