复杂隔震结构的分析与软件实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着隔震技术的广‘泛应用,建筑功能和造型要求的不断提高,隔震结构的形式越来越趋于复杂,如结构体型不规则、大底盘多塔楼、超长结构或隔震层不设置在基础顶部等,但目前我国的抗震规范仅针对采用抗震措施的复杂结构体系给出限值,而复杂隔震结构的判定条件尚不明确,复杂隔震结构的减震效果还需要进一步验证,因此,本文针对工程中常见的几种复杂隔震体系,如平而不规则隔震结构、竖向不规则隔震结构、大底盘多塔楼隔震结构、独立柱头隔震结构和超长隔震结构等,进行了以下方而的研究:
     (1)将竖向不规则的隔震结构简化为层剪切模型,考虑单向地震作用,进行了结构的弹塑性时程分析。用两个典型的竖向不规则隔震结构,分别为质量分布不规则和刚度分布不规则隔震结构实例,分析了层质量、层刚度变化对隔震结构的自振周期、基底剪力、层剪力分布模式和减震系数等参数的影响,说明了竖向不规则隔震结构的薄弱层情况,对竖向不规则隔震结构的设计及分析提出相关建议。
     (2)将平而不规则隔震结构简化为单层,通过理论推导,分析了扭转反应的影响因素。再假设楼盖为刚性,将平面不规则隔震结构简化为串联刚片模型,推导出结构的运动方程并进行时程分析,利用一个典型的扭转不规则隔震结构,分析了扭转不规则对减震效果的影响,比较了上部结构的刚度偏心、隔震层偏心率和隔震层刚度对结构扭转效应的影响,给出了扭转不规则隔震结构的判定条件。
     (3)将大底盘多塔楼隔震结构简化为串并联刚片模型,对结构进行了平扭摆耦联振动分析,通过振型分析发现,具有对称双塔的大底盘多塔楼隔震结构,由于结构对称,可将模型简化为直接简化为单塔结构分析即可,接着针对不对称大底盘多塔楼隔震结构,分别进行了竖向地震作用下、双向水平地震作用下和三向地震作用下的振动分析,利用一个典型的大底盘多塔楼隔震结构实例,分析了底盘高度,塔楼质量分布,塔楼刚度分布对隔震效果和隔震支座受力的影响,给出了大底盘多塔楼隔震结构的设计建议。
     (4)针对独立柱头隔震结构,考虑隔震支座水平位移产生的P-△效应,分别对独立柱与支座的局部体系和整个隔震体系进行稳定性分析。对独立柱与隔震支座的局部体系建立平衡方程,推导出静载下支座水平位移与水平荷载之间的关系,并建立对独立柱与隔震支座串联体系的失稳条件,得到给定体系、给定竖向力作用下的极限水平荷载。同时,对独立柱头隔震结构进行了整体动力稳定性分析,建立结构失稳准则,并利用一个典型的带地下室的隔震结构实例,讨论了地震作用、上部结构的竖向荷载和地下室柱刚度对结构稳定性的影响。
     (5)针对超长隔震结构在温度和收缩效应下的变形问题,本文实际测试了一个94.2m的隔震结构在温度和收缩作用下隔震支座的变形,发现该工程在施工期间,端支座变形过大。利用理论计算,讨论了上部结构为钢筋混凝土框架的隔震结构在温度和收缩作用下的内力和变形,得到了隔震支座、上部结构内力和变形的基本规律。将建筑物按热工设计区域分类,给出不同地区的混凝土隔震结构的仲缩缝间距,并按照建筑物使用时的采暖情况,给出了施工期间隔震结构的后浇带间距,用于指导超长隔震结构的设计及施工。
     (6)在汶川地震后,对几个已建隔震工程进行调查,观察了建筑物各部位的裂缝及破坏情况,并与附近不隔震结构的破坏情况进行对比。再对一个实际复杂隔震工程进行全寿命费用分析,并与不隔震时该结构的全寿命费用进行对比,由此评估了复杂隔震结构的抗震性能。最后,讨论了不同结构功能、不同使用年限对复杂隔震结构的全寿命费用影响,为复杂隔震结构的工程决策提供了一定的参考。
     (7)由于Matlab程序不能脱离Matlab环境单独运行,采用Matlab与Java混合编程,用Java编制人机交互界而,Matlab进行隔震结构的各项分析计算。依据我国抗震规范设计要求,编制完成了一个隔震结构分析计算软件,该软件可进行复杂隔震结构的动力分析、稳定分析和全寿命费用分析。
In the developed isolation approach and the buildings functional requirement, the isolated buildings become complex in the structural type, such as the irregularity superstructure, the multi-tower base isolated structure with large bottom, long span building, isolators mounted on independent columns and so on. As to these complex isolated buildings, current references and studies don't account explicitly in response of structure and the influences of isolated buildings on cushioning effects. What's more, there have no concrete regulations concerning complex isolated buildings in prevailing codes, It is only suggested that the rules of irregularity fixed based buildings are referred to. Therefore, this paper makes a detailed and systematic discussion on some kind of complex isolated buildings and mainly focuses on the following things:
     (1) To estimate the performance of vertical irregularity of isolated buildings, the vertical mass irregularity and vertical stiffness irregularity of isolated buildings are considered. A vertical irregular isolated building is derived for MDOF system, and the elastic and the elasto-plastic time history methods are used to analyze two actual multi-stories isolated buildings. Distributions of shear force and variability coefficients of shear force are discussed due to various mass and stiffness, Weak layers are indicated as to the vertical irregular isolated buildings. Some advices are presented in this paper for designing the vertical irregular isolated buildings.
