河北省春秋季层状降水云系宏微观结构观测和数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了抗旱减灾、缓解水资源短缺、保障国家粮食安全,河北省每年的春秋两季均开展飞机人工增雨作业。在作业的同时利用机载粒子测量系统PMS进行云物理探测,研究云系结构和降水形成机制,从而提高人工增雨的科学性、针对性和有效性。本文利用2005-2009年河北省春秋季常规天气资料、非常规气象资料以及机载PMS探测资料,采用天气学和云物理学相结合的方法,研究了河北省春秋季层状降水云系的宏观结构、云与降水的微物理特征,探讨了云系的可播性条件;通过典型个例综合观测分析和数值模拟,揭示了降水形成的物理机制,丰富了对河北地区层状降水云系物理特性的认识。得到如下主要结论:
     1.河北省春秋季层状降水云系的宏观特征。影响河北省春秋季并可产生降水的天气系统主要有低槽、冷锋、低涡、气旋、切变线、回流等,其中低槽、冷锋是主要影响系统。不同天气系统在春秋两季对降水量的贡献不同。大范围层状云系内部具有非均匀性结构特征,造成地面降水的不均匀分布。大部分的水汽含量集中在大气中低层,500hPa以下水汽占了整层水汽含量的93%-98%以上。层状云降水天气绝大多数为热力稳定型但同时存在位势不稳定区,并存在弱的垂直上升速度。
     2.河北省春秋季层状降水云系的微物理特征。河北省2005-2009年春秋季层状降水云系云粒子浓度14~205个/cm3,平均直径7~18μm,King探头实测云中平均液态水含量0.26 g/m3,最大1.636g/m3,平均冰晶浓度为27.7个/L。春季云粒子浓度、云滴含水量、平均直径比秋季大。冷锋过境前后,云微物理要素差异较大。在冷锋过境前平均云滴浓度相对较大,粒子直径偏小,云水含量相对较低;云系发展旺盛或成熟期,云滴浓度下降明显,粒子直径普遍增大,冰晶粒子数量增加;冷锋过境后,云滴浓度进一步下降,云粒子直径和云水含量继续增大,冰晶粒子数量和冰晶直径都减小。冷锋过境前后,As云和Sc云内,云微物理量要素变化显著,但云粒子谱变化不大。
     3.河北省春秋季云系的可播性条件。观测研究表明,河北省2005-2009年春、秋季层状降水云系大多具有多层结构,符合“催化云—供水云”结构,有利于降水的云层结构是下层配合Ns或Sc的Asop云占55.7%。降水性层状云系过冷层厚度平均1414m,符合可播性条件。降水云系过冷层含水量丰富,87%的架次观测到含水量大于0.1 g/m3的过冷水区。King探头实测平均为0.16g/m3,春季略高于秋季;过冷水含量随云系的不同发展阶段、不同部位有很大差异,而不同降水云型其过冷水含量也有很大不同。云滴最大浓度大多在21~216个/cm3之间。降水云层的冰晶浓度较低,冰晶浓度小于27.7个/L的占到55%,具有较大的人工引晶催化潜力,播撒层基本上在-2~-8℃。
     4.揭示了降水形成的物理机制。选取2008年10月4日~5日河北省出现的一次典型冷锋层状云降水过程进行观测和数值模拟分析。研究表明,冷锋云系符合“催化—供给”机制。云内高层是冰晶,中层是雪,接下来是霰和过冷云水组成的冰水混合层,最下方是暖水层。供水云为锋下层积云,有云滴、雨滴和从上层降落下来以后融化的雪和霰,紧接着靠液滴间碰并增长形成降水粒子。催化云为锋上高层云,是由冰晶、雪、霰和过冷云水组成的冰水混合云,冰晶和雪的增长不仅有冰晶的凝华和聚合过程,还包含雪晶凇附过冷水和攀附过程,卷层云中的冰晶对高层云起着自然催化作用。降水云系冷云过程与暖云过程共存,降水主要以冷云过程发动。降水发展的不同时段,云内结构、各种湿物质之间的转化关系和雨水形成机制都存在明显差异。
For relieving drought, easing the shortage of water resources, protecting national food security, Hebei carried out aircraft artificial precipitation enhancement in annual spring and autumn. At the same time the cloud physics data was detected by the airborne Particle Measuring systems (PMS) in order to study the structure of the cloud system and the formation mechanism of precipitation, improve the scientificalness, and pertinence and availability of artificial precipitation. In this paper, based on the conventional sounding data, non-conventional observation and detection data of airborne PMS system, and using a combination of methods of synoptic systems and cloud physics, we make an analysis of the macro-structure of stratiform cloud in spring and autumn in Hebei, the microphysical characteristics of precipitable stratiform clouds, and discusses the conditions of the cloud system that can be seeded, reveal the physical mechanism of precipitation formation through the observation and analysis of the typical case and numerical simulation, enrich the understanding of the physical characteristics of the cloud system in Hebei, The main results are as follows.
