用户名: 密码: 验证码:
ClO_2耦合超声波破解污泥溶出机理与微生物隐性生长的污泥减量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快,城市污水处理厂数量和污水处理规模逐年提高,污泥产量不断增大。截止2010年6月,统计全国已建成的城市污水处理厂2299座,处理能力11246万m~3/d,与“十五”末相比,污水处理厂数量增加了1.2倍,处理能力增加了75.3%。按照目前的污泥产率,每年含水率80%的剩余污泥量将达数千万吨。
     剩余污泥含有大量的有害物质及未稳定的有机物,处置不当会对环境造成二次污染。但剩余污泥的处理处置需要大量的资金投入,以欧美日为例,污泥处理处置初期投资占污水处理厂总投资比例高达60%~70%,污泥处理运营费占污水厂总运营费的30%~40%,有的甚至高达60%。面对如此巨大的污水处理厂剩余污泥处理处置压力,若能在污水处理系统实现污泥减量,从源头减少剩余污泥排放量就显得意义重大。
     近年来,污泥减量技术的研究迅速成为业内的研究热点,概括起来包括解偶联代谢法、维持代谢法、强化微生物隐性生长法、生物强化与生物捕食法四类。各类污泥减量方法各有特点,并存在不同程度局限性。其中强化隐性生长法是指微生物利用衰亡细菌所形成的二次基质生长,整个过程包含了细胞破解和生长。利用各种污泥破解技术,使细菌迅速死亡并分解成为基质再次被微生物利用,相当于传统模型中强化了活性污泥的自身氧化率,提高衰减系数,进而减少剩余污泥产量。
     强化微生物隐性生长法污泥减量的重要步骤是污泥的破解预处理。通常的污泥破解预处理方法包括各种化学、物理、生物及其相互组合。国内外研究较多的超声波破解工艺和臭氧氧化破解工艺,虽然能取得了较好的污泥破解效果,但昂贵的臭氧制备成本和超声波的高能耗限制了其实际应用;以Cl2进行化学氧化曾被认为是有效的替代方法,但存在潜在产生THMs的危险。
     本研究针对强化微生物隐性生长法,在分析主要微生物细胞破解方法的局限性基础上,提出ClO_2耦合超声波的污泥破解技术,将破解污泥回流至SBR系统,通过强化微生物隐性生长实现污水处理系统的污泥减量,探索污泥破解回流系统减量的机理和工艺技术问题,为ClO_2耦合超声波破解污泥回流的污水处理系统污泥减量技术提供理论依据和技术支持。
     通过小试考察了单独超声波和单独ClO_2作用下的污泥破解效能、影响因素及释出机理,确定了适宜的破解条件。在单独破解试验基础上,探明了ClO_2耦合超声波对污泥的破解效率、影响因素及最佳工况条件;揭示了耦合破解污泥的生物有效性及其协同作用机理;通过三因素三水平正交试验,提出了破解污泥的释出规律模型,确定了各因素的影响大小次序。
     在小试研究基础上,以处理能力为3.6m~3/d的SBR构建了C1O_2耦合超声波破解污泥回流SBR系统强化微生物隐性生长的污泥减量系统,对实际污水进行长期累积试验,系统考察了系统污泥减量效果及对出水水质的影响,解释了强化微生物隐性生长污泥减量的作用机理和运行调控策略。得到如下主要结论:
     通过静态超声波污泥破解试验,考察了在声能密度、超声作用时间及含固率与污泥细胞破解效能的关系。结果表明:在超声波声能密度0.5W/mL~3.0W/mL内,对含固率为2.5g/L~15g/L的污泥破解处理,随超声波作用时间延长破解污泥中SCOD浓度显著升高,且声能密度越高,SCOD浓度增加越明显;对较低含固率的污泥,在超声波作用6min后,破解污泥液相中SCOD增加缓慢;对含固率15g/L的污泥的超声波处理试验,SCOD、NH4+-N、TN及TP增幅和污泥MLSS减幅均与超声波作用时间和声能密度正相关;经超声波作用6min后,污泥形态结构已破坏。根据污泥破解后SCOD的增量数据得出,获得500mg/L的SCOD时对应的超声波能耗Es(3.0W/ml)> Es(2.0W/ml) > Es(0.5W/ml)> Es(1.0W/ml),污泥单独超声波破解最优工况为1.0w/ml声能密度下作用6min。
     ClO_2破解污泥静态试验结果表明:ClO_2最佳投量为8mgClO_2/(gDS),适宜的ClO_2浓度为1000mg/L。与含固率15g/L的污泥搅拌反应60min,SCOD释出为110.3mg/L,多糖、蛋白质、TP及TN增加量分别为25.2mg/L、55.1mg/L、13.1mg/L和15.23mg/L;污泥破解率92.5%;污泥SVI由51下降到33,破解沉降性能改善。
     ClO_2耦合超声波作用试验结果表明,投加4mgClO_2/(gDS)作用60min,耦合超声波(声能密度0.5W/ml、作用6min)的污泥破解效果最好且最经济。破解污泥液相中SCOD、BOD5、TN、TP、多糖及蛋白质增量分别为920mg/L、420mg/L、36.2mg/L、7.9mg/L、50.3mg/L及81.7mg/L;计算得出BOD﹕TN﹕TP约为78.2﹕4.58﹕1,可生化性强。
     根据实测数据计算得出ΔSCOD﹕ΔTN﹕ΔTP比值,超声破解时为121.95﹕6.7﹕1、ClO_2破解时为7.58﹕1.16﹕1、ClO_2耦合超声波破解时为116.46﹕4.58﹕1。ClO_2破解时ΔSCOD﹕ΔTN﹕ΔTP比值明显低于理论计算值(122﹕7.7﹕1),可认为ClO_2破解时有机碳和含氮物质绝大部分被ClO_2氧化,以CO_2和N2等气态形式逸出;超声波破解时ΔSCOD﹕ΔTN﹕ΔTP比值接近理论计算值;ClO_2耦合超声波破解时,首先是在较低投量下,ClO_2氧化破坏污泥细胞壁,此时,以不使细胞壁破坏至大量胞内物质释出为好,避免细胞释放物对ClO_2的消耗,然后只需要在较低声能密度(0.5w/ml)下超声波作用较短时间就能取得理想的协同增效破解效果。
     根据三元回归法建立的ClO_2耦合超声波破解释出规律数学模型分析得出:破解污泥液相中SCOD、TN及TP与超声波作用时间、ClO_2投加量及超声波声能密度呈指数
     关系,影响次序为:超声波作用时间> ClO_2投加量>超声波声能密度。ClO_2耦合超声波破解污泥回流SBR系统处理实际污水,30d的累积运行对比试验结果表明:对70%的系统排泥耦合破解处理后回流系统,污泥减量率为54.86%;系统微生物保持足够活性,SVI在40~70mL/g之间,运行稳定;出水SS、COD、TN以及NH4+-N等指标均与参照系统无明显差别;出水TP略有升高,试验系统平均出水TP为0.37mg/L,参照系统为0.26mg/L。
     试验系统污泥负荷0.159kgCOD/(kgMLSS·d)、污泥龄12.86d,参照系统污泥负荷0.126kgCOD/(kgMLSS·d)、污泥龄19.28d;系统污泥产率和微生物衰减系数计算结果表明,ClO_2耦合超声波破解污泥回流后,相当于在不改变SBR运行参数下系统表观污泥产率从0.41kgSS/kgCOD降低到0.186kgSS/kgCOD,相当于增强了系统微生物的内源代谢、强化了活性污泥的自身氧化率,相当于将系统污泥衰减系数由0.036d-1提高到0.0602d-1。
With accelerating of urbanization process and increasing of public attention on the water pollution, the number of urban wastewater treatment plant and wastewater treatment capacity are undergoing a fast develop. Total 2299 of municipal wastewater treatment plants which have a treat capacity of 1.1246 billion m~3/d were constructed in China up to June, 2010. The number of wastewater treatment plants increased 1.2 fold and the treat capacity increased by 75.3% when compared to that of the end of the 10th Five-year plan. However, the wide use of an activated sludge process for