静电刚度谐振式微加速度计相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谐振式微加速度计是基于MEMS制作技术的、具有稳定性好和准数字的频率信号输出等优点的新型微加速度计。论文系统地研究了静电刚度谐振式微加速度计原理、制作、信号处理、测试方法等相关理论和技术,并对制作的样机进行了测试。
     论文的主要研究工作可概括如下:
     介绍了微机械加速度计的需求概况,总结对比了各种类型微加速度计的特点,分析了微机械谐振式加速度计国内外研制现状,归纳了研制中存在的问题。提出了静电刚度谐振式微加速度计的研究思路、内容和方法。
     介绍了平板电容存在静电负刚度的原理,并分析了如何将静电负刚度应用于谐振式微加速度计的设计中,根据静电刚度谐振式微加速度计的动力学原理,确定了结构参数和加载电压对灵敏度的影响,得到了量程、灵敏度和结构稳定性相互制约的关系。分析了频率差分双端固支音叉梁的动力学原理,提出通过减小音叉梁固定连接端刚度的方法来抑制面内低阶模态的干扰,并进行了有限元仿真验证,为合理设计音叉梁结构提供了依据。分析了静电驱动力对加速度计分辨率和输出频率稳定度的影响,确定了闭环驱动控制的要求。
     介绍了键合后深刻蚀体硅工艺过程,对设计的静电刚度谐振式微加速度计表芯进行了流片。对制造的微结构进行了几何尺寸的光学静态测量,确定了微结构谐振频率的范围。利用激光频闪干涉测量技术和计算机视觉技术相结合方法,对挑选好的裸片进行了开环特性动态测试,发现了同频干扰现象。针对微机械谐振式电容传感器中普遍存在的同频干扰问题,分析了干扰来源,提出从微结构版图布局及结构差分设计、频率调制解调等几个方面的干扰抑制方法,为了验证方法的有效性和普适性,针对相同工艺制造的具有相同测控要求的微机械谐振陀螺进行了实验研究,成功利用高频方波调制、模拟开关解调方法实现了微机械陀螺开环特性的测量,真空圆形储能焊封装下驱动模态对应的谐振频率为13.552kHz,品质因数Q约为1800。
     根据静电驱动的微机械谐振传感器闭环恒幅驱动的共性要求,确定了振动幅度的自动增益控制方案,鉴于真空封装下微机械谐振传感器系统的高阶弱非线性,提出采用近似平均法求解系统的平衡点及线性化后分析系统的稳定条件。建立了多种条件下以静电刚度谐振式微加速度计为例的微机械谐振传感器的闭环线性反馈的自激驱动分析模型,理论分析和实验测试表明,只有直流参考电压大于起振临界条件,系统才能从不稳定平衡点过渡到稳定平衡点;系统相位偏离相位平衡条件将导致驱动力频率发生变化,太大的偏差系统将不能起振;调节滤波器的时间常数可以改变动态起振时间;当谐振频率和品质因数变化时,自动增益控制环在没有PI控制器下无法实现恒幅驱动。在PI控制器作用下,稳态振幅只与直流参考电压大小有关,但PI控制器的参数需要满足约束条件,不同的参数对应不同的动态性能,稳态值不受影响。鉴于加速度计表芯制造进度的滞后,前期采用微机械谐振陀螺对上述理论分析结论进行了实验验证,利用自激原理成功实现了陀螺的稳定起振,10分钟内频率最大偏离稳态值为0.04Hz,输出信噪比达到80dB,实验结果与理论分析结论相吻合。
     在微机械谐振传感器的结构封装品质因数较小时,分析了在幅度开环控制下,单一的锁相环控制下的系统行为,理论分析和仿真表明,要实现稳定的闭环频率跟踪,积分控制器需要满足约束条件;在谐振频率变化条件下,不能实现恒幅驱动。在加入幅度自动增益控制环后,幅度控制环和频率跟踪环相互耦合;有PI控制器可以实现恒幅驱动和稳定的频率跟踪,但PI控制器参数的选择需要满足稳定条件,参数还影响系统的动态性能。
     对制造的静电刚度谐振式微加速度计利用前述频率调制解调方法进行了开环测试,测得在直流驱动电压为15V,交流电压峰-峰值5V条件下,检测端固定电容大约为0.4pF,测试结果与有限元分析相一致,变化电容大约为3.1fF。谐振频率约为35.746kHz,品质因数约为1400,再次验证了该干扰抑制方法的有效性。利用前述自激驱动方法成功实现了静电刚度谐振式微加速度计的稳定谐振,在闭环翻转测试中,在检测端加载1V直流电压时,灵敏度为18Hz/g;加载5V直流电压时,灵敏度为58Hz/g,闭环谐振频率10分钟内最大偏差0.2Hz,分辨率约为3.5mg。
     最后,总结了研究内容和得出的一些有益结论,提出了进一步研究的设想。
The resonant-type accelerometer has the highest resolution and accuracy during all kinds of accelerometers, but the system is also very complex. It has many advantages: wide dynamic range, the quasi-digital output signal, and the inherent continuous self-test capability. In this thesis, the theory and technology about a novel resonant accelerometers designing, fabricating, signal processing and closed-loop control were researched systematically; and based on these, the principial resonant accelerometer system were made and tested.
