葡萄糖转化为2,5-二甲基呋喃和γ-戊内酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的逐渐枯竭以及为达到减排温室气体保护环境的需要和实现人类可持续发展的目标,从可再生资源特别是木质生物质生产生物燃料和化学品成为许多国家的重要发展战略和科学研究的热点领域。
     木质生物质转化为生物燃料和化学品是是通过先将木质生物质分解产生葡萄糖等小分子化合物,再进一步转化为生物燃料和化学品。因此,探索如何高效得将葡萄糖转化为生物燃料和化学品,对增加木质生物质的利用途径和提高利用效率是非常有意义
     的。本文以葡萄糖为原料,利用固体酸催化其水解产生5-羟甲基糠醛,主要副产物为乙酰丙酸,这两种化合物都是活性很强的平台化合物,可转化为多种用途极广的化合物。然后研究了5-羟基糠醛氢解转化为适用于交通环节的生物燃料2,5-二甲基呋喃的工艺和转化路径。此外,本文还研究了乙酰丙酸还原转化为γ-戊内酯的工艺和反应路径。
     研究表明,磷酸锆固体酸能够在水/正丁醇两相体系中有效的催化葡萄糖转化为5-羟甲基糠醛,主要副产物为乙酰丙酸。最优的反应条件为:温度180 oC,反应时间1.5小时,磷酸锆与葡萄糖的质量比为1/2,有机溶剂为正丁醇,有机层与水层的体积比为1.6∶1。在该反应条件下,葡萄糖的转化率为96%,5-羟甲基糠醛的选择性可达44%;乙酰丙酸的摩尔得率为16%。我们还对使用前后的磷酸锆催化剂进行了对比,并认为其可以再利用。此外,我们提出了葡萄糖酸水解产生5-羟甲基糠醛的反应路径。
     5-羟甲基糠醛转化为2,5-二甲基呋喃的最适宜的反应条件为:反应温度220 oC、氢气分压2.0 MPa,Ru/C催化剂用量20%,反应时间1.0小时。在该条件下,5-羟甲基糠醛的转化率达到100%,2,5-二甲基呋喃的摩尔得率达到69.2%。我们利用XPS和XRD研究了使用前后Ru/C表面性质的区别,得出使用后的Ru/C催化剂仍具有一定的活性,可以再利用。最后,我们提出了5-羟甲基糠醛在液相中氢解转化为2,5-二甲基呋喃的反应路径。
     乙酰丙酸加氢制备γ–戊内酯的适宜的反应条件:温度130 oC,反应压力1.2 MPa,催化剂用量5.0%,溶剂无水甲醇,搅拌速度为1000 rpm。该条件下原料乙酰丙酸转化率达92%,产物γ-戊内酯选择性99%。我们还研究了催化剂重复利用时的催化效果。最后,提出了乙酰丙酸加氢制备γ–戊内酯的反应路径。
Mounting global environmental and energy problems have stimulated increased efforts towards synthesizing biofuels and high-value chemicals from renewable biomass resources, especially woody biomass.
     Woody biomass usually have to be changed to micromolecule (such as glucose) before they are converted to biofuels and high-value chemicals. Therefore, the study on how glucose can converted to biofuels and high-value chemicals in high yield is significatively.
     The dehydration of glucose to 5-hydroxymethylfurfural and levulinic acid; the hydrogenolysis of 5-hydroxymethylfurfural to produce 2,5-dimethylfuran; the hydrogenation of levulinic acid to produceγ-valerolactone were studied in this paper.
     Studies show that the dehydration of glucose reaches the maximum selectivity of nearly 44% 5-hydroxymethylfurfural with a glucose conversion of about 96% for 1.5 h reaction time at 180°C, with a ZrP to glucose ratio of 1:2 in the n-butanol/water system (Vorg./Vaq. = 1.6). The stability of catalysts ZrP was investigated by comparing surface structure variations of fresh and used catalysts. In addition, a mechanism for the conversion of glucose to 2,5-dimethylfuran and levulinic acid was proposed.
     To produce 2,5-dimethylfuran, the optimal reaction conditions for 5-hydroxyme thylfurfural hydrogenolysis were as follows: temperature of 220°C, hydrogen partial pressure of 2.0 MPa, 20% Ru/C catalyst dosage, and 1.0 h reaction time. Under these conditions, the conversion of 5-hydroxymethylfurfural was nearly 100%; the yield of 2,5-dimethylfuran was 69.2%. The surface structure variations of the fresh and used catalysts were characterized by XRD and XPS. In addition, a mechanism for the conversion of 5-hydroxymethylfurfural to 2,5-dimethylfuran was proposed.