wastewater treatment result in production of a considerable amount of excess sludge, which must be safely disposed of due to its potential environmental risk. The excess sludge could up to tens of millions based on 80% of water content. However, disposal of these solid wastes is extremely costly, which may account for up to 60%~70% of the infrastructure costs and 30%~40% (even 60% for some case )of the total operating costs of wastewater treatment plant. Therefore, excess sludge disposal represents an increasing challenge for wastewater treatment plants. It would be an ideal method to solve the excess sludge-associated problems through reducing sludge production during wastewater treatment rather than during post-treatment of the sludge produced.
     Recently, the sludge reduction technologies which can be summarized as uncoupling metabolism, maintenance metabolism, enhanced microorganism cryptic growth and bioaugmentation have attracted a wide attention. These technologies have their own advantages and drawbacks. The enhanced microorganism cryptic growth technology is defined as the microorganism growth using died microorganism as substrate in which both the process of cell disintegration and cell growth are contained. Some technologies can be incorporated into this process for assisted sludge reduction because these technologies can kill the microorganism in a few minutes and died microorganisms is subsequently served as substrate for the microorganism in wastewater treatment system. In other word, this process can be regard as enhanced self-oxidation rate and increased attenuation coefficient of activated sludge in traditional wastewater treatment model. As a result, reduced sludge production could be achieved.
     Disintegration pretreatment of sludge is the first step of sludge reduction based on enhanced microorganism cryptic growth. Several technologies, which involve mechanical, chemical, thermal and biological methods, have been explored for sludge disintegration. Ultrasonic disintegration and ozonation has been successfully applied for sludge disintegration. But high cost of ozone generation and high energy requirements limit ultrasonic application while chlorination-generated potential harmful byproducts, such as trihalomethanes (THMs), pose a serious challenge to the full scale application of this technology.
     In this study, the ClO_(2-) ultrasonic combined sludge disintegration technology was proposed according to the enhanced microorganism cryptic growth theory and was incorporated into the activated sludge process based on comparison different methods used for sludge reduction. The excess sludge was disintegrated and was then returned to the system for further reduction through enhanced microorganism cryptic growth.This study concentrate on investigating the mechanism and technical aspects of the ClO_(2-) ultrasonic combined sludge disintegration technology which will enrich the theory aspects of the technology.
     The sludge disintegrability, factors and mechanism of the ultrasonic and ClO_2 based sludge disintegration were first investigated individually through lab experiment, respectively and optimum conditions were obtained. Then, the similar studies were conducted under ClO_(2-)ultrasonic combination condition. The sludge disintegration performance, factors and optimum combination conditions were investigated and biological effectiveness related synergistic effect mechanism was elaborated. At last, the model of sludge disintegration was proposed through orthogonal experiment and the effect of the order of the factors was determined.
