纳米固体酸催化剂的制备及酯化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酯化反应是化学工业中一类非常重要的酸催化反应,可用于合成很多重要的化工原料与中间体。为解决目前工业生产中酯化催化剂存在的分离困难、不可回收、环境污染等突出问题,寻找高活性、低价格、可复用、无污染的新型纳米固体酸催化剂已成为当前研究的热点。本文采用新的合成工艺制备了多种新型纳米固体酸催化剂,并以催化醋酸丁酯的反应为探针,进一步研究了纳米固体酸催化剂在酯化反应中的应用。
     采用直接研磨法制备了一系列SO_4~(2-)/ZrO_2型固体酸催化剂。其中无定形的Zr(OH)_4可作为制备纳米SO_4~(2-)/ZrO_2催化剂载体的优秀前驱体;而采用氨基磺酸为酸化原料制备的催化剂硫含量更高、比表面积更大、活性更强;在最佳煅烧温度500℃下,催化剂呈无定形态,为不规则的纳米网状结构;同时发现酸化剂的加入抑制了ZrO_2四方晶相的形成,随着原料S:Zr摩尔比的增加,催化剂的比表面积和孔容以及SO_4~(2-)的含量都呈现出先增大后减小的趋势,并且在S:Zr摩尔比为2:1时,催化酯化反应的活性最高,反应30 min,醋酸的转化率即可达到92.71 %,同时重复使用5次,催化活性没有降低。
     以偏钨酸铵和磷钨酸为W源,采用等体积浸渍法制备了一系列WO_x/ZrO_2型复合金属氧化物催化剂。采用不同W源制备的催化剂都为纳米片状结构,并且用磷钨酸浸渍的催化剂直径更小只有约10 nm;随着煅烧温度的升高,WO_3逐渐析出,催化剂的比表面积降低,单位W密度则随之升高;随着WO_3负载量的增加,ZrO_2由四方相向单斜相转变,催化剂的比表面积先增加之后稍有降低,单位W密度也随之增加。考察了WO_x/ZrO_2催化剂催化合成醋酸丁酯的活性,发现在煅烧温度为750℃,WO_3负载量为10 %时催化酯化活性最高,同时催化剂的重复使用性能良好,可重复4次无明显降低,而活性降低的主要原因是由于催化剂表面积炭,可以通过氧化烧炭法再生。
The esterification reaction is an important acid catalytic reaction in chemical industy. And esters are very important chemical intermediates and materials. However the drawbacks traditional acid catalyst suffered are obvious, such as the difficulty for the separation of the catalyst from the reaction mixture, unreusable of catalyst and environmental pollutions. To research a new nanosized solid acid catalyst with high activity, low price, reusability and environmentalfriendly has become a hot topic. This paper adopts a new synthesis process to prepare a series of nanosized solid acid catalysts, and further studied the catalyst activity in the esterification of acetic acid with n-butanol.
     Nanosized sulfated zirconia has been synthesized by the incorporation method. And the amorphous zirconium hydroxide is an excellent supporter. Catalyst prepared with sulfamic acid gets higher content of sulfate group, bigger BET surface area and higher activity. The catalyst is amorphous phase and displays a disordered structure with a number of wormhole-like and interconnected channels. The presence of sulfate restrains the tetragonal crystal of zirconia. As the increase of the mole rateio of S:Zr, the BET surface area and the content of sulfate group of the catalyst present a first increases, then decreases trends. When S:Zr = 2, the catalytic activity get the highest point. The conversion of acetic acid reaches 92.73 % even with a reaction time of 30 min. The catalyst can be reused as there is no loss in catalytic activity during the five cycles.
     A series of nanosized tungtated zirconia was prepared by impregnation method with ammonium metatungstate and phosphotungstic acid. The catalysts displayed the nano flake structure, and catalyst prepared by phosphotungstic acid shows smaller diameter only about 10 nm. With the increase of calcination temperature, WO_3 crystals were separated out, and the BET surface area of the catalyst was reduced, and the W surface density was increased. The increasing of the WO_3 load transforms tetragonal phase to monoclinic phase, the W surface density was increased, and the BET surface area of the catalyst present a first increases, then decreases trends. Then we studied the catalyst activity in the esterification of acetic acid with n-butanol. The optimum preparation condition of catalyst is the calcination temperature at 750℃and the WO_3 load is 10 %. The catalyst can be reused as there is little loss in catalytic activity during the four cycles. And can be regeneration by oxidation charcoal burner method.