     The optimum preparation conditions ofγ-valerolactone by hydrogenation of levulinic acid catalyzed by Ru/C were as follows: temperature at 130°C, hydrogen pressure at 1.2 MPa, dosage of catalyst at 5.0%, the solvent being methanol, the agitation speed was 1000 rpm and a reaction time of 160 min. The conversion rate of levulinic acid toγ-valerolactone was found to be 92%, and the selectivity ofγ-valerolactone was 99%. We also studied the conversion efficiency catalyzed by reused Ru/C. Furthermore, the reaction pathway for the hydrogenation of levulinic acid was proposed.
引文
[1]杨淑慧.植物资源化学[M].北京:中国轻工业出版社, 2005: 6-7
    [2] Kuster B.M.F. 5-Hydroxymethylfurfural (5-HMF), a review focussing on its manu-facture [J]. Starch, 1990, 42(8): 314-321
    [3] Bicker M., Hirth J., Vogel H. Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone [J]. Green Chemistry, 2003, 5: 280-284
    [4] Bicker M., Kaiser D., Ott L., et al. Dehydration of D-fructose to hydroxymethylf-urfural in sub- and supercritical fluids [J]. The Journal of Supercritical Fluids, 2005, 36(2): 118-126
    [5] Asghari F.S., Yoshida H. Dehydration of fructose to 5-hydroxymethylfurfural in s-ubcritical water over heterogeneous zirconium phosphate catalysts [J]. Carbohydrate R-esearch, 2006, 314(14): 2379-2387
    [6]庞斐,吕惠生,张敏华.亚临界水/二氧化碳中纤维素降解制备5-羟甲基糠醛的机理及动力学[J].化学反应工程与工艺, 2007, 23(1): 55-60
    [7] Zhao H.B., Holladay J.E., Brown H., et al. Metal chlorides in lonic liquid solven-ts convert sugars to 5-hydroxymethylfurfural [J]. Science, 2007, 316(15): 1597-1600
    [8] Peniston Q.P. Manufacture of 5-hydroxymethyl-2-furfural [P]. US: 2750394, 1956-05-22
    [9] Mednick M.L. The acid-base-catalyzed conversion of aldohexose into 5-(hydroxyl-methyl)-2-furfural [J]. Journal of Organic Chemistry, 1962, 27(2): 398-403
    [10] Garber J.D., Cranford, Jones R.E. Production of 5-hydroxymethylfurfural [P]. US: 2929823, 1960-03-22
    [11] Brown D.W., Floyd A.J., Kinsman R.G., et al. Dehydration reactions of fructose i-n non-aqueous media [J]. Journal of Chemical Technology and Biotechnology, 1982, 32(7-12): 920-924
    [12]刘欣颖,曲景周.固体酸催化果糖选择性合成5-羟甲基糠醛[D].大连:大连理工大学, 2007
    [13] Moreau C., Durand R. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites [J]. Applied Catalysis A:General, 1996, 145(1-2): 211-224
    [14] Moreau C., Durand R. Hydrolysis of sucrose in the presence of H-form zeolites [J]. Industrial Crops and Products, 2000, 11(2-3): 237-242
    [15] Leshkov Y.R., Chheda J.N., Dumesic J.A. Phase modifiers promote efficient produ-ction of hydroxymethylfurfural from fructose [J]. Science, 2006, 312(5782): 1933-1937
    [16] Leshkov Y.R., Christopher J., Barrett, et al. Production of dimethylfuran for liquidfuels from biomass-derived carbohydrates [J]. Nature, 2007, 447: 982-986
    [17]邱俊杰,曲景周,周宇涵. 5-羟甲基糠醛的制备及几种呋喃聚酯的制备[D].大连:大连理工大学, 2008
    [18] Ralph A.H., West C.P., John W. Preparation of hydroxymethyl furfural [P]. US: 3-071599, 1963-1-1