     The main contents of this thesis include the following issues:
     The general study situation of the micro resonant accelerometers was reviewed, and the difficult for fabrication good performance this type sensor system were also concluded. Researching methods and contents of resonant accelerometers based on electrostatic stiffness were presented.
     Principle of the electrostatic negative stiffness effective for parallel plate capacitance was introduced, how to use this effective to design a novel type resonant accelerometer was also discussed, dynamic principle of resonant accelerometer based on electrostatic stiffness was analyzed, concluded the relationship among the sensivitity, sensing voltage and structure parameters. The measurement range, sensivitity, structure stability are coupled. Dynamic for double ended tuning fork was analyzed, the method to decrease the disturbance of lower mode vibration was presented and verified by FEM. Influence of vibration amplitude for frequency stability and resolution was introduced and constructed the requirement of closed-loop control circuit.
     After introduction the bulk-silicon fabrication technology, the design resonant accelerometer was fabricated. Structure parameter was tested by optical microscope and resonance frequency was computed again. Same frequency disturbance was found during the open loop measurement, disturbed source was analyzed and some method was adopted to eliminate the disturbance. For a vacuum packaged MEMS gyrocope, high frequency square wave was used to achieve the frequency modulation and an analog switch for un-modulation. Resonance frequency is 13.552kHz and Q factor is about 1800 tested by these method.
     According to closed-loop control requirement for resonant sensors, auto gain control (AGC) strategy was introduced. Due to little nolinearity of the whole closed-loop system, averaging method was used to analyze behavior of the system. Some self-oscillation analytical models with different parameters was constructed and analyzed. Theory and experiment show that the reference DC voltage must large enough to satisfy the critical condition, phase balance error will cause the frequency of driving voltage is different from resonance frequency, the micro-sensors can not vibrating when phase error is too large. The time to achieve stable vibrating amplitude is concern to the parameters of low pass filter. When Q factor and resonance frequency is variable, AGC method can not achieve constant vibrating amplitude without PI controller. The vibrating amplitude is only related to reference voltage when there is a PI controller in AGC loop. But parameters of PI controller are important for transition performance and they should satisfy the restriction. The maximal measurement error for closed-loop resonance frequency during 10 minutes is 0.04Hz and SNR is about 80dB for forenamed gyroscope driving by self-oscillation method.
     When Q factor is smaller, the behavior of resonant accelerometer drived by a single PLL was analyzed. Theory and simulation result show that the integral control gain is critical to closed-loop resonance frequency. This control method can not achieve constant vibration amplitude as resonance frequency is variable. Vibration amplitude and resonace frequency are coupled for the whole system. When there is a PI contoller in auto gain control loop, the stable vibrational amplitude is only influenced by reference DC voltage, but the controller parameters should satisfy system stable condition, it is important to transient performance.
