生物柴油发动机燃烧控制与排放特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益严重的石油安全问题和环境污染问题,生物柴油作为清洁、可再生的柴油替代燃料具有巨大的潜力。本文从燃料设计的角度改善生物柴油橡胶相容性和喷雾特性,以及发动机燃烧和排放特性,同时将燃料设计和低温燃烧模式相结合,探索用燃料设计来优化柴油低温燃烧模式从而同时降低NOx排放和碳烟排放,最后从燃料分子结构微观角度来分析了生物柴油对燃烧排放的影响。
     根据燃料设计概念,选用乙醇和生物柴油以不同比例互溶互混,研究了混合燃料理化特性参数,并给出了这些参数与乙醇体积分数的拟合函数关系。研究发现,混合燃料绝大多数理化特性与乙醇体积分数呈线性关系。利用不同分子结构的单一脂肪酸甲酯和乙酯与柴油掺混成体积比为4:6的混合燃料,研究混合燃料的理化特性随燃料分子结构的变化关系,并给出了这些参数与碳链长度和双键个数的拟合函数关系。考察了燃料理化性质以及不同分子结构对橡胶相容性的影响,测试了发动机上常用的丁腈橡胶不同燃料中浸泡168小时前后的质量、体积、硬度、拉伸强度、扯断伸长率和撕裂强度等参数,计算这些参数的变化率,比较了普通柴油与生物柴油以及乙醇-生物柴油对于丁腈橡胶的影响,还比较了甲酯不同分子结构对橡胶的影响。为了深入了解生物柴油以及醇类混合燃料的喷雾特性,在定容压力弹内采用高速摄影的方法研究了生物柴油和乙醇-生物柴油的喷雾特性,并与常规柴油进行了比较。研究发现,在生物柴油中添加乙醇可以明显缓解生物柴油对丁腈橡胶性能的破坏,尤其是质量、体积和硬度变化,而且可以改善喷雾质量。
     由于生物柴油中含有10%左右的氧,会产生较多的NOx排放。因此针对生物柴油NOx排放的增加,通过燃料设计的方法改善生物柴油的NOx排放。基于燃料设计思想,在一台四缸柴油机上燃用生物柴油以及甲醇-生物柴油和乙醇-生物柴油混合燃料,分析了添加甲醇对生物柴油燃油经济性和燃烧特性的影响。重点评价了甲醇-生物柴油混合燃料对柴油机常规气体排放(HC、CO、NOx、NO2)、非常规气体排放(甲醛、乙醛、未燃甲醇、1,3-丁二烯、苯、甲苯和二甲苯)、颗粒物质量浓度和颗粒物粒径分布的影响。比较甲醇和乙醇对于生物柴油发动机排放的影响。研究发现,在生物柴油中添加甲醇可以降低生物柴油的NOx排放和颗粒物排放,但甲醛、乙醛和1,3-丁二烯排放会随之增加。
     虽然添加醇类燃料可以降低生物柴油的NOx排放,但改善幅度有限。本文进一步考察了在进气充量中添加稀释气体CO2后,进气稀释对欧五柴油、生物柴油、生物柴油-柴油混合燃料、甲醇生物柴油和乙醇-生物柴油混燃料燃烧特性和排放特性(HC、CO、NOx、颗粒物质量浓度和颗粒物粒径分布)的影响。研究发现,综合使用进气稀释和燃料设计可以在降低生物柴油NOx排放的同时,维持颗粒物质量浓度到一个相对较低的水平。
     为了实现同时降低生物柴油NOx排放和颗粒物排放的目的,本文将燃料设计思想与低温燃烧模式相结合,在发动机燃用普通柴油、纯生物柴油和甲醇-生物柴油混合燃料,并同时利用废气再循环系统,在高比例EGR率下实现了发动机的低温燃烧。研究发现,发动机燃用甲醇-生物柴油混合燃料可以在相对较低的EGR率下同时大幅降低NOx排放和碳烟排放。同时系统分析了发动机燃烧相位对高温燃烧模式和低温燃烧模式排放特性的影响,并考察了发动机低温燃烧模式下新的trade-off关系。根据本文研究结果提出了优化生物柴油低温燃烧的燃料设计原则。
     进一步探索了生物柴油分子结构对发动机燃烧排放特性的影响。考察了月桂酸甲酯(C12:0)、棕榈酸甲酯(C16:0)、硬脂酸甲酯(C18:0)、油酸甲酯(C18:1M)和油酸乙酯(C18:1E)与柴油的混合燃料在发动机不同工况下的燃烧排放特性。实验结果表明,在控制HC、CO和碳烟排放方面,燃料分子中碳链长度较短,且含有有双键的脂肪酸甲酯具有较大的优势。但在控制NOx排放方面,燃料分子中碳链长度较长的不含有双键的饱和脂肪酸酯具有明显的优势。
Because of its cleaness and renewability, biodiesel has a great potential as the alternative of diesel fuel to confront with the increasing energy crisis and environment pollution. In this study, the fuel design concept was used to improve the elastomer compatibility, combustion and emission characteristics. In order to reduce both NOx and smoke emission of diesel engine, the combined method of fuel design concept with low temperature combustion mode was applied in this study.