     Two parallel operated SBRs, which have a treatment capacity of 3.6 m~3/d were constructed and were evaluated according to their long-term operation performance. The effect of the treatment process on quality of the effluent was also investigated. Finally, the mechanisms of the sludge reduction based on enhanced microorganism cryptic growth were clarified and the regulation strategy for performance improvement of the system was found. Major conclusions were drawn as follows:
     Effect of energy density and reaction time on disintegration of the sludge with different solid content was investigated using ultrasonic alone. The results showed that the SCOD presented a linear increase with the ultrasonic time when ultrasonic energy density and sludge solid content were in the range of 0.5W/mL~3.0 W/mL and 2.5g/L~15g/L, respectively. Higher ultrasonic energy density resulted in a higher increase in SCOD. However, slowly increase in SCOD was observed for the sludge with a low solid content after ultrasonic disintegration of 6 min. The SCOD increase, MLSS decrease and the concentration of NH4+-N, TN and TP were observed positive correlation with the ultrasonic energy density. The sludge floc was disintegrated after 6 min of ultrasonic treatment. The energy requirements for ultrasonic treatment based on 300 mg/L SCOD follow the order: Es (3.0W/ml)> Es (2.0W/ml) > Es (0.5W/ml)> Es (1.0W/ml). The optimum performance can be achieved at ultrasonic energy density of 1.0w/ml and reaction time of 6 min.
     The sludge disintegration using ClO_2 oxidation alone was studied. The results showed that the sludge disintegrability of ClO_2 was excellent. The optimum ClO_2 dose and concentration can be determined as 8 mg ClO_2/ g dry sludge and 1000mg/L, respectively. Treating sludge with ClO_2 for 60 min resulted in 110.3mg/L increase in SCOD while the concentration of polysaccharide, protein TP and TN increased by25.2、55.1、13.1and 15.23mg/L, respectively. And thus, 92.5% sludge breakage was achieved. The SVI of the sludge was decreased from 51 to 33 and the settleability of the sludge was improved.
     The sludge disintegration under ClO_(2-)ultrasonic combination condition was investigated. The results showed that the optimum operational condition were 4 mg ClO_2/g dry sludge of ClO_2 for 60 min and 0.5 W/ml of ultrasonic treatment for 6 min. Sludge disintegration resulted in 920, 420, 36.2, 7.9, 50.3 and 81.7mg/L increase in SCOD, BOD5, TN, TP, polysaccharide and protein, respectively. The ratio of BOD,TN and TP was calculated as 78.2﹕4.58﹕1 which indicated a high biodegradability.
     The ratio ofΔSCOD,ΔTN andΔTP in the disintegrated sludge liquid was calculated according to the experimental data. 121.95﹕6.7﹕1, 78.1﹕1.16﹕1 and 116.46﹕4.58﹕1 were obtained under condition of ultrasonic alone, ClO_2 alone and ultrasonic-ClO_2 combination, respectively. Among these, the ratio ofΔSCOD,ΔTN andΔTP under ClO_2 treatment alone is much lower than that of the theoretical value which is 122﹕7.7﹕1. We inferred that most of nitrogen-containing compounds was oxidized by ClO_2 and escaped from the liquid phase as N2 gas while part of organic carbon compounds was oxidized directly to be CO_2. In comparison, the ratio ofΔSCOD,ΔTN andΔTP under ultrasonic treatment alone is approach to the theoretical value. Under combined ultrasonic-ClO_2 treatment, low dose of ClO_2 was firstly applied to break the cell wall. It would be better that the dose of ClO_2 did not result in significant leakage of cell content to avoid extra consumption of ClO_2. Then, the sludge can be easily disintegrated at low ultrasonic energy density(0.5W/ml)and short reaction time(6 min).
     The mathematical model of the ultrasonic-ClO_2 combined sludge disintegration was proposed according to the ternary regression method. The SCOD, TN and TP in disintegrated sludge liquid showed a exponential relation with ultrasonic treatment time, ultrasonic energy density and ClO_2 doses and follow the order: ultrasonic treatment time > ClO_2 doses > ultrasonic energy density.
     A ClO_(2-)ultrasonic-activated sludge process combined system was developed and used for sludge reduction during treatment of municipal sewage. The system was operated continuously for 30d to investigate its long-term performance. The results showed that 70% of excess sludge was subjected to combined ClO_(2-)ultrasonic treatment and was then returned to the system resulted in 54.86% reduction in sludge production. The system performs well and the SVI of the sludge is between 40~70mL/g. The quality of the effluent was not deteriorated.
     The concentration of SS、COD、TN and NH4+-N was totally not affected as compared with control system. Only a slight increase in TP was observed (average 0.37mg/L vs. 0.26mg/L). The sludge load in the tested and control system were 0.159 and 0.126 kgCOD/(kgMLSS·d) which corresponding to the sludge age of 12.86 and 19.28d, respectively, based on the calculation of the sludge production rate and microorganism attenuation coefficient. Notable decrease in sludge production rate from 0.41 to 0.186kgSS/kgCOD without changing the operational parameters of the system indicated that the endogenous metabolism in the system was greatly enhanced and thus the self-oxidation rate of the sludge was accelerated (The attenuation coefficient increased from 0.036 to 0.0602d-1).
引文
[1]张悦.我国城镇污水处理的发展状况与趋势分析(“十二五”规划思路)[J].全国城镇污水处理厂除鳞脱氮及深度处理技术交流大会,无锡, 2010.07
    [2] Kamiya T., Hirotsuji J. New combined system of biological process and intermittent ozonation for advanced wastewater treatment. Water Sci. Technol. 1998, 38(8-9), 145-153.
    [3] Koba yashi T., Arakawa K., Katu Y., Tanaka T. Studyon sludge reduction and other factors byuse of an ozonation process in activated sludge treatment. Paper Presented in 15th Ozone World Congress Conference, London, UK, 2001 September 1.
    [4] EPA. Biosolids generation use and disposal in the United States [P]. EPA: 530-R-99-009, D, C, 1999.