     1. The macrophysics characteristics of stratiform cloud of spring and autumn in Hebei province. There are several categories of weather systems, including the low trough (inverted trough), cold front, vortex, cyclones, shear line and return flow lead to precipitation in spring and autumn, Hebei Province. The low trough and cold front are the major influence systems. Different weather systems in spring and autumn give the different contribution of precipitation. Inhomogeneity internal structure in a wide range stratiform cloud is corresponding to the uneven distribution of ground precipitation. Most of the water vapor is concentrated in the mid and low layers. The water vapor under 500hPa makes up 93%~98% of the whole layer. Most of stratiform cloud precipitation systems are thermal stable types, and exist potential instability regions and weak vertical velocity.
     2. The microphysics characteristic of precipitable stratiform clouds in spring and autumn, Hebei Province. Statisticsed the microphysics characteristic of precipitable stratiform clouds in spring and autumn during 2005-2009, Hebei Province, cloud droplet concentration range from 14 to 205 cm-3, average diameter range from 7 to 18μm. Observed by King Probe, average LWC is 0.26 g/m3, the max value is 1.636 g/m3, average ice crystal concentration is 27.7/L. The value of number concentration, average diameter and LWC is higher in spring than those in autumn. During the pre and post of cold front passing over, the cloud microphysics appears significant different. Pre-cold front passing, the observed cloud number concentration is relatively high, and both the droplet diameter and cloud water content are low in the early stage of cloud system development. During the mature stage, the cloud concentration decreases obviously, the diameter and the number of ice particles increase. When the cloud front have passed over, cloud concentration will decrease continually in the rear of cloud system; and the number of ice particles and diameter of ice particles will decrease, but cloud droplet diameter and cloud water content will increase continually, both size and diameter of ice crystal will decrease. When the pre and post of cold front passing over, the cloud microphysics has significant variation, while the cloud spectrum will not change much in the As cloud and Sc cloud.
     3. The seedability condition of cloud system of spring and autumn in Hebei province. There is multi-layer structure in the precipitable stratiform cloud system during spring and autumn in Hebei province, the distribution of cloud is corresponding with "catalysis-supply cloud" structure. The clouds structures are in favor of precipitation are Asop cloud with Ns or Sc in low layer which make up 55.7%. The average thickness of super-cooled layer is 1414 m which is suitable for artificially seeding. Observations show that supercooled LWC is quite rich,87% of the sorties is greater than 0.1 g/m3 and potential rainfall. The average is 0.16 g/m3 from King, the spring slightly higher than the autumn. The supercooled water content of cloud is very different, with the different stages or parts of development of the cloud system, and different precipitation cloud type. The maximum cloud droplets concentrations are between 21 and 216cm-3. Ice concentration is low in precipitation clouds, more than 55% ice concentration lower 27.7/L, with a large catalytic ability of artificial seeding. The seeding layer temperature is between -2 and -8℃.
