石墨烯基复合物修饰电极的制备及其在电分析化学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文以石墨烯基复合材料修饰电极为研究手段,将其应用于几种生物分子的电化学行为研究,在此基础上建立了相关生物分子的电化学分析方法。研究内容包括:首先通过电聚合法和液相还原法制备了Pt/石墨烯、聚精氨酸/石墨烯、Cu2O/石墨烯、CuS/石墨烯四种石墨烯基复合纳米材料并将其修饰于电极表面;用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、红外光谱(FTIR)等分析手段对这些材料和相应的修饰电极进行表征;用所制备的修饰电极对多巴胺等数种生物分子进行了必要的电极行为、系统的分析条件、实际样品的分析验证和干扰试验等研究。简述如下:
     1.采用微波辅助法快速合成Pt/石墨烯纳米复合物,并用XRD, TEM和XPS对其进行表征。结果表明Pt纳米颗粒均匀的分散在石墨烯表面,其平均粒径为3.2nm。循环伏安实验的结果表明:Pt/石墨烯复合物修饰的玻碳电极对H2O2具有很好的电催化活性。安培测量结果表明Pt/石墨烯修饰电极对H2O2响应迅速,在4s内达到稳态,线性范围是2.5×10-6-6.65×10-mol·L-1,检测限为8×10-7mol·L-1。另外,在生理pH条件下,在多种干扰物质存在的情况下,该修饰电极对H2O2具有非常好的选择性。
     2.采用简单的一步电化学方法成功制备聚精氨酸/石墨烯复合膜修饰电极并将其用于尿酸、黄嘌呤和次黄嘌呤的同时检测。结果表明:该修饰电极对这三种物质具有很好的电催化活性。通过差示脉冲伏安实验得到尿酸、黄嘌呤和次黄嘌呤在聚精氨酸/石墨烯复合膜修饰电极上的线性范围分别为1.0×10-7-1.0×10-5mol·L-1,1.0×10-7-1.0×10-5mol·L-1和2.0×10-7-2.0×10-5mol·L-1,检测限分别为5×10-8mol·L-1,5×10-8mol·L-1和1×10-7mol·L-1(S/N=3)。此外,该修饰电极还具有良好的选择性和灵敏度,在同时测定尿样中尿酸、黄嘌呤和次黄嘌呤的实验中取得了满意的结果。
     3.通过乙二醇还原法制备氧化亚铜(Cu2O)和石墨烯的纳米复合材料,样品的形貌用XRD, XPS, TEM和SEM表征。采用循环伏安法评价Cu2O/石墨烯修饰电极对多巴胺的电化学性能。结果表明:与裸玻碳电极、Cu2O修饰电极和石墨烯修饰电极相比,Cu2O/石墨烯修饰电极对多巴胺具有很高的电催化活性,其检测限为1×10-8mol·L-1,线性范围是1.0×10-7-1.0×10-5mol·L-1,并且在伴有高浓度尿酸的情况下对多巴胺具有极好的选择性和灵敏性,在多巴胺实际样品的检测中也具有很好的结果。
     4.采用乙二醇还原法制备硫化铜(CuS)和石墨烯的纳米复合材料并将其用于检测七叶亭。结果表明,CuS/石墨烯修饰电极对七叶亭具有优异的电化学催化活性,在优化的实验条件下,该修饰电极可以实现七叶亭灵敏、简便和快速的检测并拥有较宽的线性范围及较低的检测限。
In this paper, we studied the electrochemical behavior of several biological molecules on the graphene-based nanocomposites modified electrodes and established the electrochemical analysis of corresponding biomolecules. The major contents including:Pt/graphene, Cu2O/Graphene and CuS/Graphene were synthesized through liquid phase reduction method, poly (L-Arginine)/graphene composite film modified electrode was successfully prepared via a facile one-step electrochemical method. These nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and fourier transform infrared. Meanwhile, graphene-based nanocomposites modified electrodes were prepared and used to investigate the electrode behavior, the analytical conditions, the actual sample analysis and the interference tests of several kinds of biological molecules. The major contents are described as follows:
     1. Pt/graphene nanocomposites were rapidly synthesized via a one-step microwave-assisted method, and characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results exhibited that Pt nanoparticles (NPs) were well-dispersed on the graphene surface with the average diameter of about3.2nm. Cyclic voltammetry results demonstrated that the Pt/GN nanocomposites modified glassy carbon electrode exhibited excellent electrocatalytic activity to the reduction of H2O2. Amperometric response results indicated that the modified elelctrode displayed a fast response of less than4s with linear range of2.5×10-6-6.65mol·L-1and a relatively low detection limit of8×10-7mol·L-1(S/N=3). In addition, the Pt/GN/GCE showed good selectivity for H2O2detection in the presence of several interfering species under physiological pH condition.
     2. Poly (L-Arginine)/graphene composite film modified electrode was successfully prepared via a facile one-step electrochemical method and used for simultaneous determination of uric acid (UA), xanthine (XA) and hypoxanthine (HX). The electrochemical behaviors of UA, XA and HX at the modified electrode were studied by cyclic voltammetry and differential pulse voltammetry (DPV), and showed that the modified electrode exhibited excellent electrocatalytic activity towards the oxidation of the three compounds. The calibration curves for UA, XA and HX were obtained over the range of1.0×10-7-1.0×10-5mol·L-1,1.0×10-7-1.0×10-5mol·L-1and2.0×10-7-2.0×10-5mol·L-1by DPV, respectively and the detection limits for UA, XA and HX were5×10-8mol·L-1,5×10-8mol·L-1and1×10-7mol·L-1(S/N=3), respectively. With good selectivity and high sensitivity, the modified electrode has been applied to simultaneous determination of UA, XA and HX in human urine with satisfactory result.
     3. Cu2O/Graphene nanocomposites were synthesized via reduction of ethylene glycol. Its morphology was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cyclic voltammetry was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with the nanocomposite towards dopamine (DA). Compared to the bare GCE, the Cu2O nanoparticles modified electrode and the graphene modified electrode, the nanocomposites modified electrode displays high electrocatalytic activity in giving an oxidation peak current that is proportional to the concentration of DA in the range from1.0×10-7to1.0×10-5mol·L-1,with a detection limit of1×10-8mol·L-1(S/N=3). The modified electrode shows excellent selectivity and sensitivity even in the presence of high concentration of uric acid and can be applied to determine DA in real samples with satisfactory results.
     4. CuS/graphene nanocomposites were synthesized via reduction of ethylene glycol and used for determination of esculetin. Electrochemnical measurement indicates that CuS/graphene nanocomposites modified electrode exhibits an excellent electrochemical activity of esculetin. Under the optimized conditions, the modified electrode was successfully employed for the voltammetric determination of esculetin with a low detection limit, wide linear range.
引文
[1]H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. C60:Buck minster fullerene. Nature,1985,318(6042):162-163.
    [2]S. Iijima. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58.
    [3]Y. Zhang, Y.H. Bai, B. Yan. Functionalized carbon nanotubes for potential medicinal applications. Drug Discovery Toda,2010,15(11-12):428-435.
    [4]J.T. Sander, H.D. Michel, J.A. Remco, C.D. Groeneveld. Electron-electron correlations in carbon nanotubes. Nature,1998,394(6695):761-764.