     Based on introducation the micro fabricating technology and signal processing method, the whole resonant accelerometer system was fabricated and tested, static capacitance in detecting end is about 0.4pF, the corresponding variational capacitance is about 3.1fF with DC driving voltage is 15V, AC voltage is 5V. Measurement result is nearly the same as FEM. Resonance frequency is about 35.746kHz, Q factor is about 1400. When sensing voltage is 1V, sensitivity is 18Hz/g, sensing voltage is 5V, sensitivity is 58Hz/g, the maximal error for closed-loop resonance frequency during 10 minutes is 0.2Hz and the resolution is about 3.5mg.
     Finally, the major content and contribution of the work were summarized, and the future researches were also brought out.
引文
[1]刘危,解旭辉,李圣怡.微机械惯性传感器的技术现状及展望[J].光学精密工程, 2003, 11(5): 425-430.
    [2]徐爱东,杨拥军,卢新艳. MEMS器件的新进展及应用[J].半导体技术增刊,2010,35:109-113.
    [3]董永贵.微型传感器[M].清华大学出版社,北京, 2007.
    [4]周敬然.加速度传感器ICP关键制作工艺及检测电路的研究[D].吉林大学,长春, 2008.
    [5]李元元.变面积差分电容式微机械加速度传感器的建模与仿真[D].吉林大学,长春, 2007.
    [6]程保罗.新型体微机械工艺制造高性能加速度传感器的研究[D].浙江大学,杭州, 2004.
    [7]钟莹,张国雄,李醒飞.谐振原理在硅微机械加速度计中的应用[J].传感器技术,2002,21(4):1-3.
    [8]钟莹,张国雄,李醒飞.新型谐振式硅微谐振式加速度计[J].纳米技术与精密工程, 2003,1(1):34-37.
    [9] JIA Yu-bin, HAO Yi-long, ZHANG Rong. Double Tuning-fork resonant accelerometer [C]. 2004, Proceedings of IEEE, Vol.2:1812-1815.
    [10]贾玉斌,郝一龙,张嵘.一种新型体硅谐振加速度计(英文)[J].半导体学报, 2005, 26(2):281-286.
    [11]郑晓虎.一种谐振式微加速度计的设计[J].压电与声光, 2006, 28(3):294-296.
    [12]任杰,樊尚春,王路达.谐振式微机械加速度计设计的关键技术[J].传感技术学报, 2008, 21(4):593-595.
    [13]任杰,樊尚春.硅基双轴谐振式微机械加速度计的设计与仿真[J].微纳电子技术, 2007, 10:947-951.
    [14]何高法,唐一科,何晓平.一种新型谐振式微加速度计设计和分析[J].微纳电子技术, 2007, 7/8:252-255.
    [15]何高法,唐一科,何晓平.谐振式微加速度计设计与加工误差分析[J].传感器与微系统, 2009, 28(1):10-12.
    [16] Yoshiteru Omura, Yutaka Nonomura, Osamu Tabata. New resonant accelerometer based on rigidity change[C]. International conference on Solid-States sensors and actuators, 1997, Chicago, June, pp855-858.
    [17] Osamu Tabata, Takeshi Yamamoto. Two-axis detection resonant accelerometer based on rigidity change [J]. Sensors and Actuators, 1999, Vol.75, pp54-59.
    [18] Susan X P Su, Henry S Yang, Alice M Agogino. A Resonant Accelerometer with Two-Stage Micro-leverage Mechanisms Fabricated by SOI-MEMS Technology [J]. IEEE Sensors Journal, 2005, 5(6):1214-1223.
    [19] X P S Su. Compliant Leverage Mechanism Design for MEMS Applications [D]. Berkley: University of California, 2001.
    [20] X P S Su, H S Yang. Single-stage micro-leverage mechanism optimization in a resonant accelerometer [J]. Structure Multidisc Optimization 2001(21):246–252.
    [21] X P S Su, H S Yang. Two-stage compliant micro-leverage mechanism optimization in a resonant accelerometer [J]. Structure Multidisc Optimization, 2002(22):328–336.