    [19] Mediek M.L. The acid-base-catalyzed conversion of aldohexose into 5-hydroxymet-hyl-2-furfural [J]. Journal of organic chemistry, 1962, 27: 398-403
    [20] Seri K., Inoue Y., Ishida H. Catalytic activity of Lanthanide (Ⅲ) ions for the de-hydration of hexose to 5-hydroxymethyl-2-furaldehyde in water [J]. Bulletin of the C-hemical Society of Japan, 2001, 74(6): 1145-1150
    [21] Seri K., Sakaki T. Catalytic activity of Lanthanoide (Ⅲ) ions for dehydration of D-glucose to 5-(hydroxymethyl) furfural [J]. Journal of Molecular Catalysis A: Chemi-cal, 1996, 112(2): L163-L165
    [22] Seri K., Sakaki T. Lanthanum (Ⅲ)-catalyzed degradation of cellulose at 250 oC [J]. Bioresource Technology, 2002, 81(3): 257-260
    [23] Nakamura Y. Preparation of 5-(hydroxymethyl) furfural by seleetive dehydration ofD-fructose [J]. Noguehi kenkyusho jiho, 1981, (2): 25-38
    [24] Riga1 L., Gorriehon J.P., Gaset A., et al. Optimization of the conversion of D-fr-uctose to 5-hydroxymethyl-2-furanearboxaldehyde in a water-solvent-ionexehanger Tri-Phasi system-Part1. Investigation of the main effeets of the major Parameters and of t-heir interaetions on the reaetion [J]. Biomass, 1985, 7(1): 27-45
    [25] Morikawa S., Nakamura Y. The dehydration of D-fructose to 5-(hydroxymethyl)-2–furaldehyde [J]. Bulletin of the Chemical Society of Japan, 1980, 53(12): 3705-3706
    [26] Renaud V., Fabien R., Imre B., et al. Raeemic and enantiopure synthesis and phy-sicochemiecal charaeterization of the navel taste enhaneerN-(1-carboxyethyl)-6-(hydro-xymethyl pyridinium-3-ol inner salt [J]. Agrieultral and food chemistry, 2003, 51(14): 4040-4045
    [27] Mereadier D., Riga1 L., Gaset A., et al. Synthesis of 5-hydroxymethyl-2-furanear-boxy-aldehyde catalysed by cationic exchange resins [J]. Journal of Chemical Technology & Biotechnology, 1981, 31(8): 489-496
    [28] Claude M., Robert D., Sylvie R., et al. Dehydration of fructose to 5-hydroxymeth-ylfurfural over H-mordenites [J]. Applied catalysis A: General, 1996, 145(1/2): 211-224
    [29] Qi X.H., Masaru W., Taku M.A., et al. Catalytical conversion of fructose and gl-ucose into hot compressed water by microwave heating [J]. Catalysis Communication, 2008, 9(13): 2244-2249
    [30] Federica B., Carlo C., Pasquale P., et al. Heterogeneous zirconium and titanium c-atalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydra-tes [J]. Applied catalysisA: General, 2000, 193: 147-153
    [31] Carlo C., Pasquale P., Anna M., et al. Heterogeneous catalysts based on vanadylp-hosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde [J]. Applied catal-ysis A: General, 2004, 275: 111-118
    [32] Carlini C., Giuttari M. Selective Saccharides dehydration to 5-hydroxymethyl-2-fu-raldehyde by heterogeneous niobium catalysts [J]. Applied Catalysis A: General, 1999,183(2): 295-302