    [5]P. Jarillo-Herrero, J.A.van Dam, L.P. Kouwenhoven. Quantum supercurrent transistors in carbon nanotubes. Nature,2006,439(7079):953-956.
    [6]K.B.K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G.A.J. Amaratunga, W.I. Milne. Microwave devices:carbon nanotubes as cold cathodes. Nature,2005,437(7061):968-968.
    [7]E.D. Minot, Y. Yaish, V. Sazonova, P.L. McEuen. Determination of electron orbital magnetic moments in carbon nanotubes. Nature,2004,428(6982):536-539.
    [8]B. Vigolo, C. Coulon, M. Maugey, C. Zakri, P. Poulin. An experimental approach to the percolation of sticky nanotubes. Science,2005,309(5736):920-923.
    [9]J. Cumings, A. Zettl. Low-friction nanoscale linear bearing realized from multi-walled carbon nanotubes. Science,2000,289(5479):602-604.
    [10]E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki. Capillarity and wetting of carbon nanotubes. Science,1994,265(5180):1850-1852.
    [11]A.C. Dillon, K.M. Jones, T.A. Bekkedahl,C.H. Kiang, D.S. Bethune, M.J. Heben. Storage of hydrogen in single-walled carbon nanotubes. Nature,1997,386(6623):377-379.
    [12]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science,2004, 306(5696):666-669.
    [13]C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, D. Mayou, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. De-Heer. Electronic confinement and coherence in patternedepitaxial graphene. Science,2006,312(5777):1191-1196.
    [14]T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg. Controlling the electronic structure of bilayergraphene. Science,2006,313(5789):951-954.
    [15]K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim. Room-temperature quantum hall effect in graphene. Science, 2007,315(5817):1379-1379.
    [16]X.T. Jia, M. Hofmann, V. Meunier, B.G. Sumpter, J. Campos-Delgado, J.M. Romo-Herrera, H.B. Son, Y.P. Hsieh, A. Reina, J. Kong, M. Terrones, M.S. Dresselhaus. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science,2009, 323(5922):1701-1705.
    [17]A.F Young, P. Kim. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Physics,2009,5(3):222-226.
    [18]Y.W. Son, M.L. Cohen, S.G. Louie. Half-metallic graphene nanoribbons. Nature,2006,444: 347-349.
    [19]R.V. Noorden. Moving towards a graphene world. Nature,2006,442(7100):228-229.
    [20]Y.B. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang. Direct observation of a widely tunable bandgap in bilayer graphene. Nature,2009, 459(7248):820-823.
    [21]D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. de Heer, P.N. First, J.A. Stroscio. Observing the quantization of zero mass carriers in graphene. Science,2009,324(5929): 924-927.
    [22]A.K. Geim, K.S. Novoselov. The rise of graphene. Nature Materials,2007,6(3):183-191.
    [23]C.C. Lee, X.D. Wei, J.W. Kysar, J. Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008,32:385-388.
    [24]J.H. Chen, C. Jang, S.D. Xiao, M. Ishigami, M.S. Fuhrer. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechno,2008,3:206-209.
    [25]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Graphene-based composite materials. Nature,2006,442: 282-286.
    [26]Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim. Experimental observation of the quantum hall effect and berry's phase in graphene. Nature,2005,438:201-204.
    [27]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V Dubonos, A.A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005,438:197-200.
    [28]C.P. Burgess, B.P. Dolan. Quantum hall effect in graphene:emergent modular symmetry and the semicircle law. Phys.Rev. B,2007,76(11):113406.
    [29]K. Ziegler. Minimal Conductivity of graphene:nonuniversal values from the Kubo formula. Phys.Rev. B,2007,75(23):233407.
    [30]K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim. Room-temperature quantum halleffect in graphene. Science, 2007,315:1379-1379.
    [31]K.A. Ritter, J.W. Lyding. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Materials,2009,8(3):235-242.
    [32]I. Jung, D. Dikin, S. Park,W. Cai, S.L. Mielke, R.S. Ruoff. Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. Journal of Physical Chemistry C, 2008,112(51):20264-20268.
    [33]N. Liu, F. Luo, H.X. Wu,Y.H. Liu, C. Zhang, J. Chen. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials,2008,18(10):1518-1525.
    [34]J.C. Meyer, A.K. Geim, M.I. Katsnelson,K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl. On the roughness of single-and bi-layer graphene membranes. Solid State Communications,2007,143:101-109.
    [35]A. Fasolino, J.H. Los, M.I. Katsnelson. Intrinsic ripples in graphene. Nature Materials,2007, 6(11):858-861.
    [36]A.A. Balandin, S. Ghosh, W.Z. Bao,I. Calizo, D. Teweldebrhan,F. Miao, C.N. Lan. Superior thermal conductivity of single-layer graphene. Nano Letters,2008,8(3):902-907.
    [37]R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim. Fine structure constant defines visual transparency graphene. Science,2008, 320(5881):1308-1308.
    [38]Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics,2008,4(7): 532-535.
    [39]J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth. The structure of suspended graphene sheets. Nature,2007,446(7131):60-63.
    [40]P.W. Sutter, J.I. Flege, E.A. Sutter. Epitaxial graphene on ruthenium. Nature Materials,2008, 7(5):406-411.
    [41]Y. Pan, H.G. Zhang, D.X. Shi, J.T. Sun, S.X. Du, F. Liu, H.J. Gao. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Advanced Materials,2009,21(27):2777-2780.
    [42]B.C. Brodie. Sur le poids atomique du graphite. Annales de Chimie et de Physique,1860,59: 466-472.
    [43]L. Staudenmaier. Verfahren zur Darstellung der Graphitsaure. Berichte der Deutschen Chemischen Gesellschaft,1898,31:1481-1487.
    [44]W.S. Hummers, R.E. Offeman. Preparation of graphitic oxide. Journal of the American Chemical Society,1958,80(6):1339-1339.
    [45]H. He, T. Riedl, A. Lerf, J. Klinowski. Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem.,1999,100:1995-19958.
    [46]H. He, J. Klinowski, M. Forster, A. Lerf. A new structural model for graphite oxide. Chem. Phys. Lett.,1998,287:53-56.
    [47]A. Lerf, H. He, M. Forster, J. Klinowski. Structure of graphite oxide revisited.J. Phys. Chem. B,1998,102:4477-4482.
    [48]W.W. Cai, R.D. Pin, F.J. Stadennann, S.J. Park, M.A. Shaibat, Y. Ishii, D.X. Yang, A. Velamakanni, S.J. An, M. Stroller, J.H. An, D.M. Chen, R.D. Ruoff. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science,2008, 321:1815-1817.
    [49]K.P. Liu, J.J. Zhang, G.H. Yang, C.M. Wang, J.J. Zhu. Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochemistry Communications,2010,12(3):402-405.
    [50]J.L. Zhang, H.J. Yang, GX. Shen, P. Cheng, J.Y. Zhang, S.W. Guo. Reduction of graphene oxide via L-ascorbic acid. Chemical Communications,2010,46(7):1112-1114.
    [51]C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong. Reducing sugar new functional molecules for the green synthesis of graphene nanosheets.ACS nano,2010,4(4):2429-2437.
    [52]Y.J. Li, W. Gao, L.J. Ci, C.M. Wang, P.M. Ajayan. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon,2010,48:1124-1130.