     (2) The rigid layers in series models is obtained as the torsional irregular isolated buildings and the torsional response of the torsional irregular isolated building is investigated, there are bidirectional lateral displacement and a torsional angle in a floor. With the objective of studying the influence of:the stiffness eccentricity in the superstructure; eccentricity in the isolation system; the stiffness of the isolation system. Results are presented in torsional amplification of isolation. Proposed guideline define that a base-isolated building has torsional irregularity.
     (3) The special type isolated building defined as multi-tower with large bottom is discussed in this paper. The rigid layers in series/parallels models are obtained and the elastic time history method is used to analyze the performance and response of structure. Model analysis is applied to symmetric multi-tower with large bottom isolated building. The results reveal that the symmetric multi-tower isolated building with large bottom can be a simplified general isolated building. With the objective of studying the influence of the mass eccentricity in the towers and the asymmetric towers, coefficients of shear force, the ratios of period and the ratios of drift are discussed. An actual multi-tower isolated building with large bottom is used to compare the response in the vertical earthquake, bidirectional lateral earthquake with tri-directional earthquake, the effects of bottom height, the mass eccentricity in the towers and the asymmetric towers are investigated. It is concluded from the study that the multi-tower base isolated building with large floor should be symmetric and central in order to increase performance of isolation.
     (4) When isolators are mounted on independent columns, large displacement of the isolator in the earthquake results to P-Δeffects. The special type isolated building is defined as isolator mounted on independent column isolated building. This special type isolated building is possible to be development of overall or local structural instability under earthquake due to P-Δeffects. This paper deals with the local isolators mounted on independent column static stability equilibrium equation, the failure criteria of local structures and the ultimate lateral force is revealed. What's more, the overall structural dynamic stability is investigated. An actual special isolated building is carried out to discuss the dynamic failure of structure with the effect of earthquake, vertical force and stiffness of independent column.
     (5) The deformation of isolators of an actual long span isolated building is tested due to temperature variation and concrete contraction, the results reveal that the end isolators deformation has exceeded the tolerance deviation. Therefore, the reinforced concrete frame isolated building is analyzed the response under temperature variation and concrete contraction, the rules about deformation and force of isolators and superstructures are obtained. According to buildings thermal design region, the distance of expansion joint of isolated building are proposed in different regions. Meanwhile, the distance of construction joint are defined due to heating design of building.