    [5]李季,吴为中.国内污水处理厂污泥产生、处理及处置分析[J].污泥处置技术及装置.2003,(8):11-14
    [6] Tomizawa Mitsuru. R8/R10 chlorine dioxide generation system. Kami Parupu Gijutsu Kyokai[J]. Nenji Taikai Koen Yoshishu,1999,43(2):431-439
    [7]李季,吴为中.国内外污水处理厂污泥产生、处理及处置分析[J].污泥处理处置技术与装备国际研讨会,深圳, 2000, 3: 68-72
    [8] Norell M. Process for Production of Chlorine Dioxide[P]. US 4770868, 1988
    [9]朱媛,朱明新,徐炎华.二氧化氯的制备方法[J].工业水处理, 2005, 25(6): 13-16
    [10] Shi Laishun, Liu Jingming, Xie Chaoren, et al. Generation of high-purity chlorine dioxide [P]. CN 147841, 2002.
    [11] Urs Baier, Peter Schmidheiny. Enhanced anaerobic digestion of mechanically disintegrated sludge [J]. Wat.Sci.Tech, 1997, 36(11): 137-143.
    [12]顾夏声.废水处理工程[M].北京:清华大学出版社, 2000, 19(6): 251-255.
    [13] T.I.,Onyeche, O.Schlafer.H.Bormann.C.Schroder,M.Sievers, Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion[J].Ultrasonics,2002,40(1-8):31~35
    [14] R.B.Brooks. Heat treatment of sewage sludge [J]. Water Pollution Control, 1970, 69(1): 92-99
    [15]李廷盛,尹其光,超声化学[M].北京,科学出版社,1995 132-156
    [16] Yin Xuan, Han Pingfang, Lu Xiaop ing, et al. A review on the dewaterability of biosludge and ultrasound pretreatment[J]. Ultrasonics sonochemistry, 2004, 11: 337-348
    [17]唐丽琴,陈礼明,刘圣等.葱酮一硫酸比色法测定麦冬多糖的含量.安徽医药,2003,7(l):39-40
    [18]赵庆良,赵赫等.剩余污泥减量化技术研究进展与发展趋势.给水排水,2005,31(l1):106-111
    [19] Eastman,J.A, Ferguson,J.F. Solubilization of particulate organic carbon during the acid phase of anaerobic digestion[J]. WPCF, 1981, 53: 352-366
    [20] Russell J B, Cook G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions[J]. Microbiol Rev[J], 1995, 59(1): 48-62.
    [21] Mason C A, Hamer G, Bryers J D. The death and lysis of microorganisms in environmental processes[J]. FEMS Microbiological Reviews[J], 1986, 39: 373-401.
    [22] Pinnekamp, J. Effect of thermal pretreatment sewage sludge on anaerobic digestion[J]. Wat.Sci.Tech, 1989, 21:97-108
    [23] Degaard H. Sludge minimization technologies-an overview[J]. Water Science and Technology, 2004, 49(10): 31-40.
    [24] Dytczak M A, Londry K L, Siegrist, et al. Ozonation reduces sludge production and improves denitrification[J]. Water Research, 2007, 41(3): 543-550.
    [25] C Bougrier a, C. Albasi, et al. Effect of ultrasonic, thermal and ozone pretreatments on waste activated sludge solubilisation and anaerobic biodegradability [J]. Chemical Engineering and Processing, 2006, 45:711-718
    [26] Zhang G M, Zhang P Y, Yang J M, et al. Ultrasonic reduction of excess sludge from the activated sludge system[J]. Journal of Hazardous Materials, 2007, 145(3): 515-519.
    [27] Wooddard, S E. Wukasch R F. A hydrolysis/thickening/filtration process for the treatment of waste activated sludge [J]. Wat.Sci.Techno1, 1994, 30: 29-38
    [28] Tojumura M, Katoh H, Katoh T, et al. Solubilization of excess sludge in activated sludge process using the solar photo-Fenton reaction[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1390-1396.
    [29] Urbain V, Block J C, Manem J.Bioflocculation in activated sludge, an analytic approach. Wat Res, 1993; 27:829–38.
    [30] Kamiya T., Hirotsuji J. New combined system of biological process and intermittent ozonation for advanced wastewater treatment [J]. Water Sci. Technol. 1998, 38: 145-153.
    [31] Egemen E, Corpening J, Nirmalakhandan N. Evaluation of an ozonation system for reduced waste sludge generation. Proceedings of the IWA Conference, July 2000, Paris, France, 2000.
    [32] Yasui H. A full-scale operation of a novel activated sludge process without excess sludge production[J].Wat Sci Tech, 1996, 34(3): 395-404.
    [33]何圣兵.膜生物反应器在生活污水回用与污泥减量中的实验研究:〔博士学位论文].哈尔滨:哈尔滨工业大学,2003:106.
    [34] Chen G. H., Saby S., Djafer M. New approach to minimize excess sludge in activated sludge systems [J]. Water Science and Technology, 2001, 41(10): 203-208.
    [35] Pere J.,Alen R.,Viikari L. Characterization and dewatering of activated sludge from the pulp and paper industry. Water Seience and Teehnology,1993,28(l):193-201.
    [36] Shanableh A. Production of useful organic matter from sludge using hydrothermal treatment [J], Water Research, 2000, 34(3): 945-951.
    [37]王嵘.臭氧破解污泥的释出机制及同步臭氧氧化对污泥减量效能的影响研究.南昌大学博士学位论文, 2008.
    [38] Mark C M.,Loosdrecht V.,Henze M. Maintenance, endogeneous respiration,lysis, decay and predation. Water Seience and Teehnology,1999,39(1):107-117.
    [39] Liu Y. Effect of chemical uncoupler on the observed growth yield in batch culture of activated sludge [J]. Wat Res, 2000, 34(7): 2025-2030.