    [22] S.Seok and K.Chun. Inertial-grade in-plane resonant silicon accelerometer [J]. ELECTRONICS LETTERS 14th September 2006 Vol.42, No.19:5-6.
    [23] Seonho Seok, Hak Kim, Kukjin Kun. An Inertial-grade laterally-driven MEMS differential resonant accelerometer [C]. 2004, Proceedings of IEEE, Vol.4:654-657.
    [24] Seonho Seok, Sangkyung Seong, Byeungleul Lee. A high performance mixed micromachined differential resonant accelerometer [C]. 2002, Proceedings of IEEE, Vol.2:1058-1063.
    [25] N. Yazdi, A. Mason, K. Najafi, K.D. Wise. A generic interface chip for capacitive sensors in low-power multi-parameter micro-systems, Sensors and Actuators: Part A, 2000, Vol.84:351-361.
    [26] Kazuaki Tanaka, Ryuji Kihara, Ana Sanchez-Amores. Parasitic effect on silicon MEMS resonator model parameters [J].Microelectronic Engineering, Vol.84, 2007:1363-1368.
    [27] Jiangfeng Wu, Gary K. Fedder, L. Richard Carley. A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50ug/ Hz Monolithic CMOS MEMS Accelerometer [J]. IEEE journal of solid-state circuits, 2004, 39(5):722-730.
    [28]施芹.提高微机械陀螺仪性能若干关键技术研究[D].东南大学,南京,2006年.
    [29] Joost C. L otters, Wouter Olthuis, Peter H. Veltink. A sensitive differential capacitance to Voltage Converter for Sensor Applications [J]. IEEE transaction on instrumentation and measurement, 1999, Vol.48, No.1:89-96.
    [30]李雪莹,周浩敏.硅谐振梁式微传感器同频干扰的研究[J].测控技术,2004, 23(2):17-19.
    [31]周浩敏,胡芳,兰巍.硅谐振微传感器中微现象测量技术[J].强度与环境,2002, 29(1):59-63.
    [32]李海娟,周浩敏.硅谐振式压力微传感器闭环系统[J].北京航空航天大学学报, 2005, 31(3):331-335.
    [33]韩磊,李守荣.降低振动环式微机械陀螺同频干扰的方法研究[J].测控技术, 2008, 27(7):4-6.
    [34]陈健,陈德勇.微谐振传感器同频干扰的建模与消除[J].测控技术, 2006, 25(8):5-7.
    [35]陈健,陈德勇,王军波.微谐振梁的激振与拾振研究[J].传感技术学报(英文), 2006,19(6):2432-2436.
    [36] K.E.Wojciechowski, B.E.Boser, A.P.Pisano. A MEMS resonant strain sensor operated in air[C]. 2004, Proceedings of IEEE, Vol.4:841-845.
    [37]李丽伟,朱荣,周兆英. MEMS微流量检测中寄生电容干扰的抑制方法[J].仪表技术与传感器, 2008, 12:104-106.
    [38]许宜申,王寿荣,盛平.微机械振动陀螺仪闭环驱动电路设计与分析[J].测控技术, 2006, 25(10):68-70.
    [39]刘显学,苏伟.微机械音叉陀螺外围电路研究及仿真[J].信息与电子工程, 2006, 4(5):377-380.
    [40]李芊,李晓莹,常洪龙.振动式微机械陀螺驱动控制电路研究[J].传感技术学报, 2006, 19(5):2230-2235.
    [41]刘晓为,许晓巍,谭晓昀.陀螺自激驱动电路中自动增益控制电路设计[J].传感技术学报, 2007, 20(10): 2222-2225.
    [42]杨波,周百令.一种改进的高精度硅微陀螺仪闭环驱动方案研究[J].宇航学报, 2006, 27(3): 433-436.
    [43]杨波,周百令. Z轴硅微陀螺仪高精度闭环驱动控制[J].测控技术, 2006, 25(9):5-8.
    [44]陈懿,金仲和,王跃林.微机械振动式陀螺接口电路设计与实现[J].仪器仪表学报, 2005, 26(7):726-732.
