PGZX-1型炉管爬行机器人的结构设计与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加热炉管长期受热后炉管将产生严重的渗碳现象,从而使管壁硬化变脆,极易造成炉管断裂,为此需要对炉管进行定期检测,以确保工作的稳定性及安全性。针对炉管这种细长结构和排列比较紧凑的结构形式,本文提出了一种爬管机器人结构,以提高检测的自动化水平和可靠性。这种机器人能适应的管柱材料和管径范围广,爬行速度稳定,结构小巧,能够解决由于管柱弯曲等原因造成的机器人偏转问题。
     本机器人设计了橡胶履带爬行机构,可以实现机器人匀速、稳定地爬行,可以满足炉管测试的要求。针对相邻两炉管之间的间距小,不利于机器人全方位抱紧炉管、操作空间小的特点,提出了链式机械环抱机构来实现完成机体与管柱的紧密贴附,可适应不同的管柱及管间距。探测传感驱动装置采用了丝杠与半月板联接结构,可实现小角度回转,扩大探测面积。本设计完成了机器人的方案设计和本体结构的三维建模,完成了驱动部件的选型,完成了主要传动部件的设计计算及校核。
     对机器人的运动系统进行了ADAMS运动学仿真分析。将三维模型简化后导入ADAMS软件,通过将各履带块作为刚性件,分别施加铰接、载荷及约束的方法建立履带的仿真模型。仿真分析了机器人爬行过程中履带块与驱动轮之间的相互作用,履带块的速度及加速度变化,抱紧机构的受力情况。仿真分析表明机器人能够实现良好的爬行状态。
     PGZX-1型爬管机器人提出了链式抱紧机构实现了小间距炉管的贴附,并采用履带爬行机构实现均匀、可靠的爬行。仿真分析表明该机器人具有较高的运动性能,能够用于实现炉管的自动化检测。
It is easy to have serious cementation phenomenon that heat the furnace tube for along time, and cause the pipe wall hardening changes crisp, extremely easy to create thefurnace tube break. Regularly detect the tube column will guarantee the work more stableand much safer. To raises the automation level and reliability of detect, the articleproposed one kind robot structure that aim at the pipe which is tall and slender, and itsstructural style is well-knit permutation. This kind of robot can climb up the tube do not onthe limit of column material and it can adapt major scope caliber. The robot climbing speedstable, and its structure is small, it can solve the problem that engine body deflect becauseof the pipe bend.
     The robot design a rubber caterpillar climbing mechanism, it can fulfill the pipedetection demand that realize the robot climb constant velocity and stably. Aim at thefeatures that small spacing between pipes, and it makes against the robot grasps the pipe onevery side, and the space of operation is small, the article puts forward a chain mechanicalencircle structure to realize complete attach closely between engine body and pipe, it canadapt different pipe and pipe spacing. The probe head installment uses the guide screw andthe meniscus joint, it can realize the small angle rotation, and expanded survey area. Thedesign complete the robot plan design and M-3DM of engine body, and complete typeselection of drive element, and complete design calculation and check of the majortransmission parts.
     The article conducts ADAMS kinematics simulation of the locomotor system. ImportADAMS after simplify the M-3DM. By make the acceleration as rigid member, we buildthe caterpillar simulation model by exert articulation, load and constraint. Simulationanalyses the interaction between caterpillar blocks and driving wheel and the change ofvelocity and acceleration of caterpillar block, and the load-carrying capability of graspmechanism in the process of climbing. The simulation analyses show the robot can realizefavorable climbing state.
     PGZX-1climbing robot put forward chain grasp mechanism to realize attach of pipewhich is in small spacing, and use caterpillar climbing mechanism to realize homogeneousand dependable climbing. Simulation analyses show the robot has higher motionperformance, it can use to realize automation detection of pipe.
引文
[1]刘淑霞,王炎.爬壁机器人技术的应用[J].机器人,1999,21(2):148~155.
    [2]潘沛霖,韩秀琴.日本磁吸附爬壁机器人的研究现状[J].机器人,1994,16(6):379~382.
    [3]李华峰.超声波电机控制技术进展[J].微特电机,2001,20(2):42~44.
    [4]郭成.微型爬壁机器人研究的关键技术[J].制造业自动化,2004,26(7):21~24.
    [5] L Briones, P Bustamante, M A Sema. Wall climbing Robot for Inspection in NuclearPower Plants[J]. Proc IEEE Int Conf on Robotics and Automation,1994,(6):1409-1415.
    [6] A Fujita, M Tsuge. Development of Inspection Robot for Spherical Gas StorageTanks[J]. Proc of the16’’ Int Sym on Industrial Robots,1986,(2):1185-1194.
    [7]张磊.压力容器检测爬壁机器人[D].山东:山东科技大学,2006.
    [8]徐泽亮,马培荪,高雪官.爬壁机器人履带吸盘的多体渐变磁化系统设计[J].上海交通大学学报,2002,36(10):1488~1490.
    [9]陈振华,龚振邦,钱晋武.机器人壁面移动机构研究[J].上海大学学报,1997,3(6):663~665.
    [10]肖立,佟仕忠,吴俊生.爬壁机器人的现状与发展[J].辽宁石油化工大学信息工程学院论坛专栏,2004:81~82.
    [11]徐生,张立彬,杨庆华等.气动蠕动爬杆机器人[J].机械工程师,2004,36(3):2~3.
    [12]赵松年.现代机械创新产品分析与设计[M].1版.北京:机械工业出版社,2000,1~3.