    [53]W. Gao, L.B. Alemany, L.J. Ci, P.M. Ajayan. New insights into the structure and reduction of graphite oxide. Nat Chem.,2009,1:403-408.
    [54]J.B. Liu, S.H. Fu, B. Yuan, Y.L. Li, Z.X. Deng. Toward a universal adhesive nanosheet for the assembly of multiple nanoparticles based on a Protein-Induced eduction-decoration of graphene oxide. Journal of the American Chemical Society,2010,132(21):7279-7281.
    [55]K. Balasubramanian, M. Friedrich, C.Y. Jiang, Y.W. Fan, A. Mews, M. Burghard, K. Kern. Electrical transport and confocal Raman studies of electrochemically modified individual carbon nanotubes.Advanced Materials,2003,15(18):1515-1518.
    [56]M. Zhou, Y.L. Wang, Y.M. Zhai,J.F. Zhai, W. Ren,F.A. Wang, S.J. Dong. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J., 2009,15(25):6116-6121.
    [57]H.L. Guo, X.F. Wang, Q.Y Qian, F.B. Wang, X.H. Xia. A green approach to the synthesis of graphene nanosheets. ACS Nano,2009,3(9):2653-2659.
    [58]Z.J. Wang, X.Z. Zhou, J. Zhang, F. Boey, H. Zhang. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. Journal of Physical Chemistry C,2009,113(32):14071-14075.
    [59]D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009,458(7420):872-877.
    [60]L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature,2009,458(7420):877-880.
    [61]L.Y. Jiao, L. Zhang, L. Ding, J.E. Liu, H.J. Dai. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Research.,2010,3(6):387-394.
    [62]A.G. Cano-Marquez, F.J. Rodriguez-Macias, J. Campos-Delgado, C.G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramirez-Gonzalez, D.A. Cullen, D.J. Smith, M. Terrones, Y.I. Vega-Cantu. Ex-MWNTs-graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Letters,2009,9(4):1527-1533.
    [63]I. Janowska, O. Ersen, T. Jacob, P. Vennegues, D. Begin, M.J. Ledoux, C. Pham-Huu. Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Applied Catalysis A-general,2009,371(1-2):22-30.
    [64]A.L. Elias, A.R. Botello-Mendez, D. Meneses-Rodriguez, V.J. Gonzalez, D. Ramirez-Gonzalez, L. Ci, E. Munoz-Sandoval, P.M. Ajayan, H. Terrones, M. Terrones. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Letters,2010,10(2):366-372.
    [65]M. Terrones. Nanotubes unzipped. Nature,2009,458(7240),845-846.
    [66]R. Kamalakaran, M. Terrones, T. Seeger, P. Kohler-Redlich, M. Ruhle, Y.A. Kim, T. Hayashi, M. Endo. Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Applied Physics Letters,2000,77(21):3385-3387.
    [67]S.J. Chae, F. Gunes, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Paibat, Y.H. Lee. Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition:Wrinkle Formation. Advanced Materials,2009,21:2328-2333.
    [68]J. Coraux, A.T. NDiaye, M. Engler, C. Busse, N. Buckanie, F.J.M.Z. Heringdorf, R. van Gastel, B. Poelsema, T. Michely. Growth of graphene on Ir(111). New Journal of Physics, 2009,11:023006.
    [69]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009,457(7230):706-710.
    [70]D. Gomez, L. Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, C.W. Zhou. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano.,2010,4(5):2865-2873.
    [71]A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong. Few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009,9(1):30-35.
    [72]D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang, G. Yu. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters,2009,9(5): 1752-1758.
    [73]M.S. Dresselhaus, G. Dresselhaus. Intercalation compounds of graphite. Advances in Physics, 1981,30:139-326.
    [74]C.A. Furtado, U.J. Kim, H.R. Gutierrez, L. Pan, E.C. Dickey, P.C. Eklund. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. Journal of the American Chemical Society,2004,126(19):6095-6105.
    [75]B.J. Landi, H.J. Ruf, J.J. Worman, R.P. Raffaelle. Effects of alkyl amide solvents on the dispersionof single-wall carbon nanotubes. Journal of Physical Chemistry B,2004,108(44): 17089-17095.
    [76]S. Giordani, S.D. Bergin, V. Nicolosi, S. Lebedkin, M.M. Kappes, W.J. Blau, J.N. Coleman. Debundling of single-walled nanotubes by dilution:observation of largepopulations of individual nanotubes in amide solvent dispersions. Journal of Physical Chemistry B,2006, 110(32):15708-15718.
    [77]T. Hasan, V. Scardaci, P.H. Tan, A.G. Rozhin, W.I. Milne, A.C. Ferrari. Stabilization and 'Debundling' of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C,2007,111(34): 12594-12602.
    [78]S.D. Bergin, V. Nicolosi, S. Giordani, A. de Gromard, L. Carpenter, W.J. Blau, J.N. Coleman. Exfoliation in ecstasy:liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug g-butyrolactone. Nanotechnology,2007,18:455705.
    [79]Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gunko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology,2008,3(9): 563-568.
    [80]M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z.M. Wang, I.T. McGovern, GS. Duesberg, J.N. Coleman. Liquid phase production of graphene by exfoliation of graphite in surfactant-water solutions. Journal of the American Chemical Society,2009,131(10):3611-3620.
    [81]A.A. Green, M.C. Hersam. Solution phase production of praphene with controlled thickness via density differentiation. Nano Letters,2009,9(12):4031-4036.
    [82]X.Q. Wang, P.F. Fulvio, G.A. Baker, G.M. Veith, R.R. Unocic, S.M. Mahurin, M.F. Chi, S. Dai. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chemical Communications,2010,46(25):4487-4489.
    [83]U. Khan, A. Oneill, M. Lotya, S. De, J.N. Coleman. High-concentration solvent exfoliation of graphene. Small,2010,6(7):864-871.
    [84]M.Y. Han, B. Ozyilmaz, Y.B. Zhang, P. Kim. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters,2007,98:206805
    [85]X.L. Li, X.R. Wang, L. Zhang, S.W. Lee, H.J. Dai. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science,2008,319:1229-1232.
    [86]P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov. Graphene-based liquid crystal device. Nano Letters,2008,8(6):1704-1708.
    [87]M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff. Graphene-based ultracapacitors. Nano Letters,2008,8(10):3498-3502.
    [88]Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen. Supercapacitor devices based on graphene materials. Journal of Physical Chemistry C,2009,113(30): 13103-13107.
    [89]C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang. Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters,2010,10(12):4863-4868.
    [90]S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyal, A. Govindaraj, C.N. Rao. Graphene-based electrochemical supercapacitors. J. Chem. Sci.,2008,120(1):9-13.
    [91]R.G.K. Dimit, E. Tylianakis, G.E. Froudakis. A new 3D network nanostructure for enhanced hydrogen storage. Nano Letters,2008,8(10):3166-3170.
    [92]A. Ghosh, K.S. Subrahmanyam, K.S. Krishna, S. Datta, A. Govindaraj, S.K. Pati, C.N.R. Rao. Uptake of H2 and CO2 by graphene. Journal of Physical Chemistry C,2008,112(40): 15704-15707.
    [93]X. Wang, L.J. Zhi, K. Mullen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters,2008,8(1):323-327.