    [45]熊斌,车录锋,王跃林.一种微机械陀螺自激驱动方式的电学模拟[J].仪器仪表学报, 2003, 24(2):190-193.
    [46]王展飞,鲁文高,李志宏. MEMS振动陀螺闭环自激驱动理论分析及数值仿真[J].传感技术学报, 2008, 21(8):1337-1342.
    [47]吴学忠,肖定邦,李圣怡.自动增益控制在振动式微陀螺驱动中的应用[J].传感技术学报, 2006, 19(3):790-792.
    [48] ROBERT T. M’CLOSKEY, ALEX VAKAKIS, ROMAN GUTIERREZ. Mode Localization induced by a Nonlinear Control Loop [J].Nonlinear Dynamics, Vol.25, 2001:221–236.
    [49] Woon-Tahk Sung, Sangkyung Sung, Jang Gyu Lee. Design and performance test of a MEMS vibratory gyroscope with a novel AGC force rebalance control [J]. J. Micromech. Microeng, Vol.17, 2007:1939–1948.
    [50] Yen-Cheng Chen, Robert T. M’Closkey, Tuan A. Tran, et al. A Control and Signal Processing Integrated Circuit for the JPL-Boeing Micro-machined Gyroscopes [J] .IEEE transactions on control systems technology, Vol.13, No.2, 2005:286-300.
    [51] Sangkyung Sung, Jang Gyu Lee, Taesam Kang. Development and test of MEMS accelerometer with self-sustatined oscillation loop [J].A. Sensors and Actuators, 2003, 109:1-8.
    [52] Chul Hyun, Jang Gyu Lee. Oscillation loop for a resonant type MEMS accelerometer and its performance [C]. 2006, Proceedings of IEEE, Vol.2:594-598.
    [53] Sungsu Park, Roberto Horowitz. Adaptive control for the conventional mode of operation of MEMS gyroscopes [J]. Journal of Micro-electromechanical Systems, Vol.12, No.1, 2003:101-108.
    [54] C. Batur, T. Sreeramreddy, Q. Khasawneh. Sliding mode control of a simulated MEMS gyroscope [J], ISA Transactions, Vol.45, No.1, 2006: 99–108.
    [55] J. Fei, C. Batur. Robust adaptive control for a MEMS vibratory gyroscope [J], Int J Adv Manuf Technol, Vol.42, 2009:293–300.
    [56] Qing Zheng, Lili Dong, Zhiqiang Gao. Control and rotation rate estimation of vibrational MEMS gyroscopes[C].16th IEEE International Conference on Control Applications Part of IEEE Multi-conference on Systems and Control, Singapore, 1-3 October, 2007.
    [57] Sungsu Park, Roberto Horowitz, Chin-Woo Tan. Dynamics and control of a MEMS angle measuring gyroscope [J], Sensors and Actuators A, Vol.144, 2008:56–63.
    [58] Sung W T, Song J W, Lee J G and Kang T. PD controller design of micro gyroscope and its performance test [J], J. Korean Soc. Aeronaut. Space Sci.Vol 33, 2005: 47–56.
    [59] L. Wang, J. M. Dawson, L. A. Hornak. Real-Time translational control of a MEMS comb resonator [J]. IEEE Transactions on aerospace and electronic systems. 2004, 40(2): 567-574.
    [60] Yufeng Dong, Michael Kraft .Micromachined Vibratory Gyroscopes Controlled by a High-Order Bandpass Sigma-Delta Modulator [J]. IEEE Sensors Journal, Vol. 7, No.1, 2007:59-69.
    [61] Yen-Cheng Chen, Robert T. M’Closkey, Tuan A. Tran, et al. A Control and Signal Processing Integrated Circuit for the JPL-Boeing Micro-machined Gyroscopes .IEEE transactions on control systems technology, Vol.13, No.2, 2005:286-300.
    [62] ROBERT T. M’CLOSKEY, ALEX VAKAKIS, ROMAN GUTIERREZ. Mode Localization induced by a Nonlinear Control Loop .Nonlinear Dynamics, Vol.25, 2001:221–236.