    [40] Canales A., Pareilleux A., Rols J L., et al. Decreased sludge production strategy for domestic wastewater treatment. Water Science and Technology, 1994,30(8):96-106.
    [41] Low E W. Chase H A ,Milner M G,et al . Uncoupling of metabolism to reduce biomass production in the activated sludge process[J]. Wat Res, 2000, 34(12): 3204-3212
    [42] Song KyungGuen, Choungb YounKyoo, Ahtf KyuHong, et al. Performance of membrane bioreactor system with sludge ozonation process for minimization of excess sludge production. Desalination, 2003,157:353-359
    [43] Zubay, G L. Biochemistry [M]. Boston: WCB Publisher, 1998: 1992-1998
    [44] Russell J B,Cook G M. Energetics of bacterial growth:balance of anabolic and catabolie reaction. Mierobiological Reviews,1995,59(l):48-61
    [45] Cook G M., Russell J B. Energy-spilling reactions of atreptococcus bivis and resistance of its membrane to proton conductance. Applied and Environmental Microbiology, 1994,60(6): 1942一1948
    [46] Peng Liang., Xia Huang., Yi Qian. Excess sludge reduction in activated sludge process through predation of Aeolosoma hemprichi. Biochemical Engineering Journal 28 (2006) 117–122
    [47] Kaniya T.,HirotsujiJ. New combined system of biological process and intermittent ozonation for advanced waste water treatment. Water Science and Technology, 1998,38(8-9):145-153.
    [48] Chudoba P ,Morel A ,Capdeville B. The case of both energetic uncoupling and metabolic selection of microorganisms in the OSA activated sludge system[J]. Environ Technol, 1992, 13(8): 761-770
    [49] Fen Wang, Yong Wang, Min Ji, Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration. Journal of Hazardous Materials B123 (2005) 145–150.
    [50] Bohler M,Siegrist H. Partial ozonation of activated sludge to reduce excess sludge,improve denitrifieation and control scumming and bulking.water Science and Teehnology,2004,49(10):41-49.
    [51]程丽华,毕学军等.利用二氧化氯进行污泥减量的技术研究.第六届亚太地区基础设施发展部长级论坛既第二届中国城镇水务发展国际研讨会论文集.
    [52] Chudoba P., Chevalier J., Chang J., et al . Effect of anaerobic stabilization of activated sludge on its production under batch conditions at various So/Xo ratios [J].Wat Sci.Technol, 1991, 23(6): 917-926
    [53] Chang J,Chudoba P, Capdeville B. Determination of the maintenance requirements of activated sludge. Wat.Sei.Tech. 1993, 28(7):139一142
    [54] Liuyu. Bioenergtic interpretation on the S0/X0 ration substrate-sufficient batch culture. Wat. Res. 1996,30(11):2766一2770
    [55]王宝贞,李高奇,王琳,等.淹没式生物膜法污水处理厂的设计及运行[J].中国给水排水, 2000, 16(3): 16-19
    [56] Saby S, Mathieu L, Block JC, Benabdallah, Lahoussine S, Gatel D, Cavard J. Rapid assessment of the efficiency measured by bacterial DAPI staining. Proceedings of the IWA Conference, July 2000, Paris, France, 2000.
    [57] Frijters Ctmj, Vellinga S, Jorna T, et al. Extensive nitrogenremoval in a new type of airlift reactor[J]. Water Science &Technology, 2000, 41: 469-476.
    [58] Ghyoot W, Vertraete W. Reduced sludge production in a two-stage membrane-assisted bioreactor. Water Research[J], 2000, 34(6): 205-215
    [59] Muller E B, Stouthamer A H, Verseveld H W, et al. Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration[J]. Water Research, 1995, 29(6): 1179-1189
    [60] F.R. Hawkes, R. Dinsdale, D.L. Hawkes, I. Hussy, Sustainable fermentative hydrogen production: challenges for process optimization. International Journal of HydrogenEnergy 27 (2002) 1339–1347.
    [61] Guang-Hao Chen, Kyoung-Jin An, et al. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process)[J]. Water Research, 2003, 37: 3855-3866
    [62] A.G. Vlyssides, P.K. Karlis. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion[J]. Bioresource Technology, 2004, 91: 201-206
    [63] United States Patent. Method of Dewatering Sludge Using Enzymes[P]. Pub. No.:US 0141255A1, 2003
    [64]曹秀芹,陈珺.超声波技术在污泥处理中的研究及发展[J].环境工程, 2002, 20(4): 23-25
    [65]Curds C R. The ecology and role of Protozoa in aerobic sewage treatment processes .Ann. Rev.Mierobiol.,1982,36:27-46
    [66] Urban V, Block J C, Manem J. Bioflocculation in activated sludge: an analytic approach[J]. Water Research, 1993, 27(6): 829-838
    [67] Wang Fen, Wang Yong, Ji Min. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration[J]. Journal of Hazardous Materials, 2005, 123(1-3): 145-150
    [68]Madoni P. Microfauna biomass in activated sludge and biofilm.WAt. Sei. Teeh.,1994,29(7):63-66
    [69] Tiehm A., K Nickel, M Zellhorn, U Neis. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8): 2003-2009
    [70] Tiehm A., Nickel K., Neis U. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge [J]. Water Science and Technology, 1997, 36(11): 121-128
    [71] Stemberger R S, Gilbert J J. Bodysize, food concentration, and population growth in planktonic rotifers. Eeology, 1985,66(4):1151-1159
    [72] Bougrier C., Carrre H., Delgens J. Solubilisation of waste-activated sludge by ultrasonic treatment [J]. Chemical Engineering Journal, 2005, 106(2): 163-169
    [73] Miehael H G. An operator’s guide to free-living nematodes in wastewater treatment. Publie Works, 1987,12:47一48
    [74] A. Erdincler, P.A.Vesilind. Effect of sludge cell disruption on compactibility of biological sludges [J]. Water Science and Technology, 2000, 42(9): 119-126
    [75] C.P.Chu, Bea-ven Chang. Observations on changes in ultrasonically treated waste-activated sludge [J]. Water Research, 2001, 35(4): 1038-1046
    [76] Bien, January B., Kempa, Edward S., Bien, Jurand D. Influence of ultrasonic field on structure and parameters of sewage sludge for dewatering process[J].Water Science and Technology, 1997, 36(4): 287-291
    [77]赵继红,刘楠.超声对SBR工艺中剩余污泥的减量化研究[J].环境科学与技术, 2008, 31(2): 77-79
    [78] Rensink J H, Rulkens W H. Using metazoa to reduce sludge production. Wat.Sei.Tech., 1997,36(11):171-179
    [79]张树艳.应用ClO_2进行污泥减量的技术研究[D].青岛:青岛理工大学工学, 2005
    [80] Yasui H, Nakamura K, Sakuma S, Iwasaki M, Sakai Y. A full-scale operation of a novel activated sludge process without excess sludge production. Wat Sci Tech 1996;34(3):395–404.