引文
1.田部浩三,小野嘉夫等著,郑禄彬,王公慰,张盈珍译.新固体酸和碱及其催化作用[M].北京:化学工业出版社, 1992: 2-468
    2.周崇文.论固体酸在有机合成中的应用[J].化学工程与装备, 2008, 12: 124-126
    3.张凤媛. SO42-/TiO_2-SiO_2固体超强酸及其催化酯化反应的研究[D]: [硕士学位论文].兰州:兰州大学, 2006
    4. Hino M, Arata K. Solid catalysts treated with anions. III. Reaction of butane to isobutane catalyzed by iron oxide treated with sulfate ion. Solid superacid catalyst[J]. Chem Lett, 1979: 1259-1260
    5.张富捐.纳米催化剂研究进展[J].许昌学院学报, 2004, 23(5): 38-42
    6.卢文奎,陈庆玲,卢冠忠等.固体酸代替液体酸催化剂的环境友好新工艺[J].石油化工, 2001, 30(2): 152-156
    7. Yadav G D, Nair J J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J]. Micropor Mesopor Mat, 1999, 33:1-48
    8. Xia Y D, Hua W M, Gao Z. Benzoylation of toluene with benzoyl chloride on Al-promoted sulfated solid superacids[J]. Catal Lett, 1998, 55:101-104
    9. Venkatesan C, Singh A P, Condensation of acetophenone to ,β-unsaturated ketone (dypnone) over solid acid catalysts[J]. J Mol Catal A-Chem, 2002, 181:179-187
    10.赵杰.新型SO42-促进氧化物型固体超强酸的研究[D]: [博士学位论文].上海:复旦大学, 2008
    11. Arata K, Matsuhashi H, Hino M. Synthesis of solid superacids and their activities for reactions of alkanes[J]. J Catal, 2003, 81: 17-30
    12. Li W S, Shen Z Q, Zhang Y F. Activity and mechanism of rare earth solid superacid for initiating ring-opening polymerization of chloromethyl thiirane[J]. Eur Polym J, 2001, 37: 1185-1190
    13. Xia Q H, Hidajat K, Kawi S. Structure, acidity, and catalytic activity of mesoporous acid catalysts for the gas-phase synthesis of MTBE from MeOH and (BuOH)-O-t[J]. J Catal, 2002, 209(2) : 433-444
    14. Wang J, Yang P, Fan M. Preparation and characterization of novel magnetic ZrO_2/TiO_2/Fe_3O_4 solid superacid[J]. Mater Lett, 2007, 61 (11-12): 2235-2238
    15. Sun Y Y, Ma S Q, Du Y C. Solvent-free preparation of nanosized sulfated zirconia with bronsted acidic sites from a simple calcination[J]. J Phys Chem B, 2005, 109(7): 2567-2572
    16.林进.稀土固体超强酸SO42-/TiO_2/La3+催化合成水杨酸异丁酯[J].有机化学, 2000, 20(5): 805-807
    17. Morterra C, Cerrato G, Pinna F, et al. On the acid-acid catalyzed isomerization of light paraffins over a system: the effect of hydration[J]. J Catal, 1994, 149: 181-187
    18.周华,屈小英,余高奇.纳米固体超强酸SO42-/TiO2催化合成乙酸正丁酯[J].武汉科技大学学报, 2007, 30(6): 629-631
    19.陈同云,万玉保,刘菊红.低温陈化法制备SO42-/ZrO2-Sm2O3固体超强酸及表征[J].无机化学学报, 2003, 19(2): 164-167
    20. Hayashi H. et al. Hydrothermal synthesis of yttria stabilized ZrO2 nanoparticles in subcritical and supercritical water using a flow reaction system[J]. J Solid State Chem, 2009, 182(11): 2985-2990
    21. Kiss A A, Dimian A C, Rothenberg G. Solid acid catalysts for biodiesel production - Towards sustainable energy[J]. Adv Synth Catal, 2006, 348( 1-2): 75-81
    22. Kiss A A , Dimian A C, Rothenberg G. Biodiesel by catalytic reactive distillation powered by metal oxides[J]. Energ Fuel, 2006, 22(1): 598-604
    23. Jin T, Yamaguchi T, Tanabe K. Mechanism of acidity generation on sulfur-promoted metal oxides[J]. J Phys Chem-Us, 1986, 90: 4794-4796
    24. Benjaram M, Reddy, Pavani M. Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques[J]. Appl Catal A-Gen, 2002, 228(1-2): 4794-4796
    25.高滋,陈建民. SO42-/TiO2和SO42-/Fe2O3固体超强酸研究[J].高等学校化学学报, 1994, 15(6): 873-877