     4. The physical mechanism of precipitation formation. The typical cold front precipitation process happened from 4 to 5 in October,2008 is chosen to observe and numerical simulation analyze. The results show that the cold front is in accord with the "catalysis-supply" mechanism. The ice crystal is in the high layer of cloud, the snow is in the mid-layer of cloud, and graupel, supercooled cloud water is in the next layer of cloud, and the liquid water layer in the water region of cloud is in the low lay of cloud. The stratocumulus cloud under the front is water supply cloud, and there are cloud droplets, rain droplets, and snow and graupel felling from the upper layer after melting. The collision and coalescence of the liquid droplets make the main contribution to the form of rain droplets. The stratocumulus cloud over the front is catalysis cloud, consisting of ice crystal, snow, graupel and ice-water mixed clouds of supercooled cloud water. The increase of ice crystal and snow include not only sublimation and aggregation process, but also the riming and cluming process of snow crystals. The ice crystals in cirrostratus cloud affect the natural catalysis. The cold-cloud process and warm-cloud process coexist in precipitation system. The precipitation be started mainly by cold-cloud process. The cloud structure, the transformation between a variety of wet material and the formation mechanism of rain are significantly different in precipitation cloud system simulated.
引文
[1]Browning, K. and T. W. Harrold. Air motion and precipitation growth at a cold front,Quart. J. Roy.Meteor. Soc.,1969,96:369-389.
    [2]Browning, K.A.Radar measurements of air motion near front, Part Ⅱ.weather,1971,26:320-340.
    [3]Carlson, R.E.Airflow through mid-latitude cyclones and the comma cloud Pattern.J.Mon. Weather, Rev.,1980,108:1498-1509.
    [4]David B. Parsons.The Mesoscale and Microscale Structure and Organization of Cloud and Precipitation in Midlatitude Cyelones. VII:Formation,development, interaction and dissipation of rainbands.J. Atmos.Sci.,1983,40(3):559-579.
    [5]Duan Ying. Estimation of Artificial Precipitation Enhancement Resource Condition and Cloud Seeding Potential by Ground-Based Remote Sensing Data, J.ACTA Meteorologica Sinica,1999, 13(1):271-282
    [6]Evans A G, Locatelli J D, Stoelinga M T, et al. The MPROVE-1 storm of 1-2 February 2001. part II: Cloud structures and the growth of precipitation J.Atmos Sci,2005,62 (10):3456-3473.
    [7]Fleishauer R P, Larson V E, Haar T H.Observed microphysical structure of midlevel, mixed-phase clouds. J.A.S.,2002,59:1779-1804.
    [8]Gerber, H., Microphysics of marine stratocumulus with two drizzle modes. J. Atmos. Sci.,1996,53: 1649-1662.
    [9]Heymsfield A J, Bansmer A, Field P R,et al.Observations and parameterization of particle size distribution in deep tropical cirrus and stratiform precipitating clouds:results from in situ observations in TRMM field campaigns. J.A.S.,2002,59:3457-3491.
    [10]Hill, G.E. Seeding-opportunity recognition in winter orographic clouds.J.Appl.Meteor.,1980, 19,1371-1381.
    [11]Hobbs, P. V. High concentrations of ice particles in a layer cloud, Nature,1974,251:694-696.
    [12]Hobbs,P.V.,T.J.M atejka, and P.H.Herzegh, et al., The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones I A case study of a cold front.J.Atmos.Sci.,1980,37:568-596.
    [13]Korolev A V, Isaac G A, Cober S G, et al. Microphysical characterization of mixed-phase clouds. Quart. J. Roy Meteor Soc,2003,129:39-65.
    [14]Kazuaki Yasunaga, Akihiro Hashimoto, Masanori Yoshizaki. Numerical Simulations of the Formation of Melting-Layer Cloud.J. Amer Meteor Soc,2008.136:223-241.