     (6) The observation and the life cost analysis are described the seismic performance of complex isolated buildings. Several actual isolated buildings are investigated after Wenchuang earthquake, the cracks and destructions of buildings are observed. The cost-effective seismic performance criteria are proposed. The costs of construction, failure consequences, including death and injuries, as well as discounting cost over time, are considered. The selection of building function and buildings life are evaluated to influent life cost of the complex isolated buildings.
     (7) This paper use Matlab and Java to accomplish the complex isolated buildings analysis software. According to Chinese seismic design code, the software can be employed to calculate the dynamic response, stability analysis and life cost anlysis.
引文
[1]周云,张超,邓雪松.由汶川地震反思我国防震减灾能力建设[C].第四届全国防震减灾工程学术研讨会.福州.2009:16-24.
    [2]http://www.sinoins.com/news/101214/54132.html,透视2010年全球自然灾害及损失.2011.
    [3]中国人民共和国住房和城乡建设部.建筑抗震设计规范GB50011-2010[S].2010,北京:中国建筑工业出版社.
    [4]日本建筑学会.隔震结构设计[M].2006,北京:地震出版社.
    [5]木本幸一郎.日本隔震设计的发展与设计实例[C].第八届中日建筑结构技术交流会议论文集.北京.2008:641-650.
    [6]党育,杜永峰,李慧.基础隔震结构设计及施工指南[M].2007,北京:中国水利水电出版社及知识产权出版社.
    [7]刘海卿.SMA绞线-叠层橡胶复合支座及其隔震性能研究[D].博士学位论文.天津大学.2006.
    [8]Kelly, J.M. Analysis of fiber-reinforced elastomeric isolators [J]. Journal of Seismology and Earthquake Engineering.1999.2(1):19-34.
    [9]Moon, B.Y,Kang, G.J. Design and Manufacturing of fiber reinforced elastomeric isolator for seismic isolation [J]. Journal of Materials Processing Techology.2002.13(3):130-131.
    [10]尚守平,刘可,周志锦.农村民居隔震技术[J].施工技术.2009.38(2):97~99.
    [11]唐柏鉴,张建.复合隔震支座在网格屋盖结构中的应用研究[J].地震工程与工程振动.2010.30(1):134-141.
    [12]荣强,程文穰.隔震层中设置蝶形弹簧的竖向隔震研究[J].工业建筑.2006.36(9):22-24.
    [13]赵亚敏,苏经字,周锡元等.蝶形弹簧竖向隔震结构振动台试验及数值模拟研究[J].建筑结构学报.2008.29(6):99-106.
    [14]Griffith, M.C, Aiken, I.D,Kelly, J.M. Displacement control and uplift restraint for base-isolated structures [J]. Journal of Structural Engineering.1990.116(4):1135-1148.
    [15]荣强.并联丛础隔震体系的研究[D].博士论文.东南大学.2007.
    [16]杨树标,马裕超,李旭光等.复合隔震结构模型振动台试验研究[J].地震工程与工程振动.2010.30(1):142-146.
    [17]范夕森,张鑫,苏小卒等.滚轴—橡胶垫支座组合隔震体系的模型振动台试验研究[J].工程抗震与加固改造.2009.31(2):43-48.
    [18]杉本裕志,齐藤利昭,土屋宏明.未来隔震结构实例[C].第八届中日建筑结构技术交流会议论文集.北京.2008:659-668.
    [19]杨林.隔震建筑性能控制[D].博士学位论文.北京工业大学.2007.
    [20]孟庆利.基底隔震混合控制和三维隔震系统研究[D].博士学位论文.中国地震局工程力学研究所.2006.
    [21]涂建维,张凯静,瞿伟廉.升船结构地震鞭梢效应的MR智能隔震控制[J].华中科技大学学报(自然科学版)2008.36(6):103-109.