    [63] Woon-Tahk Sung, Taesam Kang, Jang Gyu Lee. Controller design of a MEMS gyro-Accelerometer with a single proof mass [J]. International journal of control, automation, and systems, 2008, 6(6):873-883.
    [64] X.Sun. R. Horowitz. K. Komvopoulos. Stability and Resolution Analysis of a Phase-Locked Loop Natural Frequency Tracking System for MEMS Fatigue Testing [J], Journal of DynamicSystems, Measurement, and Control.2002, 12:599-605.
    [65] Francis Tay E.H, Kumaran R, B.L.Chua, Logeeswaran VJ. Electrostatic Spring Effect on the Dynamic Performance of Microresonators [C]. Technical proceeding of the 2000 international conference on modeling and simulation of Microsystems, 154-157, National university of Singapore.
    [66] V.L. Rabinovich, M.Deshpande, J.R.Gilbert. Prediction of mode frequency shifts due to electrostatic bias [C]. IEEE Int. Conf Solid State Sensors & Actuators, 17-23, Transducers99.
    [67]夏敦柱,周百令,王寿荣.硅微z轴谐振陀螺仪负电刚度效应分析及实验验证[J].中国工程科学, 2007, 9(8):66-68.
    [68] ZHANG Feng-tian,HE Xiao-ping,SU Zhi-gui,et al structure design and fabrication of silicon resonant micro-accelerometer based on electrostatic stiffness[C].Proceeding of the World Congress on Engineering, London, U.K, 2009,469-473.
    [69]刘恒,张凤田,何晓平,苏伟,张富堂.检测电压对一种新型谐振式微加速度计的影响[J].传感技术学报, 2009, 22(9):1261-1265.
    [70] Kenneth Edward Wojciechowski. Electronics for resonant sensors [D].University of California, Berkeley, USA, 2005.
    [71] Rong Liu, Brad Paden, Kimberly Turner. MEMS Resonators that are Robust to Process-Induced Feature Width Variations [J]. Journal of Microelectromechanical Systems, 2002, 11(5):505-511.
    [72] Richard Brustol Johansen. Modeling and control of a nonlinear micro-electro-mechanical beam [D]. Rensselarer polytechnic institute, New York, USA, 2001.
    [73]周吴.微加速度计的机电耦合特性及关键技术研究[D].西南交通大学,成都, 2010.
    [74]俞必强,翁海珊,李疆.微加速度计粘附问题的研究及应用[J].传感器与微系统. 2006, 25(6):43-45.
    [75] Yuh-Chung Hu, Guan-De Lee. A Closed Form Solution for the Pull-in Voltage of the Micro Bridge [J].Tamkang Journal of Science and Engineering, 2007, 10(2):pp147-150.
    [76] Gregory N. Nielson, George Barbastathis. Dynamic Pull-In of Parallel-Plate and Torsional Electrostatic MEMS Actuators [J].Journal of micro-electromechanical systems, 2006, 15(4):pp811-821.
    [77]郝一龙,贾玉斌.谐振加速度计的非线性分析[J].纳米技术与精密工程, 2003, 1(1):31-33.
    [78]贾玉斌,郝一龙,钟莹,张嵘.基于谐振原理的硅微机械加速度计[J].微纳电子技术,2003,7/8:271-273.
    [79]朱一伦.硅微机械陀螺仪设计技术研究[D].东南大学,南京,2004.
    [80]刘恒,何晓平,苏伟,张富堂.微机械音叉谐振器动力学分析与仿真[J].传感技术学报.2009, 22(3):325-330.
    [81]张文明,孟光,李鸿光. MEMS微悬臂梁激励耦合非线性动力特性分析[J].振动工程学报增刊. 2004, 17:664-667.
    [82]刘显学,苏伟.基于传感器标定系统的微陀螺频率特性检测方法[J].中国仪器仪表. 2006, 6:52-54.
    [83]谢勇君,白金鹏,史铁林等. MEMS三维动静态测试系统[J].光电子.激光. 2005, 16(5):570-574.
    [84]谢勇君. MEMS微结构动态测试方法及关键技术研究[D].华中科技大学,武汉,2006.