    [94]Q. Liu, Z. F. Liu, X.Y. Zhang, N. Zhang, L.Y Yang, S. Yin, Y.S. Chen. Organic photovoltaic cells based on an acceptor of soluble graphene. Appl. Phys. Lett.,2008,92(22):223-303.
    [95]X.L. Li, G.Y. Zhang, X.D. Bai, X.M. Sun, X.R. Wang, E. Wang, H.J. Dai. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. NanotechnoL,2008,3:538-542.
    [96]E.J. Yoo, J. Kin, E. Hosono, H.S. Zhou, T. Kudo, I. Honma. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters,2008, 8(8):2277-2282.
    [97]C.Y. Wang, D. Li, C.O.Too, G.G. Wallace. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem.Mater.,2009,21(13):2604-2606.
    [98]F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov. Detection of individual gas molecules adsorbed on graphene. Nat. Mater.,2007,6:652-655.
    [99]G.H. Lu, S.J. Park, K.H. Yu, R.S. Ruoff, L.E. Ocola, E. Rosenmann, J.H. Chen. Toward practical gas sensing with highly reduced graphene oxide:a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano,2011,5(2):1154-1164.
    [100]O. Leenaerts, B. Partoens, F.M. Peeters. Adsorption of H2O, NH3, CO, NO2, and NO on graphene:a first-principles study. Physical Review B,2008,77(12):125416.
    [101]S.J. Li, Y. Xing, G.F. Wang. A graphene-based electrochemical sensor for sensitive and selective determination of hydroquinone. MicrochimicaActa,2012,176:163-168.
    [102]X.H. Kang, J. Wang, H. Wu, J. Liu, I.A. Aksayc, Y.H. Lina. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta,2010,81 (3):754-759.
    [103]D. Du, Z.X. Zou, Y. Shin, J. Wang, H. Wu, M.H. Engelhard, J. Liu, I.A. Aksay, Y.H. Lin. Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Analytical Chemistry, 2010,82(7):2989-2995.
    [104]Q. Wei, X.D. Xin, B. Du, D. Wu, Y.Y. Han, Y.F. Zhao, Y.Y. Cai, R. Li, M.H. Yang, H. Li. Electrochemical immunosensor for norethisterone based on signal amplification strategy of graphene sheets and multienzyme functionalized mesoporous silica nanoparticles. Biosensors Bioelectronics,2010,26(2):723-729.
    [105]M. Zhou, Y. Zhai, S. Dong. Electrochemical sensing and biosensing platform based on chemically reduced ghraphene oxide. Anal.Chem.,2009,81(14):5603-5613.
    [106]施锦.碳纳米管复合材料的制备、表征与应用.兰州大学博士学位论文,2006.
    [107]R. Muszynski, B. Seger, P.V. Kamat. Decorating graphene sheets with gold nanoparticles. Journal of Physical Chemistry C,2008,112:5263-5266.
    [108]G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Gracio. Surface modification of graphene nanosheets with gold nanoparticles:the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials,2009, 21:4796-4802.
    [109]Y.Z. Zhang, Y.E. Gu, S.X. Lin, J.P. Wei, Z.H. Wang, C.M. Wang, Y.L. Du, W.C Ye. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity. Electrochimica Acta,2011,56:8746-8751
    [110]S.J. Guo, D. Wen, Y.M. Zhai, S.J. Dong, E.K. Wang. Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet:One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano,2010,4(7):3959-3968.
    [111]D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, LA. Aksay, J. Liu. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano,2009,3:907-914.
    [112]H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li. P25-Graphene composite as a high performance photocatalyst.ACS Nano,2009,4:380-386.
    [113]C. Xu, X. Wang, L.C Yang, Y.P. Wu. Fabrication of a graphene-cuprous oxide composite. Journal of Solid State Chemistry,2009,182:2486-2490.
    [114]J. Yao, X. Shen, B. Wang, H. Liu, G. Wang. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochemistry Communications,2009,11:1849-1852.
    [115]G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chemistry of Materials,2010,22:5306-5313.
    [116]D.B. Lu, Y. Zhang, L.T. Wang, S.X. Lin, C.M. Wang, X.F. Chen. Sensitive detection of acetaminophen based on Fe3O4 nanoparticles-coated poly(diallyldimethylammonium chloride)-functionalized grapheme nanocomposite film. Talanta,2012,88:181-186.
    [117]Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano,2010,4: 5835-5842.
    [118]A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Advanced Materials,2010,22:103-106.
    [119]L. Xue, C. Shen, M. Zheng, H. Lu, N. Li, G. Ji, L. Pan, J. Cao. Hydrothermal synthesis of graphene-ZnS quantum dot nanocomposites. Materials Letters,2011,65:198-200.
    [120]Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, J.G. Hou. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles.ACS Nano,2010,4:3033-3038.
    [121]D.B. Lu, Y. Zhang, S.X. Lin, L.T. Wang, C.M. Wang. Sensitive detection of esculetin based on a CdSe nanoparticles-decorated poly-(diallyldimethylammonium chloride)-functionalized graphene nanocomposite film. Analyst,2011,136:4447-4453.
    [122]A.P. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon. Graphite nanoplatelet-epoxy composite thermal interface materials. Journal of Physical Chemistry C,2007,111: 7565-7569.
    [123]D.W. Wang, F.Li, J.P. Zhao, W.C. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high performance flexible electrode. ACS Nano,2009,3: 1745-1752.
    [124]T. Gan, C.G. Hu, Z.L. Chen, S.S. Hu. A disposable electrochemical sensor for the determination of indole-3-acetic acid based on poly(safranine T)-reduced graphene oxide nanocomposite. Talanta,2011,85:310-316.
    [125]X.J. Wu, X.C Zeng. Periodic graphene nanobuds. Nano Letters,2009,9:250-256.
    [126]X.Y. Zhang, Y. Huang, Y. Wang, Y.F. Ma, Z.F. Liu, Y.S. Chen. Synthesis and characterization of a graphene-C60 hybrid material. Carbon,2009,47:334-337.
    [127]V.C. Tung, L.M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, Y. Yang. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-perfornlance transparent conductors. Nano Letters,2009,9:1949-1955.
    [128]J. Yan, T. Wei, B. Shao, F.Q. Ma, Z.J. Fan, M.L. Zhang, C. Zheng, Y.C. Shang, W.Z. Qian, F. Wei. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon,2010,48:1731-1737.
    [129]C. Lu, H. Yang, C. Zhu, X. Chen, G. Chen. A graphene platform for sensing biomolecules. Angew. Chem. Int Ed.,2009,48(26):4785-4787.
    [130]C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem.,2009,81(6): 2378-2382.
    [131]B.F. Watkins, J.R. Behling, E. Karive, L.L. Miller. Chiral electrode.J. Am. Chem. Soc, 1975,97:3549-3550.
    [132]P.R. Moses, L. Wier, R.W. Murray. Chemically modified tin oxide electrode. Anal.Chem., 1975,47:1882-1886.
    [133]董绍俊,车广礼,谢远武.化学修饰电极(修订版).2003,北京:科学出版社.
    [134]R.F. Lane, A.T. Hubbard. Electrochemistry of chemisorbed molecules. Ⅰ. Reactants connected to electrodes through olefinic substituents. Journal of Physic Chemistry,1973,77 (11):1401-1410.