    [22]王曙光,杜东升,刘伟庆.高层建筑结构隔震设计关键间题[J].南京工业大学学报(自然利·学版).2009.31(1):71-77.
    [23]杜东升,王曙光,刘伟庆.某高层结构国际公寓楼的隔震设计研究[J].特种结构.2009.26(4):11-15.
    [24]Pan.P, D, Zamfirescu,Ta, Nakashima M El. Base-isolation design practice in Japan:Introduction to the post-Kobe approach [J]. Journal of Earthquake Engineering. 2005.9(1):147-171.
    [25]曲哲,叶列平,潘鹏.高层建筑的隔震原理与技术[C].第六届全国结构减震控制学术研讨会.昆明.2007:1-7.
    [26]P, Pan, D, Zamfirescu,M, Nakashima. Base-isolation design practice in Japan:Introduction to the post-Kobe approach [J]. Journal of Earthquake Engineering.2005.9(1):147-171.
    [27]山我信秀,横田和仲,后藤和弘等.形状不规则且有大跨空间的超高层隔震结构设计[C].第八届中日建筑结构技术交流会议论文集.北京.2008.
    [28]李淑文.复杂隔震结构地震反应分析与橡胶垫布置优化[D].硕士学位论文.北京工业大学.2007.
    [29]末冈利之,鸟井信吾,常木康弘.东京汐留住友大厦的中问层隔震结构设计[J].建筑钢结构进展.2008.10(3):36-41.
    [30]Murakami, K, Kitamura, H,Ozaki, H. Design and analysis of a building with the middle-story isolation structural system[C].12th World Conference on Earthquake Engineering. Auckland, New Zealand.2000.
    [31]Ming, H, Hongjun, S,Kangning, Lee Earthquake response analysis of a mid-story seismic isolated building[C].13th World Conference on Earthquake Engineering. Vancouver, Canada.2004.
    [32]徐忠根,周福霖.底部二层框架上部多塔楼的隔震数值模拟与试验研究[J].地震工程与工程振动.2005.25(1):126-132.
    [33]Mokha, A.S, Lee, P.L,Wang, X. Seismic isolation design of the new international terminal at San. Francisco international airport[C].Proc. Structures Congress. Sydney.Australia.1999:95-98.
    [34]陈以.世界建筑结构设计精品选—日本篇[M].2001,北京:中国建筑工业出版社.
    [35]束伟农,朱忠义,柯长华等.昆明新机场航站楼工程结构设计介绍[J].建筑结构学报.2009.39(5):12-16.
    [36]孙建刚,崔利富,赵长军等.15×104m3立式储罐隔震设计分析[J].地震工程与工程 振动.2010.30(4):153-157.
    [37]陈玲玲,钱胜国,徐德毅等.大型水工渡槽减隔震设计研究[J].长汀科学院院报.2009.26(1):42-45.
    [38]李海岭,葛修润.土-结构动力相互作用对隔震结构影响的模态分析方法[J].振动与冲击.2000.19(3):63-67.
    [39]曾奔,周福霖,黄东阳.土与结构相互作用下考虑平摆耦合的基础隔震体系分析[J].西安建筑科技大学学报(自然科学版).2008.40(4):538-542.
    [40]Chaudhary, M.T.A, Abe, M,Fujino, Y. Identification of soil-structure interaction effect in base-isolated bridges from earthquake records [J]. Soil Dynamics and Earthquake Engineering.2001.21(8):713-725.
    [41]F.Hall, John,L.Ryan, Keri. Isolated buildings and the 1997 UBC near-source factors [J]. Earthquake Spectra.2000.16(2):393-411.
    [42]杨迪雄,赵岩,李刚.近断层地震动运动特征对长周期结构地震响应的影响分析[J].防灾减灾学报.2007.27(2):133-140.
    [43]R.S.Jangid,J.M.Kelly. Base isolated for near-fault motions [J]. Earthquake Engineering and Structural Dynamics.2001.30(5):651-707.