    [15]Long,A.B.,and E.J.Carter.Australian winter mountain storm clouds:precipitation augmentation potential.J.Appl.Meteor.,1996,35:1457-1461.
    [16]Matejka, T. J., R. A. Houze, Jr. and P. V. Hobbs.Microphysics and dynamics of the clouds associated with mesoscale rain bands in extratropical cyclones, Quart. J. Roy. Meteor. Soc.,1980,106:29-56.
    [17]Parsons D B. Mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones, Pt.7, formation, development, interaction, and dissipation of rainbands, J. Atmos. Sci.,1983,40:559-579.
    [18]Paul H. Herzegh, Mesoscale and microscale structure and organization of clouds and Precipitation in mid-latitude cyclones. Ⅱ:Warm-frontal clouds.J.Atmos.Sci.,1980,37(3):597-611.
    [19]Peng-Yun Wang,Mesoscale and microscale structure and organization of clouds and Precipitation in midlatitude cyclones.VI:Wavelike rainbands associated with a cold-frontal zone.J.Atmos.sci., 1983,40(3):543-558.
    [20]Peng.Yun Wang, Mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. X:Wavelike rainbands in an occlusion, J.Atmos.Sci.,1983,40(8):1050-1064.
    [21]Peter V. Hobbs.The Mesoscale and Microscale Structure and Organization of Cloud and Precipitation in Midlatitude Cyclones. Ⅰ:A Case Study of a Cold Front.J.Atmos.Sci.,1980,37(3):568-596.
    [22]Peter V Hobbs.The Mesoscale and Microscale Stucture and Organition of Cloud and Precipitation in Midlatitude Cyelones. Part V:Structure of narrow cold fontal rainbands.J.Atmos.Sci.,1982, 39(2):280-295.
    [23]Reynolds D W. Remote and in situ observations of Sierra Nevada winter mountain clouds: relationships between mesoscale structure, precipitation, and liquid water, J. Appl. Meteor.,1988, 27:140-156.
    [24]Sassen K. Investigations of a winter mountain storm in Utah. Part Ⅱ:mesoscale structure, supercooled liquid water development, and precipitation processes,J. Atmos. Sci.,1990,47:1323-1350.
    [25]Stoelinga M T, Hobbs P V,Mass C F, et al. Improvement of microphysical parameterization through observational verification experiment. Bull Amer Meteor Soc,2003,84(12):1807-1826.
    [26]Tuanjie Hou, Hengchi Lei, Zhaoxia Hu. A comparative study of the microstructure and precipitation mechanisms for two stratriform clouds in China. Atmospheric Research,2010,96:447-460.
    [27]Vardiman,L.,and J.A.Moore.Generalized criteria for seeding winter orographic clouds. J. Appl.Meteor.,1978,17,1769-1777.
    [28]Wood R. Stratocumulus clouds[M]. Mon Weather Rev:(In press).2012.
    [29]Xue, Y., L. P. Wang, and W. W. Grabowski. Growth of cloud droplets by turbulent collision-coalescence. J. Atmos. Sci.,2008,65:331-356.
    [30]Ye Jiadong, Fan Beifen, Cotton W R, et al. Observational study of microphysics in the stratiform region and transition region of a mid-latitude mesoscale convective complex.J.Acta Meteorologica Sinica,1991,5 (5):527-540.
    [31]Zhanqing Li,Feng Niu,Jiwen Fan,et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation J. nature geosciences.2011.DOI:10.1038/NGEO 1313.
    [32]陈保国,樊鹏,雷崇典,等.2002年秋季陕北地区一次锋面云系综合探测分析[J].气象,2005,30:3-8.
    [33]陈保国,栗珂,雷恒池,等.典型层状云系催化试验的云物理响应研究[J].高原气象,2010.29(4):1036-1042.
    [34]陈万奎,严采繁.冰相雨胚转化水汽密度差的实验研究[J].应用气象学报,2001,12(增):23-29.