    26. Baba S, Shimizu T, Takaoka H. Disc. Meeting[J]. Petrol Chem, 1986, 2: 15-17
    27.唐新硕,朱逸飞.固体超强酸催化剂研究进展[J].石油化工, 1984, 3: 282
    28.王辛宜.催化剂表征[M].上海:华东理工大学出版社, 2008, 9
    29.孙长勇,宋一兵,郭锡坤. TM-SO42-/TiO2的催化酯化性能及XRD和IR表征[J].光谱实验室, 2003, 20(4): 565-567
    30.刘希尧.工业催化剂分析测试表征[M].北京:烃加工出版社, 1990,4
    31.缪长喜,谢在库,陈庆龄.固体超强酸催化剂研究进展[J].石油炼制与化工, 1998, 29(2): 29-32
    32.赵地顺.催化剂评价与表征[M].北京:化学工业出版社, 2011, 5
    33.段雪,王棋.定量解析程序升温脱附谱图的新方法[J].催化学报, 1986, 7(2): 167-176
    34.董丽辉,李成海.固体超强酸催化剂的结构表征[J].天津化工, 2005, 19(6): 16-18
    35. Jin T S, Ma Y R, Li Y. An efficient and convenient procedure for preparation of mandelates catalysed by SO42-/TiO2 solid superacid[J]. Synthetic Commun, 2001, 31(13): 2051-2054
    36.白秀丽,苏丽宏,林淑田.固体超强酸催化性能[J].精细石油化工进展, 2000, 12: 40-41
    37.缪长喜,华伟明,高滋. SO42-/ZrO2催化剂上正丁烷异构化反应[J].催化学报, 1997, 18: 13
    38. Nakamura H, Kashiwara Y, Arata K. Friedel-crafts acetylation, propionylation, and butyrylation of toluene catalyzed by solid superacids[J]. B Chem Soc Jpn, 2003, 76(5): 1071-1074
    39.张国华,贾海宏.环己醇催化脱水制备环己烯[J].应用化学, 2003, 32: 31-32
    40.雷霆,唐颐,华伟明.丝光沸石负载SO_4~(2-)/ZrO_2超强酸的研究[J].化学学报, 2000, 58(8): 942-947
    41.高根之,于世涛,杨锦宗. SO_4~(2-)/TiO_2-Al_2O_3-SnO_2催化剂的研制及其催化合成己二酸二辛酯[J].催化学报, 1996, 17(1): 83-86
    42. David J S, Justin S J H. Metal oxide catalysis[M]. America: Wiley-VCH, 2009
    43. Yamaguchi T. Recent progress in solid superacid[J]. Appl Catal, 1990, 61: 1-25
    44. Davis B H, Keogh R A, Srinivasan R. Sulfated zirconia as a hydrocarbon conversion catalyst[J]. Catal Today, 1994, 20: 219-256
    45. Arata K, Hino M. Preparation of superacids by metal oxides and their catalytic action[J]. Mate Chem Phy, 1990, 26: 216-237
    46. Song X, Sayari A. Sulfated zirconia-based strong solid-acid catalysts: Recent progress[J]. Catal Rev Sci Eng, 1995, 95: 559-614
    47.高滋,陈建民,唐颐. SO_4~(2-)/ZrO_2超强酸体系形成过程的研究[J].高等学校化学学报, 1992, 12: 1498-1502
    48. Chen F R, Goudurier G, Joly J F. Superacid and catalytic properties of sulfated zirconia[J]. J Catal, 1993, 143: 616-626
    49. Guo C X, Yao S, Cao J H. Alkylation of isobutene with butane over solid superacid, SO_4~(2-)/ZrO_2 and SO_4~(2-)/TiO_2[J]. Appl Catal A-Gen, 1994, 107: 229-238
    50. Ward D A, Ko E I. One-step synthesis and characterization of zirconia-sulfate aerogels as solid superacids[J]. J Catal, 1994, 150: 18-33
    51.丁秉钧.纳米材料[M].北京:机械工业出版社, 2011, 7
    52. Khatri, Chitralekha, Mishra, et al. Synthesis and characterization of fly ash supported sulfated zirconia catalyst for benzylation reactions[J]. Fuel Process Technol, 2010, 91(10): 1288-1295
    53. Tyagi B, Mishra M K, Jasra R V. Solvent free synthesis of acetyl salicylic acid over nano-crystalline sulfated zirconia solid acid catalyst[J]. J Mol Catal A-Chem, 2009, 317(1-2): 41-45
    54. Hernandez E J M, Cortez L L A, Garcia A P. Synthesis and characterization of mesoporous and nano-crystalline phosphate zirconium oxides[J]. J Alloy Compd, 2009, 483(1-2): 425-428
    55. Khder A S, Ahmed A I. Selective nitration of phenol over nanosized tungsten oxide supported on sulfated SnO_2 as a solid acid catalyst[J]. Appl Catal A-Gen, 2009, 354(1-2): 153-160
    56. Tyagi, Beena, Mishra M K, Jasra R V. Microwave-assisted solvent free synthesis of hydroxy derivatives of 4-methyl coumarin using nano-crystalline sulfated-zirconia catalyst[J]. J Mol Catal A-Chem, 2008, 286(1-2): 41-46