    [85]康新,董萼良,裘安萍等.振动式微机械陀螺动态特性光学测试[J].光学学报. 2006, 26(2):202-206.
    [86]钟莹.微机电系统谐振器面内运动检测的激光多普勒方法[D].天津大学,天津, 2005.
    [87]侯占强,肖定邦,江平等.电容式MEMS器件模态频率的电学测试方法研究[J].传感器与微系统. 2008, 27(5):12-14.
    [88]张永华,刘蕾,丁桂甫等.新型RFMEMS开关的动态表征.华东师范大学学报自然科学版[J]. 2009, 5:108-122.
    [89]周铭.谐振传感器的理论与设计[D].华中科技大学,武汉, 2004.
    [90]刘显学.微机械音叉陀螺接口电路研究[D].中国工程物理研究院,四川绵阳. 2006.
    [91]李志新,罗兵,郭理彬.微石英音叉陀螺的方波驱动及解调电路研究[J].计算机测量与控制. 2007, 15(5):613-615.
    [92] ZHOU Hao,TANG Hai-Lin,SU Wei,et al. Robust Design of a MEMS Gyroscope Considering the Worst-case Tolerance [C].Proceedings of the 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, January,pp1009-1013,2010.
    [93] Hui Kai Xie,Gary K.Fedder. Integrated Microelectromechanical gyroscope [J]. Journal of Aerospace Engineering, 2003, 16(2):65-75.
    [94]李锦明.高信噪比电容式微机械陀螺的研究[D].中北大学,太原, 2005.
    [95] Ahra Lee, HyounghoKo, Dong Li. Non-ideal behavior of a driving resonator loop in a vibratory capacitive micro-gyroscope [J]. Microelectronics Journal, 2008, 39:1-6.
    [96]刘小河.非线性系统分析与控制引论[M],清华大学出版社,北京, 2008.
    [97] Martin P. Foster, H. Isaac Sewell, Chris M. Bingham. Cyclic-averaging for high-speed analysis of resonant converters [J]. IEEE transactions on power electronics, 2003, 18(4):985-993.
    [98]高曾辉,于相旭.单端反激式开关电源的稳定性分析[J].重庆大学学报(自然科学版), 2000, 23(1):60-62.
    [99] Liu Heng, Su Wei, Zhang Fu-tang. A Resonant Accelerometer Based on Electrostatic Stiffness and its closed-loop control method [J]. Sensor Review. 2011, 31(1):58-64.
    [100]李战,冀邦杰,国琳娜等.光纤陀螺零漂信号的Allan方差分析[J].鱼雷技术, 2007,15(2):28-30.
    [101]任亚飞,柯熙政.交叠式Allan方差在MIMU余度配置中的应用[J].弹箭与制导学报, 2009, 2(4):20-23.
    [102]闾晓琴,张桂才.采用分段估算Allan方差中的各噪声系数[J].压电与声光, 2009,31(2):166-168.
    [103] Hassan, K.Khalil. Nonlinear Systems [M].电子工业出版社,北京, 2005.
    [104]于威威,管克英.基于描述函数法确定极限环个数问题的研究[J].北京交通大学学报, 2006,30(3):88-92.
    [105]沈浩,夏群力,祁载康,等.速度追踪制导控制系统描述函数法设计[J].北京理工大学学报,2007,27(7):590-593.
    [106]朱发国,张继红,姚玉斌,等.非线性度变换的描述函数法分析[J].哈尔滨工业大学学报, 2001,33(1):100-103.
    [107]刘海江,周晓蕾.基于MATLAB的非线性系统的描述函数法[J].内蒙古大学学报(自然科学版), 2003,34(4):445-448.
    [108]王俊杰,罗裴.高灵敏度差分电容检测电路的研究[J].武汉理工大学学报, 2004,26(9):10-12.
    [109]王涛,李晓莹,常洪龙,等.高性能微加速度计接口电路的研究[J].仪表技术与传感器, 2006,6:42-44.
    [110]赵礼杰.自制桥式差分电容测量电路[J].武汉理工大学学报, 2009,31(24):78-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700