    [44]Roussis, Panayiotis C. Study on the effect of uplift restraint on the seismic response of base-isolated structures [J]. Journal of Structural Engineering.2009.
    [45]Jann. N, Yang,Anil.K, Agrawal. Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes [J]. Engineering Structures.2002.24(2):271-280.
    [46]A.K, Agrawal, Z, Xu,W.L, He. Ground motion pulse based active control of a linear base-isolated benchmark building [J]. Journal of Structural Control and Health Monitoring.2005.13(2-3):792-808.
    [47]Jangid, R.S. Seismic response of an asymmetric base isolated structure [J]. Computers and Structures.1996.60(2):261-267.
    [48]Jangid, R.S,Kelly, J.M. Torsional displacements in base-isolated buildings [J]. Earthquake Spectra.2000.16(2):443-454.
    [49]Ryan, K.L,Chopra, A.K. Approximate analysis methods for asymmetric plan base-isolated buildings [J]. Earthquake Engineering and Structural Dynamics.2002.31(2):33-54.
    [50]李向真.非规则房屋结构隔震体系的计算方法与动力性能计算研究[D].博士学位论文.天津大学.2006.
    [51]李向真,向伟明,全明等.平扭耦联隔震体系振动台试验研究[J].工程抗震与加固改造.2010.32(3):94-98.
    [52]Nagarajaiah, Satish, Andrei M, Reinhorn,Michalakis C, Constantinou. Torsion in base-isolated structures with elastomeric isolation systems [J]. Journal of Structural Engineering.1993.119(10):2932-51.
    [53]吴香香,李宏男.结构偏心对丛础隔震结构地震反应的影响[J].地震工程与工程振动. 2003.23(1):145-151.
    [54]王建强,姚谦峰.基础隔震偏心结构扭转振动反应分析[J].四川建筑科学研究.2004.30(1):103-104.
    [55]Arturo, Tena-Colunga,Jose, Luis Escamilla-Cruz. Torsional amplification in asymmetric base-isolated structures [J]. Engineering Structures.2007.29(2):237-247.
    [56]Tso-Chien, Pan,James M, Kelly. Seismic response of base-isolated structures with vertical-rocking coupling [J]. Earthquake Engineering and Structural Dynamics.1984. 12:681-702.
    [57]Jose L, Almazan,Juan C, De La Llera. Accidental torsion due to overturning in nominally symmetric structures isolated with the FPS[J]. Earthquake Engineering and Structural Dynamics.2003.32:919-948.
    [58]程华群,刘伟庆,王曙光.高层隔震建筑设计中隔震支座受拉问题的分析[J].地震工程与工程振动.2007.27(4):160-166.
    [59]祁皑,范宏伟.基于结构设计的基础隔震结构高宽比限值的研究[J].土木工程学报.2007.40(4):13-20.
    [60]韩强,杜修力.橡胶隔震支座拉仲性能试验研究[J].北京工业大学学报.2006.32(3):208-212.
    [61]刘文光,杨巧荣.橡胶座非线性弹性拉仲特性的理论和试验研究[J].地震工程与工程振动.2004.24(2):158-167.
    [62]韩强,杜修力,刘晶波等.多维地震作用下隔震桥梁地震反应(Ⅰ)--模型结构振动台试验[J].振动与冲击.2008.27(9):59-65.
    [63]Hwang, J.S,Hsu, T.Y. Experimental study of isolated building under triaxial ground excitations [J]. Journal of Sructural Engineering.2000.126(8):879-886.
    [64]叶昆,李黎.大底盘多塔楼结构基础隔震设计分析[J].工程抗震与加固改造.2001(3):22-26.
    [65]吕西林,李学平.超限高层建筑工程抗震设计中的若干问题[J].建筑结构学报.2002.23(2):13-18.
    [66]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南[M].2006,北京:人民交通出版社.
    [67]方鄂华,韦宇宁.大底盘多塔楼结构地震反应[J].建筑结构学报.1995.16(6):3-10.