    57. Auari R, Ghorbel A, Essayem N. Synthesis and characterization of mesoporous silica-supported nano-crystalline sulfated zirconia catalysts prepared by a sol-gel process: Effect of the S/Zr molar ratio[J]. Appl Catal A-Gen, 2007, 328(1): 43-51
    58. Boskovic G, Zarubica A R, Putanov P. Precursor affected properties of nanostructured sulfated zirconia: morphological, textural and structural correlations[J]. J Optoelectron Adv M, 2007, 9(7): 2251-2257
    59. Heshmatpour F, Aghakhanpour R B. Synthesis and characterization of nanocrystalline zirconia powder by simple sol-gel method with glucose and fructose as organic additives[J]. Powder Technol, 2007, 205(1-3): 193-200
    60. Raissi S, Younes M K, Ghorbel Abdelhamid. Synthesis and characterization of aerogel sulphated zirconia doped with chromium: n-hexane isomerization[J]. J Porous Mat, 2010, 17(3): 275-281
    61. Raissi S, Younes M K, Ghorbel Abdelhamid. Effect of sulphate groups on catalytic properties of chromium supported by zirconia in the n-hexane aromatization[J]. J Sol-Gel Sci Techn, 2010, 53(2): 412-417
    62. Yu F, Xu C, Zhang W. A mesoporous sulfated zirconia-silica material with high hydrothermal stability and acid catalytic activity[J]. Chem Lett, 2011, 40(7): 760-761
    63. Liu J F, Zhao J, Miao C X. Liquid-phase alpha-pinene isomerization over Fe-doped sulfated zirconia prepared by a hydrothermal treatment-assisted Process[J]. Chinese J Chem, 2011, 29(6): 1095-1100
    64. Ye F, Dong Z W, Zhang H J. Thermally stable mesoporous zirconia prepared via post-synthesis hydrothermal restructuring[J]. Mater Lett, 2010, 64(13): 1441-1444
    65. Hayashi H, Ueda A, Suino A. Hydrothermal synthesis of yttria stabilized ZrO(2) nanoparticles in subcritical and supercritical water using a flow reaction system[J]. J Solid State Chem, 2009, 182(11): 2985-2990
    66. Zhang L Y, Han C Y, Du D Q. Sulfated zirconia-A superacid[J]. Prog Chem, 2011(23): 860-873
    67. Eterigho E J, Lee J G M, Harvey A P. Triglyceride cracking for biofuel production using a directly synthesised sulphated zirconia catalyst[J]. Bioresource Technol, 2011, 102(10): 6313-6316
    68. Yee K F, Wu J C S, Lee K T. A green catalyst for biodiesel production from jatropha oil: Optimization study[J]. Biomass Bioenerg, 2011, 35(5): 1739-1746
    69. Liqun M, Ali T-R, Cunping H. Thermal decomposition of (NH4)2SO4 in presence of Mn3O4[J]. Int J Hydrogen Energ, 2011, 36: 2822-2827
    70. Hino M, Arata K. Synthesis of solid superacid of tungsten oxide supported on zirconia and its catalytic action for reactions of butane and pentane[J]. J Chem Soc-Chem Commun, 1988, (18): 1259-1260
    71. Hino M, Arata K. Solid catalysts treated with anions. 13. Synthesis of esters from terephthalic and phthalic acids with n-octyl and 2-ethylhexyl alcohol, acrylic acid with ethanol and salicylic acid with methanol catalyzed by solid superacid[J]. Appl Catal, 1985, 18(2): 400-401
    72. Hino M, Kobayashi S, Arata K. Solid catalysts treated with anions. 2. Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst[J]. J Am Chem Soc, 1979, 101(21): 6439-6441