    [135]叶淑玉,郭渡,陆天虹,董绍俊.LB膜修饰电极.分析化学,1991,19(5):612-617.
    [136]J. Sagiv. Organized monolayers by adsorption.1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society,1980,102 (1):92-98.
    [137]杨涛,杨婕,张伟,焦奎.聚合物膜与自组装膜法制备电化学DNA传感器的研究进展.分析测试学报,2007,26:431-437.
    [138]Z.L. Lu, S.J. Dong. Researches on chemically modified electrodes:Part ⅩⅩⅣ. Preparation and characterization of nafion polymer film modified electrodes containing Fe(Ⅱ)-phen complex. Journal of Electroanalytical Chemistry,1987,233:19-27.
    [139]M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada. Fractal Structures of Zinc Metal Leaves Grown by Electrodeposition. Phys. Rev. Lett.,1984,53:286-289.
    [140]M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemicaldeposition technique. Chemical Physics Letters,2002,363:123-128.
    [141]A.F. Diaz, K.K. kanazawa, G.P. Gardini. Electrochemical polymerization of pyrrole.J. Soc. Chem. Commum.,1979,14:635-640.
    [142]M. Skompska, A. Kudelski. Electrochemical activity of poly(N-vinylcarbazole) films in acetonitrile solution and in acetonitrile+water mixtures Correlation between spectroelectrochemical and EPR results. Journal of Electroanalytical Chemistry,1996,403: 125-132.
    [143]L.D. Whiteley, C.R. Martin. Perfluorosulfonate ionomer film coated electrodes as electrochemical sensors:fundamental investigations. AnaLChem.,1987,59(14):1746-1751.
    [144]薛晓康,郭兴蓬,余成平.电位型聚毗咯pH传感器的制备.应用化学,2005,4:435-439.
    [145]J.H. Pei, X.Y. Li. Xanthine and hypoxanthine sensors based on xanthine oxidase immobilized on a CuPtCl6 chemically modified electrode and liquid chromatography electrochemical detection. Analytica ChimicaActa,2000,414:205-213.
    [1]S.J. Yao, J.H. Xu, Y. Wang, X.X. Chen, Y.X. Xu, S.S. Hu. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal. Chim. Acta,2006,557:78-84.
    [2]C. Matsubara, N. Kawamoto, K. Takamura. Oxo[5,10,15,20-tetra (4-pyridyl) porphyrinato]titanium(Ⅳ):an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst,1992,117:1781-1784.
    [3]K. Nakashima, K. Maki, S. Kawaguchi, S. Tsukamoto, I. Kazuhiro. Super Dynamic-Range Measurement of FT-IR Spectra by Delta-Sigma Modulation. Anal ScL,1991,7:709-710.
    [4]K. Cui, Y.H. Song, Y. Yao, Z.Z. Huang, L. Wang. A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem. Commun.,2008,10:663-667.
    [5]S.M. Golabi, J.B. Raoof. Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of its derivatives.J. Electroanal. Chem.,1996,416:75-82.
    [6]Y.H. Song, L. Wang, C.B. Ren, G.Y. Zhu, Z. Li. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sens. Actuators B, 2006,114:1001-1006.
    [7]S.Y. Xu, B. Peng, X.Z. Han. A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres. Biosens. Bioelectron.,2007,22:1807-1810.
    [8]Y.Y. Wang, X.J. Chen, J.J. Zhu. Fabrication of a novel hydrogen peroxide biosensor based on the AuNPs-C@SiO2 composite. Electrochem. Commun.,2009,11:323-326.
    [9]N.N. Wei, X. Xin, J.Y. Du, J.L. Li. A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film. Biosens. Bioelectron.,2011,26: 3602-3607.
    [10]C.M. Welch, C.E. Banks, A.O. Simm, R.G. Compton. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. AnaL BioanaL Chem.,2005,38:12-21.
    [11]A.I. Lopez-Lorente, B.M. Simonet, M. Valcarcel. Analytical potential of hybrid nanoparticles. AnaL BioanaL Chem.,2011,399:43-54.
    [12]C. Batchelor-McAule y, Y. Du, G.G. Wildgoose, R.G Compton. The use of copper (Ⅱ) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide. Sens. Actuators B:Chem.,2008,135:230-235.
    [13]J. Wang, M.Z. Xu, R.G. Zhao, G.N. Chen. A highly sensitive H2O2 sensor based on zinc oxide nanorod arrays film sensing interface. Analyst,2010,135:1992-1996.
    [14]B. Xu, M.I. Ye, Y.X. Yu, W.D. Zhang. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. AnaL Chim.Acta,2010,674:20-26.
    [15]Y. Li, J.J. Zhang, J. Xuan, L.P. Jiang, J.J. Zhu. Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem. Commun.,2010,12:777-780.
    [16]X.J. Bo, J.C. Ndamanisha, J. Bai, L.P. Guo. Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta,2010,82:85-91.
    [17]S.J. Guo, S.J. Dong, E.K. Wang. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet:Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACSNano,2010,4:547-555.
    [18]H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano,2009,3:2653-2659.
    [19]S. Stankovich, D.A. Dikin, R.D. Piner, K A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558-1565.
    [20]M. Pumera. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev.,2010, 39:4146-4157.
    [21]S. Liu, J.Q. Tian, L. Wang, X.P. Sun. Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection.J. Nanopart. Res.,2011,13:4539-4548.
    [22]F.H. Li, J. Chai, H.F. Yang, D.X. Han, L. Niu. Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta, 2010,81:1063-1068.
    [23]R.S. Dey, C.R. Raj. Development of an Amperometric Cholesterol Biosensor Based on Graphene-Pt Nanoparticle Hybrid Material.J. Phys. Chem. C,2010,114:21427-21433.
    [24]S. Gilje, S. Han, M.S. Wang, K.L. Wang, R.B Kaner. A Chemical Route to Graphene for Device Applications. Nano Letters,2007,7:3394-3398.
    [25]C.C. Chien, K.T. Jeng. Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts. Mater. Chem. Phys.,2006,99:80-87.
    [26]YJ. Li, W. Gao, L.J. Ci, C.M. Wang. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon,2010,48:1124-1130.
    [27]Y.C. Xing. Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes. J. Phys. Chem. B, 2004,108:19255-19259.
    [28]Y. Liu, D.W. Wang, L. Xu, H.Q. Hou, T.Y. You. A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens. Bioelectron.,2011,26:4585-4590.
    [29]X.J. Bian, X.F. Lu, E. Jin, L.R. Kong, W.J. Zhang, C. Wang. Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide. Talanta,2010,81:813-818.
    [30]S.J. Guo, D. Wen, S.J. Dong, E.K. Wang. Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta,2009,77:1510-1517.
    [31]D. Shan, E. Han, H.G. Xue, S. Cosnier. Self-Assembled Films of Hemoglobin/Laponite/Chitosan:Application for the Direct Electrochemistry and Catalysis to Hydrogen Peroxide. Biomacromolecules,2007,8:3041-3046.
    [32]K..F. Zhou, Y.H. Zhu, X.L. Yang, J. Luo, C.Z. Li, S.R. Luan. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim. Acta,2010,55: 3055-3060.