    [35]党娟,王广河,刘卫国.甘肃省夏季层状云微物理特征个例分析[J].气象,2009,35(1),24-36.
    [36]段英,吴志会,石立新.飞机人工增雨催化条件的研究[J].中国生态农业学报,1998,6(1):34-40.
    [37]段英,吴志会.利用地基遥感方法监测大气中汽态、液态水含量分布特征的分析[J].应用气象学报,1999,10(1):97-103.
    [38]封秋娟,牛生杰,雷恒池,等.吉林省一次层状云降水宏微观特征的观测研究[J].南京气象学院学报,2007,30(6):770-778.
    [39]冯圆,濮江平,赵斌华,等。河南春季一次冷锋降水过程的云物理结构分析[J].解放军理工大学学报(自然科学版),2005,6:591-597.
    [40]顾震潮.云雾降水物理基础[M].北京:科学出版社,1980.
    [41]高茜,王广河,史月琴.华北层状云系人工增雨个例数值研究[J].气象,2011,37(10):1241-1251.
    [42]郭世昌,李慧晶,李艳伟,等.一次层状云人工增雨过程的数值模拟研究[J].云南大学学报(自然科学版),2011,33(1):60-66.
    [43]郭学良,黄美元,徐华英,等.层状云降水微物理过程的雨滴分档数值模拟[J].大气科学,1999,23,745-752.
    [44]郝立生,闵锦忠,姚学祥.华北夏季降水减少原因分析[J].干旱区研究,2007,24(4):522-527.
    [45]郝立生,姚学祥,只德国.气候变化与海河流域地表水资源量的关系[J].海河水利,2009,28(5):1-4.
    [46]郝立生.华北降水时空变化及降水量减少影响因子研究.[博士学位论文].南京.南京信息工程大学.2011.
    [47]洪延超,周非非.“催化供给”云降水形成机理的数值模拟研究[J].大气科学,2005,29(6):885-896.
    [48]洪延超.积层混合云数值模拟研究(Ⅰ)一模式及其微物理过程参数化[J].气象学报,1996a,54,544-557.
    [49]洪延超.积层混合云数值模拟研究(Ⅱ)一云相互作用及暴雨产生机制[J].气象学报,1996b,54,661-674.
    [50]洪延超,李宏宇.一次锋面层状云云系结构、降水机制及人工增雨条件研究[J].高原气象,2011,30(5):1308-1323.
    [51]侯团结,胡朝霞,雷恒池.吉林一次降水层状云的结构和物理过程研究[J].气象学报,2011,69(3):508-520.
    [52]胡朝霞,雷恒池,郭学良,等.降水性层状云系结构和降水过程的观测个例与模拟研究[J].大气科学,2007,31(3):425-439.
    [53]胡志晋,秦瑜,王玉彬.层状冷云数值模式[J].气象学报,1983,41:194-203.
    [54]胡志晋,严采繁,王玉彬.层状暖云降雨及其催化的数值模拟[J].气象学报,1983,41:79-88.
    [55]胡志晋,严采繁.层状云微物理过程的数值模拟[Ⅰ].微物理模式[J].中国气象科学研究院刊,1986,1,37-52.
    [56]胡志晋,严采繁.层状云微物理过程的数值模拟[Ⅱ].中纬度气旋云系的微物理过程[J].中国气象科学研究院刊,1987,2:133-142.
    [57]胡志晋,刘公波,朱彤.暴雨数值预报中云降水方案的研究.台风暴雨业务数值预报方法和技术研究[J].北京.气象出版社,1996:593-602.
    [58]胡志晋.关于空中水资源和人工增雨潜力的估算问题[J].人工影响天气,1999,12:53-55.
    [59]胡志晋,层状云人工增雨机制、条件和方法的探讨[J].应用气象学报,2001,12(增):10-13.
    [60]黄美元,洪延超.在梅雨锋云系内层状云回波结构及其降水的不均匀性[J].气象学报,1984,42(1):80-87.