    [68]李慧,张志公,杜永峰.大底盘多塔楼结构基础隔震非线性时程分析[J].兰州理工大学学报.2007(1):33-37.
    [69]Villaverde, Roberto. Methods to assess the seismic collapse capacity of building structures:state of the art[J]. Journal of Structural Engineering.2007.133(1):57-66.
    [70]Buckle, I.G,Liu, H. Stability of elasomeric seismic isolation systems[C].Proc, Seminar on Seismic isolation, Passive Energy Dissipation, and Control, Applied Technology Council. Redwood City.Calif.1993:293-305.
    [71]Satish, Najarajaiah,Keith, Ferrell. Stability of elastomeric seismic isolation bearings [J]. Journal of Structural Engineering.1999.125(9):946-954.
    [72]Keri L, Ryan, J M, Kelly,A K, Chopra. Formulation and implementation of a lead-rubber bearing model including material and geometric nonlinearities[C].17th Analysis and Computation Specialty Conference.2006.
    [73]张敏政,孟庆利,裴强.叠层橡胶隔震支座的动态稳定性和力学特性研究[J].地震工程与工程振动.2002.22(5):85-91.
    [74]周锡元,韩淼.橡胶支座与R/C柱小联隔震系统水平刚度系数[J].振动工程学报.1999.12(2):157-165.
    [75]李慧,姚云龙,杜永峰等.叠层橡胶支座与柱串联体系动力失稳区间分析[J].世界地震工程.2004.
    [76]刘文光,周福霖,庄学真等.柱端隔震夹层橡胶垫力学性能试验研究[J].地震工程与工程振动.1999.19(3):121-126.
    [77]Takizawa, H,Jennings, P.C. Collapse of model for ductile reinforced concrete frames under extreme earthquake motions [J]. Earthquake Engineering and Structural Dynamics. 1980.8:117-144.
    [78]Jennings, P.C,Husid, R. Collapse of yielding structures during earthquakes [J]. J. of Engrg.Mech.Div.1968.94(5):1045-1065.
    [79]Bernal, Dionisio. Instability of buildings during seismic response [J]. Engineering Structures.1998.20(4):496-502.
    [80]Macrae, G.A. P-delta effects on single-degree-of freedom structures in earthquakes [J]. Earthquake Spectra.1994.10(3):539-568.
    [81]Williamson, Eric B. Evaluation of damage and P-effects for systems under earthquake excitation [J]. Journal of Structural Engineering.2003.129(8):1036-1046.
    [82]Miranda, Eduardo,Akkar, Sinan D. Dynamic instability of simple structural system [J]. Journal of Structural Engineering.2003.129(12):1722-1726.
    [83]Adam, C, Ibarra, L.F,Krawinkler, H. Evaluation of P-delta effects in non-deteriorating MDOF structures from eqivalent SDOF systems[C].Proc.13th World Conf. on Earthquake Engineering. Vancouver, B.C.,Canada.2004.
    [84]Mehanny, S.S.F,Deierlein, G.G. Seismic damage and collapse assessment of composite moment frames [J]. Journal of Structural Engineering.2001.127(9):1045-1053.
    [85]侯小美,宋宝东.复杂高层的整体稳定性分析[J].结构工程师.2008.24(6):51-56.
    [86]郭海山,沈世钊.单层网壳结构动力稳定性分析方法[J].建筑结构学报.2003.24(3):1-9.
    [87]张行,李黎,尹鹏.地震作用下大跨越输电塔弹性动力稳定性能探讨[J].电力建设.2008.29(11):6-11.
    [88]土述超,张行,叶志雄等.超限高层建筑地震作用下的动力稳定性分析[J].振动与冲 击.2009.28(4):149-152.
    [89]李慧,邓学津,杜永峰等.寒区叠层橡胶隔震支座拟静力试验研究[J].低温建筑技术.2003(4):33-35.