    [81]赵之平,陈澄华,等.超声传质过程机理[J].化工设计, 1997,21(6):73-77
    [82] S.Tanaka and K.Kamiyama. Thermochemical pretreatment in the anaerobic digestion of waste activated sludge [J]. Water Science and Technology, 2002, 46(10): 173-179
    [83] M. Rocher, G. Roux, G. Goma, A. Pilas Begue, L. Louvel, J.L. Rols. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment [J], Water Science and Technology, 2001, 44(2-3): 437-444
    [84] Rocher M. Excess sludge reduction in activated sludge processes by integratingbiomass alkaline heat treatment[J]. Wat Sci Tech, 2001, 44(9): 437-444
    [85] Ghyoot W., Verstraete W. Reduced sludge production in a two-stage membrane-assisted bioreactor. Wat. Res.,1999,34(l):205-215
    [86] J Wingender., K.E.Jager, H.C.Flemming. Interaction between extracellular polysaccharides and enzymes [M]. Microbial Extracelluar Polymeric Substances, Heidelberg, Springer, 1999: 1-9
    [87] Metcalf E. Wastewater engineering: treatment, disposal, and reuse. 3rd ed. Boston: Irwin/McGraw-Hill, 1991.
    [88] E.Guibelin. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release[J]. Water Science and Technology, 2004, 49(10): 209-216
    [89] Cloete, T.E., Oosthuizen, D.J., 2001. The role of extracellular expolymers in the removal of phosphorus from activated sludge. Water Res. 35 (15), 3595–3598.
    [90] Chiu Y.C., Chang, C.N., Lin J.G., Huang S.J. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J]. Water Science and Technology, 1997, 36(11): 155-162
    [91] American Public Health Association, 1998. In: Greenberg AE, Clesceri LS, Eaton AD, editors. Standard methods for the examination of water and waste-water, 18th ed. Washington, DC.
    [92]傅相林.超声对电化学过程的影响研究.扬州大学硕士学位论文,2005.
    [93]周少奇.城市污泥处理处置与资源化[M].广州:华南理工大学出版社, 2002: 150-168
    [94] P.Camacho, S.Deleris, V.Geaugey, P.Ginestet and E.Paul. A comparative study between mechanical, thermal and oxidative disintegration techniques of waste activated sludge[J]. Water Science and Technology, 2002, 46(10): 79-87
    [95] D.W.Marshall. Comparative study of thermal techniques for secondary sludge condioning[M]. Proceedings of the 29th Industrial Waste Conference, Purdue University Press, 1974: 582-589
    [96] Drake James F. Method and apparatus for generating and using chlorine dioxide[P].WO 9919001,1999
    [97] H.B.Chio, K.Y.Hwang, E.B.Shin. Effect on anaerobic digestion of sewage sludge pretreatment[J]. Water Science and Technology, 1997, 35(10): 2 07-211
    [98] Low E W,Chase H A. Reducing production of excess biomass during wastewater treatment[J]. Water Research, 1999, 33(5): 1119-1132
    [99] J.Muller. Disintegration as a key-step in sewage sludge treatment[J]. Water Science and Technology, 2000, 41(8): 123-130
    [100] Chul Park, John T. Novak, Characterization of activated sludge exocellular polymers using several cation-associated extraction methods[J]. Water Research, 2007, 41: 1679-1688
    [101] E Neyens., J Baeens. Treatment of sewage sludge: the economy of using advanced sludge treatment methods for sewage sludge[C]. Prague: Proceedings of CHISA, 2002, 5: 40-41
    [102] Kamma Raunkjer., Thorkild. Measurement of Pools of Protein,carbohydrate and lipid in domestic wastewater,water Research,1994,28(2):251-262
    [103] E Neyens, J Baeens. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials, 2003, 98(1-3): 51-67
    [104] Russell J B, Cook G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions[J]. Microbiol Rev[J], 1995, 59(1): 48-62.
    [105] Haug,R.T. Sludge processing to optimize digestion and enegy production[J]. WPCF, 1997, 49: 1713-1721
    [106] Yang X F, Xie M L, Liu Y. Metabolic uncouplers reduce excess sludge production in an activated sludge process[J]. Process Biochemistry[J], 2003, 38(9): 1373-1377.
    [107] Lee N M, Welander T. Use of protozoa and metazoa for decreasing sludge production in aerobic wastewater treatment[J]. Biotechnol Lett[J], 1996, 18(4): 429-434.