    [33]S.A.G. Evans, J.M. Elliott, L.M. Andrews, P.N. Bartlett, P.J. Doyle, G. Denuault. Detection of Hydrogen Peroxide at Detection of Hydrogen Peroxide at Mesoporous Platinum Microelectrodes. Anal Chem.,2002,74:1322-1326.
    [1]T. Yamamoto, Y. Moriwaki, S. Takahashi. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clin. Chim. Acta,2005,356:35-57.
    [2]M. Heinig, R.J. Johnson. Role of uric acid in hypertension, renal disease, and metabolic syndrome. Clev. Clin. J. Med.,2006,73 (12):1059-1064.
    [3]M.A. Carsol, G. Volpe, M. Mascini. Amperometric detection of uric acid and hypoxanthine with Xanthine oxidase immobilized and carbon based screen-printed electrode. Application for fish freshness determination. Talanta,1997,44:2151-2159.
    [4]E.E. Kelley, A. Trostchansky, H. Rubbo, B.A. Freeman, R. Radi, M.M. Tarpey. Binding of Xanthine Oxidase to Glycosaminoglycans Limits Inhibition by Oxypurinol.J. Biol. Chem., 2004,279 (36):37231-37234.
    [5]M. Czauderna, J. Kowalczyk, Quantification of allantoin. Quantification of allantoin, uric acid, xanthine and hypoxanthine in ovine urine by high-performance liquid chromatography and photodiode array detection. J. Chromatogr. B:Biomed. Sci.Appl.,2000,744:129-138.
    [6]M. Czauderna, J. Kowalczy. Simultaneous measurement of allantoin, uric acid, xanthine and hypoxanthine in blood by high-performance liquid chromatography. J. Chromatogr. B: Biomed. Sci. Appl.,1997,704:89-98.
    [7]N. Cooper, R. Khosravan, C. Erdmann, J. Fiene, J.W. Lee. Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. J. Chromatogr. B:Biomed. Sci. Appl.,2006,837:1-10.
    [8]L. Terzuoli, B. Porcelli, C. Setacci, M. Guibbolini. Comparative determination of purine compounds in carotid plaque by capillary zone electrophoresis and high-performance liquid chromatography.J. Chromatogr. B:Biomed. Sci. AppL,1999,728:185-192.
    [9]E. Causse, A. Pradelles, B. Dirat, A. Negre-Salvayre, R. Salvayre, F. Couderc. Simultaneous determination of allantoin, hypoxanthine, xanthine, and uric acid in serum/plasma by CE. Electrohporesis,2007,28:381-387.
    [10]F. Carlucci, A. Tabucchi, B. Biagioli, G. Sani, G. Lisi, M. Maccherini, F. Rosi, E. Marinello. Capillary electrophoresisin the evaluation of ischemic injury:simultaneous determination of purine compounds and glutathione. Electrophoresis,2000,21:1552-1557.
    [11]M. Cubukcu, S. Timur, U. Anik. Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta,2007,74:434-439.
    [12]X. Cai, K. Kalcher, C. Neuhold. Simultaneous determination of uric acid, xanthine and hypoxanthine with an electrochemically pretreated carbon paste electrode. Fresenius J. Anal. Chem.,1994,348:660-665.
    [13]J.M Zen, Y.Y. Lai, H.H. Yang, A. Senthil Kumar. Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode. Sens. Actuators B:Chem.,2002,84:237-244.
    [14]Z.H. Wang, X.Y. Dong, J. Li. An inlaying ultra-thin carbon paste electrode modified with functional single-wall carbon nanotubes for simultaneous determination of three purine derivatives. Sens. Actuators B:Chem.,2008,131:411-416.
    [15]A.S. Kumar, P. Swetha. Ru(DMSO)4Cl2 nano-aggregated Nafion membrane modified electrode for simultaneous electrochemical detection of hypoxanthine, xanthine and uric acid. J. Electroanal. Chem.,2010,642:135-142.
    [16]R.N. Goyal, A. Mittal, S. Sharma. Simultaneous Voltammetric Determination of Hypoxanthine, Xanthine, and Uric Acid. Electroanalysis,1994,6:609-611.
    [17]Y. Wang, L.L. Tong. Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sens. Actuators B,2010,150:43-49.
    [18]P. Kalimuthu, S.A. John. Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta,2010,80: 1686-1691.
    [19]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004,306:666-669.
    [20]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Graphene-based composite materials. Nature,2006,442: 282-286.
    [21]Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science,2010,327:662-662.
    [22]J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen. Electromechanical Resonators from Graphene Sheets. Science,2007,315:490-493.
    [23]K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater,2009,8:203-207.
    [24]G. Chen, W. Weng, D. Wu, C.Wu, J. Lu, P. Wang, X. Chen. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon,2004,42:753-759.
    [25]S. Stankovich, R.D. Piner, X.Q. Chen, N.Q. Wu, S.T. Nguyen, R.S. Ruoff. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate).J. Mater. Chem.,2006,16:155-158.
    [26]S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558-1565.
    [27]H.C. Gao, F. Xiao, C.B. Ching, H.W. Duan. One-Step Electrochemical Synthesis of PtNi Nanoparticle-Graphene Nanocomposites for Nonenzymatic Amperometric Glucose Detection. ACSAppL Mater. Interfaces.,2011,3:3049-3057.
    [28]H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano,2009,3 (9):2653-2659.
    [29]W. Ma, D.M. Sun. Simultaneous Determination of Epinephrine and Dopamine with Poly(L-arginine) Modified Electrode. Chin JAnal Chem,2007,35(1):66-70.
    [30]Q. Cao, H. Zhao, Y.M. Yang, Y.J. He, N. Ding, J. Wang, Z.J. Wu, K.X. Xiang, G.W. Wang. Electrochemical immunosensor for casein based on gold nanoparticles and poly(1-Arginine)/multi-walled carbon nanotubes composite film functionalized interface. Biosensors and Bioelectronics,2011,26:3469-3474.
    [31]S. Gilje, S. Han, M.S. Wang, K.L. Wang, R.B Kaner. A Chemical Route to Graphene for Device Applicatio. Nano Letters,2007,7 (11):3394-3398.
    [32]Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets.J. Am. Chem. Soc.,2008,130: 5856-5857.
    [33]Sergio V. P. Barreira, F. Silva. Surface Modification Chemistry Based on the Electrostatic Adsorption of Poly-L-arginine onto Alkanethiol Modified Gold Surfaces. Langmuir,2003, 19:10324-10331.
    [34]P. Sharma, N.K. Misra, P. Tandon, V.D. Gupta. Phonon dispersion in poly(1-arginine).J. MacromoL Sci. B,2002,41(2):319-340.
    [35]F. C. Anson. Application of Potentiostatic Current Integration to the Study of the Adsorption of CobaIt(lll)-(Ethylenedinitrilo)tetraacetate on Mercury Electrodes. Anal Chem.,1964,36: 932-934.
    [36]R. Adams. Electrochemistry at Solid Electrodes. Marcel Dekker:New York,1969.
    [1]X.L. Wen, Y.H. Jia, Z.L. Liu. Micellar effects on the electrochemistry of dopamine and its selective detection in the presence of ascorbic acid. Talanta,1999,50:1027-1033.
    [2]K. Wu, J. Fei, S. Hu. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. AnaL Biochem.,2003,318: 100-106.