    [33] Benvenuti F., Carlini C., Patrono P., et al. Heterogeneous zirconium and titanium catalysts the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates [J]. Applied Catalysis A: General, 2000, 193(1-2): 147-153
    [34] Clearfield A., Stynas J.A. Direct hydrothermal synthesis of zirconium phosphate a-nd zirconium arsenate with a novel basic layered structure in alkaline media [J]. Jour-nal of Inorganic and Nuclear Chemistry. 1964, 26(1): 117-129
    [35]朱洪法,朱玉霞,朱双霞.催化剂手册[M].北京:金盾出版社, 2008: 391
    [36] Jung K.J., Gaset A., Molinier J. Furfural decarbonylation catalyzed by charcoal su-pported palladium: part I-Kinetics [J]. Biomass, 1988, 16: 63-76
    [37] Jung K.J., Gaset A., Molinier J. Furfural decarbonylation catalyzed by charcoal su-pported palladium: part II-A continuous process [J]. Biomass, 1988, 16: 89-96
    [38] Copelin H.B., Garnet D.T. Decarbonylation of furfural [P]. US: 3007941, 1961-11-07
    [39] Dunlop A.P., Huffman G.W. Furan from furfural [P]. US: 3257417, 1966-06-21
    [40]石军,王亚明.糠醛制呋喃用Pd/C催化剂的制备研究[J].郑州工业大学学报, 1998,19(3): 96-99
    [41]长春工业大学. 2002-长春工业大学科研成果-化学化工类[EB/OL]. http: //www.ccst. gov. cn, 2005-02-07
    [42] Manly D.G., Barrington O.H'., Alloran J.P., et al. Process of producing furan [P]. US: 3223714, 1965-12-04
    [43] Wambach, Ludwig, Irgang, et al. Preparation of furan by decarbonylation of furfu-ral [P]. US: 4780552, 1988-10-25
    [44]赵玉龙,张文利,苏晓丽.金属钯催化剂上糠醛催化氢解制呋喃[J].石油化工, 1999, 28: 289-293
    [45]薛莉,刘淑文,徐贤伦.糠醛氢解用Pt-K/Al2O3催化剂制备研究-浸渍溶剂的影响[J].分子催化, 2002, 16(2): 116-120
    [46]中国科学院兰州化学物理研究所.高效糠醛临氢氢解催化剂[EB/OL]. http: //www. lzb. ac. cn/kjcg/xinban, 2003-09-18
    [47] Adkins H., ConnerR. The catalytic hydrogenation of organic compounds over cop-per chromate [J]. Journal of the American Chemical Society, 1931, (53): 1091-1095
    [48] Burnette L.W., Johns I.B., Holdren R.F., et al. Production of 2-Methylfuran by v-apor-phase hydrogenation of furfural [J]. Industeial and engineering chemistry, 1948, 40(3): 502-505
    [49]郑纯智,张国华,李国安.糠醛气相加氢制2-甲基呋喃催化剂初步研究[J].辽宁化工, 2000, 29(2): 71-72
    [50]曹景慧.糠醛加氢生产糠醇的概况[J].山西化工, 1987, (3): 35-37
    [51]沈延明,吴静,张真相,等.糠醛常压气相加氢制2-甲基呋喃催化剂的研究[J].沈阳化工学院学报, 2000, 14(1): 28-30
    [52]刘仲能,朱德宝,金文清,等.糠醛气相加氢合成2-甲基呋喃催化剂[P]. CN: 95111759.9, 1997-03-19
    [53]刘仲能,金文清,沈琴,等.糠醛气相催化加氢合成2-甲基呋喃的研究[J].石油化工, 1999, 28(1): 39-42
    [54]吴世华,魏伟,李保庆,等.不同方法制备的Cu-Cr/γ-Al2O3的结构及其对糠醛加氢制2-甲基呋喃反应的催化性能[J].催化学报, 2003, 24(1): 27-28
    [55]仇建伟,张凤媛,严世强.溶胶-凝胶法负载型催化剂上糠醛加氢制备2-甲基呋喃[J].辽宁化工, 2006, 35(6): 311-316
    [56]杨骏,郑洪岩,朱玉雷. Cu-Cr-Ca-Ba催化剂上糠醛加氢制备2-甲基呋喃[J].化学研究, 2004, 15(1): 16-19
    [57]杨国旗,冷庆海,王志. LFT-95型糠醛加氢制2-甲基呋喃催化剂的开发和应用[J].工业催化, 2005, 13(6): 44-46
    [58]高玉晶,李国安,孟祥春.用于糠醛气相加氢制2-甲基呋喃的新型合金催化剂研制[J].吉林大学自然科学学报, 2000, (1): 102-104
    [59]吴静,申延明,王坤院,等. CuO-CaO/SiO2超细催化剂结构及糠醛加氢反应性能的研究[J].分子催化, 2003, 17(5): 321-324
    [60]吴静,申延明,孔令艳,等.铜系无Cr负载型糠醛加氢制2-甲基呋喃催化剂的制备、表征及催化性能[J].石油化工, 2002, 31(10): 799-801
    [61]孔令艳,吴静,申延明,等.均匀设计法在制备无Cr负载型糠醛加氢制2-甲基呋喃催化剂中的应用[J].沈阳化工学院学报, 2002, 16(2): 95-97