    [108] Haug,R.T., Stuckey,D.C., Gossett,J.M., McCarty,P.L. Effect of thermal pretreatment on digestility and dewaterability of organic sludge[J]. WPCF, 1997, 8: 73-85
    [109] Paule, Camacho P, Sperandio M, et al. Technical and economical evaluation of a thermal, and two oxidative techniques for the reduction of excess sludge production[J]. Process Safety and Environmental Protection, 2006, 84(4): 247-252.
    [110] E.Riera-Franco de Sarabia, J.A.Gallego-Juarez, G..Rodriguez-Corral, etal. Application of high-power ultrasound to enhance fluid/solid particula separation progress[J]. Ultrasonics, 2000, 38: 642-646
    [111] Aueman,J.E, Kim,B.J., Quivery,D.M.&Wquihua,L.D. Alkaline hydrolysis of munitions grade nitrocellulose[J]. Wat.Sci.Tech, 1994, 30: 63-72
    [112]白晓慧.超声波技术与污水污泥及难降解废水处理[J].工业水处理, 2000, 20: 8-14
    [113] Saby S, Djafer M, Chen G H. Feasibility of using a chlorination step to reduce excess sludge in activated sludge process[J]. Water Research, 2002, 36(3): 656-666.
    [114]张凤杰,李海山等.超声破解对剩余污泥减量的影响.安徽农业科学[J], 2008, 36(8): 3344-3345, 3357
    [115] Jih-Gao Lin, Chen-Nan Chang. Enhancement of anaerobic digestion of waste activated sludge by allkaline solubilization[J]. Bioresource Technology, 1997, 62: 85-90
    [116] Saby S, Sibille I, Mathieu L, Paquin JL, Block JC.Influence of water chlorination on the counting of bacteria with DAPI (40,6-diamidino-2-phenylindole). Appl Environ Microbiol 1997; 63:1564–9.
    [117]林志高,张守中.废弃活性污泥加碱预处理后厌氧消化的试验研究[J].给水排水, 1997, 23(1): 10-15
    [118] Fr lund B, Palmgren R, Keiding K, Nielsen P. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Wat Res 1996; 30:1749–58.
    [119]周平,钱易.内循环生物流化床处理生活污水的试验研究[J].给水排水, 1998,24(10):28-31.
    [120] M.Weemaes, H.Grootaerd. Anaerobic digestion of ozonied biosolids[J]. Wat. Res, 2000, 34(8): 2330-2336.
    [121]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社,2002.
    [122] Saby, S., Djafer, M., Chen, G.H., Feasibility of using a chlorination step to reduce excess sludge in activated sludge process [J]. Water Research, 2002, 36(5): 656-666.
    [123]陈志英,王磊,周琪,等.解偶联代谢技术用于活性污泥减量化的研究进展及发展方向[J].四川环境, 2006, 25(1): 74-78.
    [124]孙德智,于秀娟.环境工程中的高级氧化技术[M].北京:化学工业出版社, 2002, 85-89
    [125]刘振鸿,陈季华,李茵.剩余污泥处理新工艺[J].上海环境科学, 1996, 15(2): 16-17
    [126] Cabrero A ,Ferandez A ,Mirada F ,et al . Effects of copper and zinc on the activated sludge bacteria growth kinetics[J].Wat Res , 1998, 32(5): 1355-1362
    [127]张全,陆鲁,许德俊.剩余污泥微氧消解工艺研究[J].上海环境科学, 1995, 14(11): 15-16
    [128]沈会山.超声波细胞破碎耦合ClO_2溶胞的污水处理系统污泥减量研究.华南理工大学硕士学位论文,2009.
    [129] Mayhew M ,Stephenson T. Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency[J]. Wat.Sci.Technol, 1998, 38(8-9): 137-144
    [130] Liu Y,Tay J H. A kinetic model for energy spilling–associated product formation in substrate-sufficient continuous culture[J]. Appl Microbiol, 2000, 88(4): 663-668
    [131] Chen, G.H., Mo, H.K., Liu, Y. Utilization of a metabolic uncoupler, 3, 3’, 4’, 5-tetrachlorosalicylanilide(TCS) to reduce sludge growth in activated sludge culture[J]. Water Res. 2002, 36: 2077-2083
    [132] Abbassi B , Dullstein S , Rabiger N. Minimization of excess sludge production by increase of oxygen concentration in activated sludge fiocs :experimental and theoretical approach[J] .Wat Res., 1999, 34(1): 139-146
    [133] Strand, S.E., Harem, G.N., Stensel, H.D. Activatedsludge yield reduction using chemical uncouplers[J]. Water Environ. Res., 1999, 71:454-458
    [134]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社, 2000, 192-198
    [135] Xie, M.L. Utilization of 8 kinds of metabolic uncouplers to reduce excess sludge production from the activated sludge process[J]. Master Thesis, Beijing Technol. Business University, 2002, 3: 89-92.
    [136]朱振超,周路.剩余有机污泥“零排放”工程性试验[J].上海环境科学, 1996, 15(8): 40-41.
    [137]冯权,刑新会,刘则华.以剩余污泥减量化为目标的废水生物处理技术研究进展[J].化工进展, 2004, 23(8): 832-836.
    [138]程树培,新兴边缘学科环境生物技术.环境科学进展,1995, 3(5):17-20.
    [139]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社, 2005: 269-271.
    [140]王芬,季民.剩余污泥超声破解的性能与机理研究[J].农业环境科学学报, 2004, 23(3): 584-587
    [141]曹秀芹,陈珺.剩余污泥的超声处理试验研究[J].中国给水排水, 2003, 19(2): 58-60
    [142] C.P.Chu, D.J.Lee, C.S.You, J.H.Tay.“Weak”ultrasonic pretreatment on anaerobic digestion of flocculated activated biosolids [J]. Water Research, 2002, 36(11): 2681-2688
    [143]金成清.原生动物在反应器中的增长速率与功能,沈阳建筑工程学院学报,1996,12(4):464-468.