    [3]J.W. Mo, B. Ogorevc. Simultaneous Measurement of Dopamine and Ascorbate at Their Physiological Levels Using Voltammetric Microprobe Based on Overoxidized Poly (1, 2-phenylenediamine)-Coated Carbon Fiber. AnaL Chem.,2001,73(6):1196-1202.
    [4]R.M. Wightman, L.J. May, A.C. Michael. Detection of dopamine dynamics in the brain Michael. Anal.Chem.,1988,60(13):769A-779A.
    [5]A. Clszewski, G. Milczarek. Polyeugenol-Modified Platinum Electrode for Selective Detection of Dopamine in the Presence of Ascorbic Acid. AnaL Chem.,1999,71 (5):1055-1061.
    [6]Y.Z. Zhang, Y.J. Cai, S. Su. Determination of dopamine in the presence of ascorbic acid by poly (styrene sulfonic acid) sodium salt/single-wall carbon nanotube flim modified glassy carbon electrode. AnaL Biochem.,2006,350:285-291.
    [7]E. Shams, A. Babaei, A.R. Taheri, M. Kooshki. Voltammetric determination of dopamine at a zirconium phosphated silica gel modified carbon paste electrode. Bioelectrochemistry,2009, 75:83-88.
    [8]Y. Wang, Y.M. Li, L.H. Tang, J. Lu, J.H. Li. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun.,2009,11:889-892.
    [9]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004,306:666-669.
    [10]S. Alwarappan, A. Erdem, C. Liu, C.Z. Li. Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. J. Phys. Chem. C,2009,113: 8853-8857.
    [11]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Graphene-based composite materials. Nature,2006,442: 282-286.
    [12]S. Gilje, S. Han, M.S. Wang, K.L. Wang, R.B. Kaner. A chemical route to graphene for device applications. Nano Letters,2007,7(11):3394-3398.
    [13]J.B. Wu, H.A. Becerril, Z.A. Bao, Z.F. Liu, Y.S. Chen, P. Peter. Organic solar cells with solution-processed graphene transparent electrode. AppL Phys. Lett.,2008,92: 263302-263304.
    [14]H. Wu, J. Wang, X.H. Kang, C.M. Wang, D.H. Wang, J. Liu, I.A. Aksay, Y.H. Lin. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta,2009,80:403-406.
    [15]C.S. Shan, H.F. Yang, J.F. Song, D.X. Han, A. Ivaska, L. Niu. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Anal. Chem.,2009,81: 2378-2782.
    [16]K.F. Zhou, Y.F. Zhu, X.L. Yang, J. Luo, C.Z. Li, S.R. Luan. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim. Acta,2010, 55:3055-3060.
    [17]W.J. Lin, C.S. Liao, J.H. Jhang, Y.C. Tsai. Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and b-nicotinamide adenine dinucleotide. Electrochem. Commun.,2009,11:2153-2156.
    [18]M. Zhou, Y. Zhai, S. Dong. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Anal. Chem.,2009,81(14):5603-5613.
    [19]Y. Wang, Y. Wan, D. Zhang. Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochem. Commun.,2010,12: 187-190.
    [20]C. Wang, L. Zhang, Z.H. Guo, J.G. Xu, H.Y. Wang, K.F. Zhai, X. Zhuo. A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim. Acta, 2010,169:1-6.
    [21]Y.R. Kim, S. Bong, Y.J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors and Bioelectronics,2010,25:2366-2369.
    [22]H.G. Zhang, Q.S. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu. One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv Funct. Mater.,2007,17(15):2766-2771.
    [23]L.F. Gou, C.J. Murphy. Solution-Phase Synthesis of Cu2O Nanocubes. Nano Letters,2003, 3(2):231-234.
    [24]Z.C. Orel, A. Anzlovar, G. Drazic, M. Zigon. Cuprous Oxide Nanowires Prepared by an Additive-Free Polyol Process. Crystal Growth &Design,2007,7(2):453-458.
    [25]X.J. Zhang, G.F. Wang, Q. Wang, L.J. Zhao, M. Wang, B. Fang. Cupreous oxide nanobelts as detector for determination of 1-Tyrosine. Materials Science and Engineering B,2009,156: 6-9.
    [26]X.J. Zhang, G.F. Wang, A.X. Gu, H.Q. Wu, B. Fang. Preparation of porous Cu2O octahedron and its application as L-Tyrosine sensors. Solid State Communications,2008,148:525-528.
    [27]X.J. Zhang, G.F. Wang, W. Zhang, Y. Wei, B. Fang. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosensors and Bioelectronics,2009,24:3395-3398.
    [28]S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan. Novel NO2 gas sensor based on cuprous oxide thin films. Sensors and Actuators B,2006,113:468-476.
    [29]M. Rajamathi, R. Seshadri. Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Current Opinion in Solid State and Materials Science, 2002,6:337-345.
    [30]Y.J. Li, W. Gao, L.J. Ci, C.M. Wang, P.M. Ajayan. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon,2010,48:1124-1130.
    [31]S. Liu, J.Q. Wang, J. Zeng, J.F. Ou, Z.P. Li, X.H. Liu, S.R. Yang. "Green" electrochemical synthesis of Pt/graphene sheet nanocomposite filmand its electrocatalytic property. Journal of Power Sources,2010,195:4628-4633.
    [32]C.C. Chien, K.T. Jeng. Effective preparation of carbon nanotube supported Pt-Ru electrocatalysts. Materials Chemistry and Physics,2006,99:80-87.
    [33]J.J. Niu, J.N. Wang. Activated carbon nanotubes-supported catalyst in fuel cells. Electrochim. Acta,2008,53:8058-8063.
    [34]C. Xu, X. Wang, J.W. Zhu. Graphene-metal particle nanocomposites. J. Phys. Chem. C,2008, 112:19841-19845.
    [35]J.L. Wu, X.P. Shen, L. Jiang, K. Wang, K.M. Chen. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Applied Surface Science, 2010,256:2826-2830.
    [36]Y.C. Xing. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes.J. Phys. Chem. B, 2004,108:19255-19259.
    [37]C. Xu, X. Wang, L.C. Yang, Y.P. Wu. Fabrication of a graphene-cuprous oxide composite. Journal of Solid State Chemistry,2009,182:2486-2490.
    [38]M. Yin, C.K. Wu, Y.B. Lou, C. Burda, J.T. Koberstein, Y.M. Zhu, S. O'Brien. Copper Oxide Nanocrystals. J.Am. Chem. Soc.,2005,127:9506-9511.
    [39]S.Y. He, B.Y. Ren, X.X. Liu, Z. Tong. Reversible Electrogelation in Poly (acrylic acid) Aqueous Solutions Triggered by Redox Reactions of Counterionsa. MacromoL Chem. Phys., 2010,211:2497-2502.
    [40]C.H. Kuo, M.H. Huang. Fabrication of Truncated Rhombic Dodecahedral Cu2O Nanocages and Nanoframes by Particle Aggregation and Acidic Etching. J. Am. Chem. Soc.,2008,130: 12815-12820.
    [41]GP. Jin, X.Q. Lin, J.M. Gong. Novel choline and acetylcholine modified glassy carbon electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid.J. ElectroanaL Chem.,2004,569:135-142.