    [62]刘建民,李秋先,乔迁,等.糠醛气相加氢制2-甲基呋喃的负载型催化剂[J].吉林工学院学报, 2002, 23(2): 23-25
    [63]黄仲涛.工业催化剂手册[M].北京:化学工业出版社, 2004: 37-38
    [64]闫世润,乔明华,范康年.非晶态催化剂的研究进展[J].石油化工, 2007, 36(3): 213-219
    [65]杨从新.非晶态合金催化剂的表征与应用研究综述[J].山东化工, 2007, 36(8): 10-12
    [66]卢伟伟,徐贤伦.改性Ni-B合金的制备及其催化糠醛加氢性能的研究[J].分子催化,2006, 20(10): 67-69
    [67]温辉梁,刘崇波,黄绍华,等.相转移催化Wulff-Kis-chner反应制备2-甲基呋喃[J].南昌大学学报, 1999, 23(4): 321-323
    [68] Lahr D.G., Shanks B.H. Kinetic analysis of the hydrogeolysis of lower polyhydricalcohols: glycerol to glycols [J]. Industrial & Engineering Chemistry Research, 2003, (42): 54-67
    [69] Dubeck M. Two stage hydrogenolysis of carbohydrate to glycols using sulfide mo-dified ruthenium catalyst in secong stage [P]. US: 4430253, 1984-7-28
    [70] Sabadie J., Barthomeuf D., Charcosset H. Preparation and characterization of Ru/P-b supported catalysts [J]. Bulletin de la Societe Chimique de France, 1989, (2): 148-154
    [71] Blanc B., Bourrel A., Gallezot P., et al. Starch-derived polyols for polymer techn-ologies: Preparation by hydrogenolysis on metal catalysts [J]. Green Chemistry, 2000, 4: 89-91
    [72] Lahr D., Shanks B. Effect of sulful and temperature on ruthenium-catalyzed glyc-erol hydrogenolysis to glycols [J]. Journal of Catalysis, 2005, 232: 386-394
    [73] Montassier C., Menezo J., Hoangl, et al. Aqueous polyol conversion on rutheniumand on sulfurmodified ruthenium [J]. Journal of Molecular Catalysis, 1991, 70: 99-110
    [74] Gubitosa G., Casale B.一种特别用于糖类和多元醇加氢和或/氢解的加氢催化剂及其制备方法和用途[P].中国: 1078662A, 1993-11-24
    [75] Thomas J.J., Barile R.G. Conversion of cellulose hydrolysis products to fuels and chemical feedstocks [J]. Energy Biomass Wastes,1984, (8): 1461-1494
    [76] Leonard R.H. Method of converting levulinic acid intoalpha angelica lactone [P]. US: 2809203. 1957-10-08
    [77] Schutte H.A., Thomas R.W. Normal valerolactone (III). Its preparation by the cat-alytic reduction of levulinic acid with hydrogen in the presence of platinum oxide [J].Journal of the American Chemical Society, 1930, 52: 3010–3012
    [78] Joo′F., TO′Th.Z., Beck M.T. Homogeneous hydrogenation in aqueous solutions catalyzed by transition metal phosphine complexes [J]. Inorganica Chimica Acta, 1977,25: L61–L62
    [79] Joo′F., Somsa′K.L., Beck M.T. Peculiar kinetics of hydrogenations catalyzed by-chlorotris-(sulphonated triphenylphosphine) rhodium(I) in aqueous solutions [J]. JournalofMolecular Catalysis, 1984, 24: 71–75
    [80] Bracca G., Raspolli-Galletti A.M., Sbrana G. Anionic ruthenium iodocarbonyl co-mplexes as selective dehydroxylation catalysts in aqueous solution [J]. Journal of Org-anometallic Chemistry, 1991, 417: 41–49
    [81] Osakada K., Ikariya T., Yoshikawa A. Preparation and properties of hydride triph-enylphosphine ruthenium complexes with 3-formyl (oracyl) propionate [J]. Journal of Organometallic Chemistry, 1982, 231: 79–90