    [144]沈锡芬.原生动物学.北京:科学出版社,1999:24-29.
    [145] Ratsak C H, Kooi B W, Van Verseveld H K. Biomass reduction and mineralization inerease due to the ciliate Tetrahymena pyriformis grazing on the bacterium Pseudomonas Fluorescens. WAt. sci. Tech.,1994,29(7):119-128.
    [146] Wang B Z. A study on simultaneous organics and nitrogen removal by extended aeration submerged biofilm process. Wat. Sci. Tech.,1991,24(5):197-214.
    [147]张绍园.膜分离与生物降解组合工艺处理受污染水研究:【博士学位论文】.北京:中国科学院生态环境研究中心, 2000:19-52.
    [148]曹秀芹,王洪臣.超声处理对活性污泥系统污泥减量效果的研究[J].环境污染治理技术与设备, 2006, 7(6): 85-88.
    [149] Neyens E., Baeyens J., Creemers C. Alkaline thermal sludge hydrolysis [J]. Journal of Hazardous Materials, 2003, 97(1-3): 295-314.
    [150]李欣,裴丽花,陈东宁,等.二氧化氯氧化污泥减量性能试验研究[J].辽宁华工, 2006, 35(10): 567-569.
    [151]赵庆祥.污泥资源化技术[M].北京:化学工业出版社, 2002: 56-68.
    [152] V Aravinthan, T Mino, S Takizawa, H Satoh, T Matsuo. Sludge hydrolysate as a carbon source for denitrification[J]. Water Science and Technology, 2000, 43(1): 191-199.
    [153]沈壮志,沈建中.剩余活性污泥的超声脱水及破解[J].声学技术, 2007, 26(1): 32-35.
    [154]王芬等.剩余污泥的超声波破解与影响因素程度分析,环境保护科学,2004,30(12):16-22.
    [155] E.Guibelin. Sustainability of thermal oxidation processes: strengths for the new millennium [J]. Water Science and Technology, 2002, 46(10): 259-267.
    [156] Jern, N.W., Leong O.S., Ruihong, J., 1999. Investigation of ozone application on excess sludge modification from sequencing batch reactor. Proceedings of the Ninth KAIST-KU-NTU-NUS Singapore, 14-16 July.
    [157]鲍宪枝,佐洁,周向争,等.大旱后对城市缺水的思考[J].给水排水, 2001, 27(3): 16-18.
    [158]乔怡娜.二氧化氯杀菌机理及其对城市污水杀菌消毒应用研究.中北大学硕士学位论文,2008.
    [159]张成孝.超声电化学及其研究进展[J].陕西示范大学学报,2001,29(2):103-109.
    [160]傅金祥,裴丽花,许海良,等.二氧化氯氧化污泥减量试验研究[J].工业安全与环保, 2008, 34(4): 10-12.
    [161]王芬,季民,汪泳,等.剩余污泥的超声破解与影响因素程度分析[J].环境保护科学, 2004, 30(126): 16-22.
    [162] M Djafer, F Luck, J.P. Rose, D. Cretenot. Transforming sludge into a recyclable and valuable carbon source by wet air oxidation [J]. Water Science and Technology, 2000, 41(8): 77-83.
    [163] Spinosa L. Evolution of sewage regulation in Europe[J]. Wat Sci Tech, 2001, 44:1-8.
    [164] Bastian R., Buys A., Klapwijk. Development of a test method to assess the sludge reduction potential of aquatic organisms in activated sludge [J]. Bioresource Technology 2008, (99) 8360-8366.
    [165] Tania Datta, Yanjie Liu, Ramesh Goel Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors [J]. Chemosphere,2009, (76) 697-705.
    [166] Ahmad Reza, Mohammadi. et al. Excess sludge reduction using ultrasonic waves inbiological wastewater treatment. [J]. Desalination, 2011, (275) 67-73.
    [167] Liang-Liang Wei., Qing-Liang Zhao., et al. Extracellular biological organic matters in sewage sludge during mesophilic digestion at reduced hydraulic retention time [J]. water research. 2011, (45)1472-1480.
    [168] Chul-Hwi Park,. Yoon-Sun Bae. Implementation of an excess sludge reduction step in an activited sludge process. [J]. Journal of Environmental Science and Health Part A .2010,(45) 709-718.
    [169] J Rajesh Banu, Do Khac Uan, Ick-Tae Yeom Nutrient removal in an A2O-MBR reactor with sludge reduction [J]. Bioresource Technology. 2009, (100) 3820-3824.
    [170] Yu Tian., Yaobin Lu, et al. Optimization of process conditions with attention to the sludge reduction and stable immobilization in a novel Tubificidae-reactor [J]. Bioresource Technology. 2010, (101) 6069-6076.
    [171] Yu Tian., Yaobin Lu. Simultaneous nitrification and denitrification process in a new Tubificidae-reactor for minimizing nutrient release during sludge reduction. [J]. water research. 2010, (44)6031-6040.
    [172] Guangming Zhanga, Junguo He, et al. Ultrasonic reduction of excess sludge from activated sludge system II-Urban sewage treatment. [J]. Journal of Hazardous Materials, 2009, (164)1105-1109.
    [173] Kiyomi., Arakawal., Terunobu Suyama., et al. Verification of Sludge Reduction by Ozonation with Phosphorus Recovery Process at a Demonstration Plant. [J].Ozone: Science & Engineering, 2011,(33)171–178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700