    [13]杨存智.爬杆(绳)机器人的研制[J].机电一体化,2003,(4): l~3.
    [14]陈俊龙,张美琴,盛刚.继电器控制的爬杆机器人[J].机电工程,2005,22(9):1~4.
    [15]于复生,宿孝庆,沈孝琴.一种气动爬杆机器人:中国,200620088771.1[P].2007-10-10.
    [16] H Hosokai, F Hara, Y U child. Mechanism and Control of Mobile Pipeline MaintenaceRobot with lazy Tongs Mechanism[J]. Proceedings of the1995InternationalConference on Robotics and Automation,1995,(4):856-857.
    [17] Maziar Sadeghi, Amir Moradi. Design and Fabrication of a Column-ClimberRobot(Koala Robot)[J]. Industrial and Aerospace Engineering,2008,(2):220-225.
    [18]吕恬生,张家梁,罗军.气动蠕动式缆索爬升机器人的基本结构[J].机械与电子,2000,38(3):1~3.
    [19]王军,任工昌,郑甲红.管外爬杆机器人抓紧装置:中国,200420041989.2[P].2005.8.17.
    [20]刘桂珍,王怀奥,王立权.高空爬行机器人的机构设计[J].佳木斯大学学报(自然科学版),2007,25(5):24~35.
    [21]吴功平,肖晓晖,郭应龙.架空高压输电线自动爬行机器人的研制[J].中国机械工程,2006,17(3):1~4.
    [22] R Aracil, R Saltarén, O Reinoso. Parallel robots for autonomous climbing along tubularstructures[J]. Robotics and Autonomous Systems,2003,(42):125~134.
    [23] http://cmosxray.com/index.shtml
    [24]黄善钧.壁面移动机器人的研究[J].哈工大七十周年校庆增刊,1990:20~24.
    [25]丁彩虹,赵增梁,李恩光.爬杆机械手的原理性设计[J].机械与电子,2001,(6):1~3.
    [26]王茁,张波,裴荣国.壁面爬行机器人本体的设计[J].吉林化工学院学报,2004,21(4):1~4.
    [27]龚振邦.机器人机械设计[M].1版.北京:电子工业出版社,1995,34~49.
    [28] Bahr B, Wu F. Design and safety analysis of a portable climbing robot[J]. InternationalJournal of Robotics and Automation,1995,(4):235~347.
    [29]仝建刚,马培荪,陈俊梅.履带式磁吸附爬壁机器人壁面适应能力的研究[J].上海交通大学学报,1999,33(7):851~854.
    [30]陈明森.爬杆机器人运动原理及动力学研究[D].武汉:武汉理工大学,2009.
    [31]王中林.碳纳米管仿生壁虎脚打造蜘蛛人[N].科学时报,2008.10.10(5).
    [32]贾健明.钢铁件渗碳层深度的电磁无损检测[J].机械工人,2003,(12):24~25.
    [33]曹昌怀,潘晓松.合金钢渗碳层的现场检测[J].热处理,2011,26(5):75~78.
    [34]庄权,李胡宇.盐浴等温法测定渗碳层深度[J].轴承,2003,(7):34~37.
    [35]洪浩,陈捷,巩建鸣.巨磁阻传感器在裂解炉管渗碳层厚度检测的应用[J].仪表技术与传感器,2010,(12):14~37.
    [36]王富岗,潘国威,高明泉.裂解炉管渗碳层厚度自动检测仪:中国,89201488.1[P].1989.12.13.
    [37]陈捷,巩建鸣,程磊.巨磁阻传感器在炉管渗碳层模拟检测中的特性[J].南京工业大学学报,2010,32(6):103~106.
    [38]袁志全,丁莉.基于ADAMS的同步带传动动力学模型研究[D].武汉:武汉理工大学机电学院,2010.
    [39]江少杰,陈伟叙,李尚平. ADAMS宏命令在小型甘蔗收割机履带式底盘机构虚拟样机建模仿真过程中应用的探讨[J].装备制造技术,2006,(3):47~49.
    [40]马璐,徐斌.基于ADAMS/view掘进机行走机构建模与爬坡仿真[J].煤矿机械,2011,32(4):52~54.
    [41]朱艳芳,翟燕,郭晓波.基于ADAMS的履带车辆行走系统性能的仿真[J].传动技术,2008,22(2):29~31.
    [42]熊光明,高俊,陆际联.轻型履带式移动机器人虚拟样机实现方法[J].计算机仿真,2005,22(7):133~135.
    [43]葛正浩,张凯凯,梁金生.基于虚拟样机技术同步带传动的动态性能研究[J].机械传动,2011,(3):64~66.
    [44]王水林,邹月伟,李海伟.基于ADAMS的仿真技术在履带行走装置的应用[J].机电产品开发与创新,2008,21(3):44~48.
    [45]李增刚. ADAMS入门详解与实例[M].1版.北京:国防工业出版社,2006,117~121.
    [46]李军. Adams实例教程[M].1版.北京:北京理工大学出版社,2002,151~168.
    [47]隋文涛.大型矿用挖掘机履带行走装置动力学仿真研究[D].吉林:吉林大学机械学院,2007.
    [48]董新建.履带车辆行动部分动力学分析与仿真[D].湖南:湖南大学机械与汽车工程学院,2007.
    [49]陈淑艳.移动机器人履带行走装置的构型与机动性能研究[D].江苏:扬州大学,2008.
    [50]赫双双,李阳星.基于ADAMS的带式输送机实体仿真模型建立方法[J].煤矿机械,2008,29(2):178~180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700