    [61]黄美元,洪延超,吴玉霞,等.梅雨锋云系和降水的若干研究[J].大气科学,1987,11(1):23-30.
    [62]黄美元,洪延超,徐华英,等.层状云对积云发展和降水的影响—一种云与云之间影响的数值模拟[J].气象学报,1987,45(1):72-77.
    [63]黄荣辉,周连童.我国重大气候灾害特征形成机理和预测研究[J].自然灾害学报,2002,11(1):1-9.
    [64]雷恒池,魏重,沈志来,等.微波辐射计探测降雨前水汽和云液水[J],应用气象学报,2001,12(增刊):73-79.
    [65]李斌,伍志方等编译.国外云和降水研究.第十二届国际云和降水会议论文选编[M].气象出版社,1998.
    [66]李淑日,王广河,刘卫国.降水性层状云微物理结构个例分析[J].气象,2001,27(11):17-21.
    [67]李艳伟,牛生杰,罗宁等.积云并合扩展层化型积层混合云的数值模拟分析[J].地球物理学报,2009,52(2):1165-1175.
    [68]李艳伟,牛生杰,姚展予,等.云并合的初始位置探讨[J].大气科学,2009.33(5):1015-1026.
    [69]李艳伟,牛生杰.层状云系中两种特殊分布嵌入对流的形成过程和降水机理[J].中国科学:地球科学,2012年,42(02):277-289.
    [70]林文,牛生杰.宁夏盛夏层状云降水雨滴谱特征分析[J].气象科学,2009,29(1):97-101.
    [71]刘公波,胡志晋,游来光.混合相层状云模式和中尺度低涡云系的实例模拟[J].气象学报,1994,52(1):77-88.
    [72]刘海文,丁一汇.华北汛期的起讫及其气候学分析[J].应用气象学报.2008,19(6):688-696.
    [73]刘晓莉.基于粒子分档技术的云模式研究.[博士学位论文].南京信息工程大学,2007.
    [74]刘莹莹,山西省两种降水云系微物理特征和数值模拟研究.[硕士学位论文].南京信息工程大学.2011.
    [75]刘玉宝,胡志晋,游来光.新疆准噶尔盆地冬季系统性降水研究,Ⅱ理论探讨[J].气象科学研究院院刊,1988:159-168.
    [76]刘玉宝,周秀骥,胡志晋.三维弹性套网格中-β、中-γ尺度大气模式Ⅰ.模式描述[J].气象学报(英文版),1993a,7(3):257-272.
    [77]刘玉宝,周秀骥,胡志晋.三维弹性套网格中-p、中-γ尺度大气模式Ⅱ.模式描述[J].气象学报(英文版),1993b,7(4):467-485.
    [78]楼小凤,胡志晋,王广河.对流云降水过程中地形作用的模拟[J].应用气象学报,2001,21(增刊):113-121.
    [79]吕长安.河北省水资源现状分析及解决措施[J].中国水利,2003-3B.
    [80]毛节泰,郑国光.对人工影响天气若干问题的探讨[J].应用气象学报,2006,17:643-646.
    [81]内蒙古自治区气象局科技情报中心,中纬度气旋云和降水的中微尺度组织结构(译文集),1985.5.
    [82]牛生杰,安夏兰,桑建人.不同天气系统宁夏夏季降雨谱分布参量特征的观测研究[J],高原气象,2002,21(1):38-44.
    [83]荣艳淑,罗健.华北地区1901—-2002年气候变化强度的演变[J].河海大学学报(自然科学版),2009,37(3):276-280.
    [84]苏正军,刘卫国,王广河,等.青海一次春季透雨降水过程的云物理结构分析[J].应用气象学报,2003,14(增刊):28-35.
    [85]陶树旺,刘卫国,李念童等.层状冷云人工增雨可播性实时识别技术研究[J].应用气象学报,2001,12(增):14-22.