    [90]Sato, M, Nishi, H, Kawashima, K, et al. Response of On-Netoh bridge during Kushiro-Oki Earthquake of January 1993[C].Proceedings of the third U.S-Japan Workshop on Earthquake Protective Systems for Bridges. California, U.S.1994:63-78.
    [91]施卫星,孙黄胜,李振刚.上海国家赛车场新闻中心高位隔震研究[J].同济大学学报.2005.33(12):1576-1580.
    [92]Alfredo. H.-S, Ang,Jae-Chull, Lee. Cost optimal design of R/C building [J]. Reliability Engineering & System Safety.2001.73:233-238.
    [93]Wen, Y.K,Kang, Y.J. Minimum building life-cycle cost design criteria.Ⅱ:Application[J]. Journal of Structural Engineering.2001.127(3):338-346.
    [94]Jangid, R.S,Datta, T.K. Seismic reliability of base-isolated building frames[C].11th World Conference on Earthquake and Structural Dynamics.1996.
    [95]Shenton, H.W,Holloway, E.S. Effect of stiffness variability on the response of isolated structures [J]. Earthquake Engineering and Structural Dynamics.2000.29:19-36.
    [96]杜永峰.被动与智能隔震结构地震响应分析与控制算法[D].博士论文.大连理工大学.2003.
    [97]张颖.层间隔震体系的减震机理与减震性能研究[D].博士学位论文.湖南大学.2009.
    [98]Aktas, E, Moses, F,Chosn, M. Cost and safety optimization of structural design specifications [J]. Reliability Engineering & System Safety.2001.73:205-212.
    [99]Nikos.D, Lagaros, Andreas.D, Fotis,Stilianos. A, Krikos. Assessment of seismic design procedures based on the total cost [J]. Earthquake Engineering and Structural Dynamics. 2006.35:1381-1401.
    [100]C.S.Lee, K.Goda,H.P.Hong. Cost-effectiveness of tuned mass damper and base isolation[C].14th World Conference on Earthquake Engineering. Beijing,China.2008.
    [101]李刚,杨迪雄,程耿东.基于功能的基础隔震结构一体化设计[J].应用力学学报.2004.21(1):13-16.
    [102]卫彩霞,吴会平,吉柏锋.基础隔震建筑的全寿命经济评价的研究[J].特种结构.2009.26(3):1-10.
    [103]HAZUS99-Technical Manual.1999.
    [104]Naeim, Farzad. Seismic design of handbook[M].2008.
    [105]周靖,赵卫锋,刘智林.竖向不规则结构抗震性能研究现状及其在设计规范中的应用[J].力学进展.2009.39(1):79-88.
    [106]Marano, G.C,Greco, R. Efficiency of base isolation system in structural seismic protection and energetic assessment [J]. Earthquake Engineering and Structural Dynamics.2003. 32:1505-1531.
    [107]中国建筑技术研究院.高层民用建筑钢结构技术规程JGJ 99-98[S].1998,北京:中国建筑工业出版社.
    [108],中国建筑科学研究院.高层建筑混凝土结构技术规程JGJ 3-2002[S].2002,北京:中国建筑工业出版社.
    [109]李桂青,曹宏,李秋胜等.结构动力可靠性理论及其应用[M].1993,北京:地震出版社.
    [110]金建敏,谭平,黄襄云等.铅芯橡胶支座微分型恢复力模型屈服前刚度的研究[J].广州大学学报(自然科学版).2008.7(1):87-90.
    [111]周福霖.工程结构减震控制[M].1997,北京:地震出版社.
    [112]中国地震局工程力学研究所.建筑工程抗震性态设计通则CECS160:2004[S].2004,北京:中国计划出版社.
    [113]党育,霍凯成.近断层地震各因素对基础隔震结构的影响[J].武汉理工大学学报.2009.31(14):72-77.
    [114]Jangid, R.S,Datta, T.K. Seismic response of torsionally coupled structures with elastic-plastic base isolation [J]. Engineering Structures.1994.16(3):256-262.
    [115]武田寿一.建筑物隔震防振与控振[M].1997,北京:中国建筑工业出版社.