    73. Hino M, Arata K. Conversion of pentane to isopentane and isopentane to isobutane catalyzed by a solid superacid in the vapor phase[J]. React Kinet Catal Lett, 1982, 19(2): 101-104
    74. Hino M, Arata K. Synthesis of solid superacid with acid strength of H0≤-16.04[J]. J. Chem. Soc. Chem Comm, 1980, (18): 851-852
    75. Hino M, Arata K. Solid catalysts treated with anions. 8. Synthesis of esters from acetic acid with methanol, ethanol, propanol, and isobutyl alcohol catalyzed by solid superacid[J]. Chem Lett, 1981, (12): 1671-1672
    76. Hino M, Arata K. Acylation of toluene with acetic and benzoic acids catalyzed b a solid superacid in a heterogeneous system[J]. J Chem Soc, Chem Comm, 1985, (3): 112-113
    77. Hino M, Arata K. Solid catalysts treated with anions.Ⅰ. Catalytic activity of iron oxide treated with sulfate ion for dehydration of 2-propanol and ethanol and polymerization of isobutyl vinyl ether[J]. Chem Lett, 1979, (5): 447-480
    78. Hino M, Kobayashi S, Arata K. Reaction of butane and isobutane to carbon monoxide and carbon dioxide catalyzed by iron oxide treated with sulfated ion[J]. React Kinet Catal Lett, 1981, 18(3-4): 491-493
    79. Hino M, Arata K. Solid catalysts treated with anions. Reaction of butane and isobutane catalyzed by titanium oxide treated with sulfate ion. Solid superacid catalyst[J]. J Chem Soc, Chem Comm, 1979, (24): 1148-1149
    80. Arata K, Hino M. Reaction of butane to isobutane catalyzed by the solid superacid of hafnium oxide (HfO_2) treated with sulfated ion[J]. React Kinet Catal Lett, 1984, 25(1-2): 143-145
    81. Baertsch C D, Komala K T, Chua Y H. Genesis of bronsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts[J]. J Catal, 2002, 205(1): 44-57
    82. Ono Y. A survey of the mechanism in catalytic isomerization of alkanes[J]. Catal Today, 2003, 81(1): 3-16
    83. Kuba S, Lukinskas P, Ahmad R. Reaction pathways in n-pentane conversion catalyzed by tungstated zirconia: effects of platinum in the catalyst and hydrogen in the feed[J]. J Catal, 2003, 219(2): 376-388
    84. Santiesteban J G, Calabro D C, Chang C D. The role of platinum in hexane isomerization over Pt/FeOy/WOx/ZrO_2[J]. J Catal, 2001, 202(1): 25-33
    85. Kuba S, Gates B C, Grasselli R K. An active and selective alkane isomerization catalyst: iron- and platinum-promoted tungstated zirconia[J]. Chem Commun, 2004, (4): 321-322
    86. Vaidyanathan N, Hercules D M, Houalla M. Surface characterization of WO3/ZrO_2 catalysts[J]. Anal Bioanal Chem, 2002, 373(7): 547-554
    87. Benitez V M, Yori J C, Vera C R. Characterization of transition-metal oxides promoted with oxoanions by means of test reactions[J]. Ind Eng Chem Res, 2005, 44(6): 1716-1721
    88. Sohn J R, Park M Y. Characterization of zirconia-supported tungsten oxide catalyst[J]. Langmuir, 1998, 14(21): 6140-6145
    89. Wong M S, Jeng E S, Ying J Y. Supramolecular templating of thermally stable crystalline mesoporous metal oxides using nanoparticulate precursora[J]. Nano Lett, 2001, 1(11): 637-642
    90. Scheithauer M, Grasselli R K, Knozinger H. Genesis and structure of WO_x/ZrO_2 solid acid catalysts[J]. Langmuir, 1998, 14(11): 3019-3029
    91.孙锦宜.工业催化剂的失活与再生[M].北京:化学工业出版社, 2006, 12-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700