    [86]王柏忠,廖菲,胡娅敏.区域冷锋降水微物理机制研究[J].气象科技,2006,34(1):35-40.
    [87]王慧娟,牛生杰,雷恒池,吴玉霞.降水性层云含水量跃变对应的微结构观测研究[J].大气科学学报,2010,33(2):212-219.
    [88]汪晓滨,李淑日,游来光,等.北京冬夏降水系统中的云水量及其统计特征分析[J],应用气象学报,2001,12:107-112.
    [89]汪学林,秦元明,吴宪君,等.层状云中对流泡特征及其在降水场中的作用[J].应用气象学报,2011,12:146-150.
    [90]王扬锋,雷恒池,樊鹏.一次延安层状云微物理结构特征及降水机制研究[J].高原气象,2007,26(2),388-395.
    [91]项磊,牛生杰.宁夏层状云宏观和微观物理特征综合分析[J].气象科学,2008,28(3):258-263.
    [92]徐桂玉,杨修群,孙旭光.华北降水年代际、年际变化特征与北半球大气环流的联系[J].地球物理学报,2005,48(3):511-518.
    [93]许梓秀,王鹏云.冷锋前部中尺度雨带特征及其机制分析[J].气象学报,1989,47(2):198-206.
    [94]杨洁帆,雷恒池,胡朝霞.一次层状云降水过程微物理机制的数值模拟研究[J].大气科学,2010.34(2):275-289.
    [95]杨文霞,牛生杰,魏俊国等.河北省层状云降水系统微物理结构的飞机观测研究[J],高原气 象,2005,24,84-90.
    [96]叶笃正,黄荣辉.长江黄河流域旱涝规律和成因研究[M].济南:山东科学技术出版社,1996.
    [97]游景炎,段英,游来光等.云降水物理和人工增雨技术研究[M],北京,气象出版社,1994.
    [98]游来光,马培民,胡志晋.北方层状云人工降水试验研究[J].气象科技,2002,30(增刊):19-50.
    [99]游来光,王守荣,王鼎丰,等.新疆冬季降雪微结构及其增长过程的初步研究[J].气象学报,1989,47(1):73-81.
    [100]张佃国,姚展予,龚佃利,等.环北京地区层积混合云微物理结构飞机联合探测研究[J].大气科学学报,2011,34(1):109-121.
    [101]张利平,夏军,胡志芳.华北地区降水多时间尺度演变特征[J].气候变化研究进展,2008,4(3):140-144.
    [102]赵仕雄,陈文辉,杭洪宗.青海东北部春季系统性降水高层云系微物理结构分析[J].高原气象,2002,23(4):495-500.
    [103]张俊芝,李涛.河北省水资源现状及其特点分析[J].村委主任,2010,01,35-36.
    [104]周毓荃.河南层状云系多尺度结构和人工增雨条件的研究:[博士学位论文].南京:南京信息工程大学,2004.
    [1]WMO/TD—No.537. Proceedings on WMO Workshop on Cloud Microphysics and Application to Global Change.Toronto,Canada,1992,10-14.
    [2]段英,吴志会,石立新.飞机人工增雨催化条件的研究[J].中国生态农业学报.1998,6(1):34-40.
    [3]段英,吴志会,石立新等.飞机人工增雨的天气背景条件及作业技术研究.全国云雾、降水及人工影响天气,2008,91-99.
    [4]龚佃利,边道相.山东省空中水资源的初步分析[J].气候与环境研究,2002,7(4):474-482.
    [5]河北省气象局,河北省天气预报手册[M].北京·气象出版社,1987.22-37.
    [6]胡志晋.西北地区东部人工增雨环流分型及天气特点.第十四届全国云降水物理和人工影响天气科学会议(下册).北京:气象出版社,2005:513-519.
    [7]胡志晋,秦瑜,王玉彬.层状冷云数值模拟[J].气象学报,1983,41(2):194-203.