    [116]徐培福,黄吉锋,韦承丛.高层建筑结构的扭转反应控制[J].土木工程学报.2006.39(7):1-8.
    [117]刘大海,杨翠如,钟锡根.高层建筑抗震设计[M].1993,北京:中国建筑工业出版社.
    [118]2006 International Building Code[S].2006:INTERNATIONAL CODE COUNCIL, INC.
    [119]国家地震局.核电厂抗震设计规范GB50267-97[S].1998,北京:中国计划出版社.
    [120]Bozorgnia, Y,Niazi, M. Distance Scaling of Vertical and Horizontal Response Spectra of the Loma Prieta Earthquake [J]. Journal of Earthquake Engineering and Structural Dynamics.1993.22:695-707.
    [121]Bozorgnia, Y, Niazi, M,Campbell, K. W. Characteristics of Free-Field Vertical Ground Motion in the 1994 Northridge Earthquake [J]. Earthquake Spectra.1995.11(4):515-525.
    [122]周正华,周雍年,卢滔等.竖向地震动特征研究[J].地震工程与工程振动.2003.23(3):25-29.
    [123]耿淑伟.抗震设计中的地震动输入参数的研究[D].博士论文.中国地震局工程力学研究所.2005.
    [124]徐龙军,谢礼立.竖向地震动加速度反应谱特性[J].地震工程与工程振动.2007.27(12):17-23.
    [125]符华.鲍络金.弹性体系的动力稳定性[M].1960,北京:高等教育出版社.
    [126]Nakajima, Akinori, Abe, Hidehilo, Kuranishi, Shigeru, et al. Evalutation of dynamics collapse of cantilever column under axial compression and lateral dynamics force [J]. Structural Eng./Earthquake Eng.1993.10(2):49-57.
    [127]李慧,姚云龙,杜永峰等.叠层橡胶支座与柱串联体系动力失稳区间分析[J].世界地 震工程.2005.21(1):18-23.
    [128]中华人民共和国建设部.混凝土结构设计规范GB50010-2002[S].2002,北京:中国建筑工业出版社.
    [129]国家标准建筑抗震设计规范管理组.建筑抗震设计规范(GB50011-2010)统一培训教材[M].2010,北京:地震出版社.
    [130]王铁梦.工程结构裂缝控制[M].1997,北京:中国建筑工业出版社.
    [131]中华人民共和国建设部.民用建筑热工设计规范GB50176-93[S].1993,北京:中国建筑工业出版社.
    [132]中华人民共和国建设部国家质量监督检验检疫总局.橡胶支座第3部分:建筑隔震橡胶支座GB 20688.3-2006[S].2006,北京:中国建筑工业出版社.
    [133]Structural Engineers Association of California(SEAOC).Performance Based Seismic Engineering of Buildings[S].1995.
    [134]Satish, Najarajaiah,Sun, Xiaohong. Response of base-isolated USC hospital building in Northridge earthquake [J]. Journal of Structural Engineering.2000.126(10):1177-1186.
    [135]李刚,程耿东.基于性能的结构抗震设计——理论、方法及应用[M].2004,北京:科学出版社.
    [136]谢礼立,马玉宏,翟长海.基于性态的抗震设防及设计地震动[M].2009,北京:科学出版社.
    [137]尹之潜.地震灾害及损失预测方法[M].1996,北京:地震出版社.
    [138]欧进萍.结构随机振动[M].1995,北京:高等教育出版社.
    [139]林家浩,张亚辉.随机振动的虚拟激励法[M].2004,北京:科学出版社.
    [140]张新培.建筑结构可靠度分析与设计[M].2001,北京:科学出版社.
    [141]王亚勇,戴国莹.建筑抗震设计规范疑问解答[M].2006,北京:中国建筑工业出版社.
    [142]王晓青,丁香,王龙等.四川汶川8级大地震灾害损失快速评估研究[J].地震学报.2009.31(2):205-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700