    [42]N.J. Ke, S.S. Lu, S.H. Cheng. A strategy for the determination of dopamine at a bare glassy carbon electrode:p-Phenylenediamine as a nucleophile. Electrochem. Comm.,2006,8: 1514-1520.
    [43]G. Kang, X. Lin. RNA modified electrodes for simultaneous determination of dopamine and uric acid in the presence of high amounts of ascorbic acid. Electroanalysis,2006,18(24): 2458-2466.
    [44]Z.H. Wang, J. Liu, Q.L. Liang, Y.M. Wang, GA. Luo. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst,2002,127: 653-658.
    [45]M.B. Gelbert, D.J. Curran. Alternating Current Voltammetry of Dopamine and Ascorbic Acid at Carbon Paste and Stearic Acid Modified Carbon Paste Electrodes. Anal. Chem.,1986,58: 1028-1032.
    [46]P. Wang, Y.X. Li, X. Huang, L. Wang. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta,2007,73:431-437.
    [47]P.Y. Ge, Y. Du, J.J. Xu, H.Y. Chen. Selective detection of dopamine based on the unique property of gold nanofilm. Journal of Electroanalytical Chemistry,2009,633:182-186.
    [48]S.A. Kumar, C.F. Tang, S.M. Chen. Poly (4-amino-1-1'-azobenzene-3,4'-disulfonic acid) coated electrode for selective detection of dopamine from its interferences. Talanta,2008,74: 860-866.
    [49]D. Sun, X.F. Xie, H.J. Zhang. Surface effects of mesoporous silica modified electrode and application inelectrochemical detection of dopamine. Colloids and Surfaces B: Biointerfaces,2010,75:88-92.
    [1]D. Bogdal. Coumarins:Fast Synthesis by Knoevenagel Condensation under Microwave Irradiation.J. Chem.Res. (S),1998,468-469.
    [2]H. Salehzadeh, D. Nematollahi, M. Rafiee. Electrochemical dimerization of 4-methylesculetin: Synthesis and kinetic study of a highly-oxygenated dimmer. J. ElectroanaL Chem.,2011, 650(2):226-232.
    [3]D. Egan, R. O'Kennedy, E. Moran, D. Cox, E. Prosser, R. D. Thornes. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab. Rev.,1990,22:503-529.
    [4]Y. Okata, N. Miyauchi, K. Suzuki, T. Kobayasashi, C. Tsutsui, K. Mayuzumi, S. Nishibe, T. Okuyama. Search for naturally occurring substances to prevent the complications of diabetes. Chem. Pharm. Bull,1995,43:1385-1387.
    [5]E. Zapp, D. Brondani, I.C. Vieira, J. Dupont, C.W. Scheeren. Gold Nanoparticles and Hydrophobic Ionic Liquid Applied on the Development of a Voltammetric Biosensor for Polyphenol Determination. Electroanalysis,2011,23(5):1124-1133.
    [6]R.J. Ochocka, D. Rajzer, P. Kowalski, H. Lamparczyk. Determination of coumarins from Chrysanthemum segetum L. by capillary electrophoresis.J. Chromatogr. A,1995, 709(1):197-202.
    [7]L. Zhou, J. Kang, L. Fan, X. C. Ma, H. Y. Zhao, J. Han, B. R. Wang, D. A. Guo. Simultaneous analysis of coumarins and secoiridoids in Cortex Fraxini by high-performance liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal.,2008,47(1):39-46.
    [8]C. H. Li, A. J. Chen, X. F. Chen, X. G. Chen, Z. D. Hu. Separation and simultaneous determination of rutin, puerarin, daidzein, esculin and esculetin in medicinal preparations by non-aqueous capillary. J. Pharm. Biomed. Anal.,2005,39:125-131.
    [9]Z. Chen, L. Y. Zhang, G. Chen. Carbon nanotube/poly(ethylene-co-vinyl acetate) composite electrode for capillary electrophoretic determination of esculin and esculetin in Cortex Fraxini. Electrophoresis,2009,30(19):3419-3426.
    [10]D.B. Lu, Y. Zhang, S.X. Lin, L.T. Wang, C.M. Wang. Sensitive detection of esculetin based on a CdSe nanoparticles-decorated poly-(diallyldimethylammonium chloride)-functionalized graphene nanocomposite film. Analyst,2011,136:4447-4453.
    [11]L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A.K. Geim. Chaotic Dirac Billiard in Graphene Quantum Dots. Science,2008,320: 356-358.
    [12]D. Li, R. B. Kaner. Graphene-Based Materials. Science,2008,320:1170-1171.
    [13]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197-200.
    [14]F. Schedin, A. K. Geim, S.V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K.S. Novoselov. Detection of individual gas molecules adsorbed on grapheme. Nat. Mater.,2007,6:652-655.
    [15]Y. Wang, Y. M. Li, L. H. Tang, J. Lu, J. H. Li. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun.,2009,11:889-892.
    [16]F. H. Li, J. Chai, H. F. Yang, D. X. Han, L. Niu. Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta, 2010,81:1063-1068.
    [17]R.S. Dey, C.R. Raj. Development of an Amperometric Cholesterol Biosensor Based on Graphene-Pt Nanoparticle Hybrid Material. J. Phys. Chem. C,2010,114:21427-21433.
    [18]K. F. Zhou, Y. H. Zhu, X. L. Yang, J. Luo, C. Z. Li, S. R. Luan. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim. Acta,2010, 55:3055-3060.
    [19]L.H. Lu, A. Kobayashi, Y. Kikkawa, K. Tawa, Y. Ozaki. Oriented Attachment-Based Assembly of Dendritic Silver Nanostructures at Room Temperature.J. Phys. Chem. B,2006, 110(46):23234-23241.
    [20]E.J. Silvester, F. Grieser, B.A. Sexton, T.W. Healy. Spectroscopic studies on copper sulfide sols. Langmuir,1991,7(12):2917-2922.
    [21]K. Wakamura. Roles of phonon amplitude and low-energy optical phonons on superionic conduction. Phys. Rev. B,1997,56(18):11593-11599.
    [22]A. Etkus, A. Galdikas, A. Mironas, I. Simkiene, I. Ancutiene, V. Janickis, S. Kaciulis, G. Mattogno, G.M. Ingo. Properties of CuxS thin film based structures:influence on the sensitivity to ammonia at room temperatures. Thin Solid Films,2001,391(2):275-281.
    [23]S. Gilje, S. Han, M.S. Wang, K.L. Wang, R.B Kaner, A Chemical Route to Graphene for Device Applications. Nano Letters,2007,7:3394-3398.
    [24]S. Liu, J.Q. Wang, J. Zeng, J.F. Ou, Z.P. Li, X.H. Liu, S.R. Yang. "Green" electrochemical synthesis of Pt/graphene sheet nanocomposite filmand its electrocatalytic property. Journal of Power Sources,2010,195:4628-4633.
    [25]J.J. Niu, J.N. Wang. Activated carbon nanotubes-supported catalyst in fuel cells. Electrochim. Acta,2008,53:8058-8063.
    [26]K.P. Liu, J.P. Wei, C.M. Wang. Sensitive detection of rutin based on β-cyclodextrin@chemically reduced graphene/Nafion composite film. Electrochim. Acta, 2011,56:5189-5194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700