    [8]金德镇,张景红,谷淑芳等.人工增雨催化物理验证.中国气象学会年会2005年年会文集.北京:气象出版社.2005,618-629.
    [9]金华.河南省春季层状云降水特征和人工增雨条件的研究:[硕士学位论文].北京:中国气象科学研究 院,2006.
    [10]李斌,张建新.PMS粒子测量系统主要工作原理、应用和使用方法[M].北京:气象出版社,1995.250-254.
    [11]连志鸾,李国翠.石家庄的云、降水和水汽特征[J].气象科技.2005.33(增刊):21-26.
    [12]刘健,李茂仑,蒋彤等.吉林省春季降水性层状云基本结构及降水潜力的初步研究[J].气象科学.2005,25(6),609-616.
    [13]刘金华.河南省云水资源开发利用技术研究与示范项目总结.河南省云水资源开发利用技术研究.北京:气象出版社.2007,1-15.
    [14]刘艳华,李铁林,马鑫鑫等.河南省空中水汽资源的来源、分布及收支[J].气象与环境科学2011.34(1):42-48.
    [15]盛裴轩,毛节泰,李建国等.大气物理学[M].北京:北京大学出版社,2003,345-346.
    [16]陶树旺,刘卫国,李念童等.层状冷云人工增雨可播性实时识别技术研究[J].应用气象学报,2001,12(增):14-22.
    [17]赵柏林、丁荣良.雨层云人工增雨的可能性(一)非封闭系统的冰水转化问题[J].气象学报,1963,33(3):384-390.
    [18]张佃国,郭学良,龚佃利等.山东省1989-2008年23架次飞机云微物理结构观测试验结果[J].气象学报,2011,69(1),195-207.
    [19]张国庆,张加昆,刘蓓.黄河上游水汽时空分布特征[J].气象科学,2003,23(1):64-69.
    [20]朱乾根,林锦瑞,寿绍文,等.天气学原理和方法[M].北京:气象出版社,1993,896-900.
    [1]洪延超,周非非.“催化供给”云降水形成机理的数值模拟研究[J].大气科学,2005,29(6):885-896.
    [2]胡志晋.层状云人工增雨机制、条件和方法的探讨[J].应用气象学报,2001,12(增刊):10-13.
    [3]李淑日,王广河,刘卫国.降水性层状云微物理结构个例分析[J].气象,2001,27(11):17-21.
    [4]李照荣,李荣庆,李宝梓.兰州地区秋季层状云垂直微物理特征分析[J].高原气象,2003,22(6):583-589.
    [5]连志鸾,李国翠.石家庄的云、降水和水汽特征[J].气象科技.2005.33(增刊):21-26.
    [6]王广河,游来光.乌鲁木齐冬季冷锋锋上云带和锋下层积云的微物理结构及其降雪特征[J].气象,1989,15(3):15-19.
    [7]赵仕雄,陈文辉,杭洪宗.青海东北部春季系统性降水高层云系微物理结构分析[J].高原气象,2004,23(4):495-500.
    [8]张培昌,杜秉玉,戴铁丕.雷达气象学[M].北京:气象出版社,2001,307-308.
    [1]胡志晋.层状云人工增雨机制、条件和方法的探讨[J].应用气象学报,2001,12(增刊):10-13.
    [2]许焕斌,王思微.三维中-p尺度模式研究:一次气旋暖区锋生活动的中尺度结构的数值模拟试验[J].气象学报,1994,5:167-171.
    [3]翟菁,周毓荃,杜秉玉.河南省层状云降水云系中尺度结构的数值模拟[J].南京气象学院学报,2007,30(1):34-42.
    [4]赵震.MM5中新显式云物理方案的建立和数值模拟[J].大气科学,2005,29(4):610-619.
    [5]朱蓉,徐大海.中尺度数值模拟中的边界层多尺度湍流参数化方案[J].应用气象学报,2004,10:543-555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700