    [82] Rostrup-Nielsen J.R. Making fuels from biomass [J]. Science, 2005(5727), 308: 1421-1422
    [83] Sun Y., Cheng J.Y. Hydrolysis of lignocellulosic materials for ethanol production: a review [J]. Bioresource Technology, 2002, 83: 111-114
    [84]杭州铁路局.普通化学[M].人民铁道出版社, 1959: 253
    [85]罗明生,高天惠,宋民宪.中国药用辅料[M].化学工业出版社, 2006: 527
    [86] Van Dam H.E., Kieboom A.P.G., van Bekkum H. The conversion of fructose and glucose in acidic media: Formation of hydroxymethylfurfural [J]. Starch, 1986, 38: 95–101
    [87]耿利娜,相明辉,李娜,等.层状无机化合物—磷酸锆的研究和应用进展[J].化学进展, 2004, 16(5): 717-727
    [88] Masaru W., Yuichi A., Toru I., et al. Glucose reactions with acid and base catal-ysts in hotcompressed water at 473 K [J]. Carbohydrate Research, 2005, 340: 1925–1930
    [89]吴文伟,赖水彬,廖森,等.层状磷酸锆纳米晶的低热固相合成及表征[J].稀有金属, 2007, 31(6): 798-801
    [90]吴文伟,廖森,等.室温固相反应法制备纳米氧化锆及表征[J].稀有金属, 2005, 29(4): 567
    [91]吴立军.实用天然有机产物化学[M].第一版.北京:人民卫生出版社, 2007: 493
    [92]吴立军.实用天然有机产物化学[M].第一版.北京:人民卫生出版社, 2007: 537
    [93] Antal M.J., Mok W.S.L., Richards G.N. Four-carbon model compounds for the re-actions of sugars in water at high temperature [J]. Carbohydrate Research, 1990, 199: 91–109
    [94] Kabyemela B.M., Adschiri T., Malaluan R.M., et al. Kinetics of glucose epimeriz-eation and decomposition in subcritical and supercritical water [J]. Industrial & Engineering Chemistry Research, 1997, 36(5): 1552–1558
    [95]吴立军.实用天然有机产物化学[M].第一版.北京:人民卫生出版社, 2007: 527
    [96] Srokol Z., Bouche A.G., Van Estrik A., et al. Hydrothermal upgrading of biomass to biofuel: studies on some monosaccharide model compounds [J]. Carbohydrate Rese-arch, 2004, 339(10): 1717–1726
    [97]中国原油进口依存度首超警戒线[OL]. http://news.xinhuanet.com/fortune/2010-03/29/content_13265670.htm
    [98]刘国华,舒洪岚.我国林木生物质燃料的发展现状与对策[J].世界林业研究, 2006,19(3): 53-56
    [99]闵恩泽.华中科技大学精神与实践讲座[OL]. http://news.sina.com.cn/c/2009-05-12/061015609312s.shtml
    [100]王凯雄,姚铭.亨利定律及其在环境科学与工程中的应用[J].浙江树人大学学报, 2004, 4(6): 85-89
    [101]曾宪春,王昱.工业生产中Pd/C催化剂失活原因研究[J].工业催化, 2001, 9(5): 17-21
    [102]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社, 1998: 222–223
    [103]于悦奇.乙酰丙酸的应用简介[J].天津化工, 1989, (4): 46-47
    [104]李锦春.乙酰丙酸应用开发前景[J].四川化工, 1996, (2): 54-55
    [105]Bozell J.J., Moens L., Elliott D.C., et al. Production of levulinic acid and use asa platform chemical for derived products [J]. Resource, Conservation and Recycling, 2000, 28(3/4): 227-239
    [106]Leonard R.H. Levulinic acid as a basic chemical raw material [J]. Industrial & E-ngineering Chemistry Research, 1956, 48(8): 1331–1341
    [107]广东工学院精细化工教研室.精细化工基本生产技术及其应用[M].广东科技出版社, 1995: 111
    [108]有机化学实验技术编写组.有机化学实验技术[M].北京:科学出版社, 1978: 294–295
    [109]陈晓冬,叶志文.漆原镍催化加氢制备间甲苯胺[J].精细石油化工, 2007, 24(4): 18–21
    [110]陈诵英,陈平,李永旺,等.催化反应动力学[M].北京:化学工业出版社, 2007: 71–72
    [111]南京林产工业学院.林产化学工业手册(上) [M].北京:中国林业出版社, 1980: 1080–1081
    [112]凯布默A.P.G.,范兰特威克F.合成有机化学中的氢化与氢解[M].北京:科学出版社, 1981: 28–29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700