     Effects of ethanol percentage in ethanol-biodiesel blends on the physical and chemical properties were investigated. The results show that there were linear relationships between lots of fuel properties and the ethanol percentage in blends. Different kinds of methyl esters and ethyl esters were also tested, in order to illuminate the effects of molecular structure on the physical and chemical properties of biodiesel, such as carbon chain length, number of double bonds and alcohol type. The nitrile rubbers were immersed in different kinds of fuels. After 168 hours, the properties, such as mass weight, volume, hardness, tensile strength, elongation and tearing strength, were measured to investigate the effects of biodiesel, ethanol-biodiesel blend and ester’s molecular structure on the elastomer compatibility. Spray characteristics of diesel, biodiesel and ethanol-biodiesel blend were studied via high speed digital camera. Based on the elastomer compatibility and spray test results, it was found that the addition of ethanol in blends could not only slow down the change of elastomer, especially the change of mass weight, volume and hardness, but also improve the atomization.
     According to the fuel design concept, the combustion, regulated emission, unregulated emission and particulate emission characteristics were studied, when the four cylinders diesel engine was fueled with biodiesel and biodiesel blended with methanol and ethanol. It was found that with increase of methanol in methanol-biodiesel blends, NOx and PM emissions could be reduced, while formaldehyde, acetaldehyde and 1,3-butadine could be enhanced. Moreover, comparison on effects of methanol against ethanol has been conducted.
     The effect of intake charge dilution with carbon dioxide on the combustion and emission characteristics of a 4-cylinder diesel engine fueled with EuroV diesel fuel, biodiesel, biodiesel-diesel blends, methanol-biodiesel and ethanol-biodiesel blends were investigated. The results show that charge dilution combined with fuel design could reduce NOx emission of biodiesel, and maintain the PM emission at the releatively lower level.
     The low temperature combustion mode of biodiesel with high EGR rate was investigated in this study, in order to reduce NOx and smoke emission simultaneously. Influence of methanol-biodiesel blends on the combustion and emission characteristics were studied in low temperature combustion mode. It was found that the NOx and smoke could be reduced simutanously at releativley lower EGR rate when the engine is fueled with methanol-biodiesel blends. Moreover, the effects of combustion phase on the emission characteristics were studied in LTC mode and HTC mode. Meanwhile, a new trade-off relationship was formed in LTC mode. The principles of fuel design concept for LTC optimization were generalized from the experimental results of this study.
     Different kinds of esters were used in diesel engine, in order to illustrate the relationship between molecular structure (carbon chain length, unsaturation and alcohol type) and emissions. The esters are methyl laurate (C12:0), methyl palmitate (C16:0), methyl stearate (C18:0), methyl oleate (C18:1M) and ethyl oleate (C18:1E). In the end, a comparsion of NOx, smoke opacity and particulate composition between rapeseed oil methyl ester and palm oil methyl ester was made to explain the variances between them in molecular structure. The results show that the ester with shorter carbon chain length and double bond in molecular structure could well restrain the emissions of HC, CO and smoke. While, the ester with longer carbon chain length and without double bond could produce releativley lower NOx emission.
引文
[1]国家发展改革委员会能源研究所课题组,中国2050年低碳发展之路:能源需求暨碳排放情景分析,北京:科学出版社2009
    [2] BP公司,BP世界能源统计2007,英国,2007年,11页,14页,22页
    [3]赵勇强,车用替代燃料的发展状况与前景[J],中国能源2009年第4期
    [4]中华人民共和国国民经济和社会发展第十二个五年规划纲要(全文) ,http://www.gov.cn/2011lh/content_1825838.htm
    [5] David F. Merrion, Heavy-Duty Diesel Emission Regulations-Past, Present, and Future[C], SAE2003-01-0040
    [6]周松,肖友洪,朱元清,内燃机排放与污染控制,北京:北京航空航天大学出版社,2010
    [7]周龙保,内燃机学[M],北京:机械工业出版社,1999
    [8] Soltic P., Weilenmann M. NO2/NO emissions of gasoline passenger cars and light duty trucks with Euro-2 emission standard [J]. Atmospheric Enviroment, 2003, 37: 5207-5216.
    [9] Fernando S., Hall C., Jha S.. NOx reduction from biodiesel fuels [J]. Energy & Fuels, 2006, 20: 376-82.
    [10] Dec J.E. Advanced compression-ignition engines-understanding the in-cylinder processes [J]. Proceeding of the Combustion Institute 2009 32:2727-2742.
    [11] http://www.platinummetalsreview.com/dynamic/article/view/53-1-27-34
    [12] http://gekgasifier.pbworks.com/Soot-Formation-Chemistry
    [13] Ramadhas A. S., Jayaraj S., Muraleedharan C. Use of vegetable oils as I. C. engine fuels—A review [J]. Renewable Energy 2004, 29:727-742
    [14] http://www.afdc.energy.gov/afdc/fuels/biodiesel_production.html
    [15] Graboski M.S., McCormick R. L. Combustion of fat and vegetable oil derived fuels in diesel engine [J]. Progress of Energy and Combustion Science 1998, 24: 125-164
    [16] Karaosmanoglu F. Vegetable oil fuels: A review [J]. Energy Sources 1999, 21: 221~231
    [17] Agarwal A. K., Das L. M. Biodiesel development and characterization for use as a fuel in compression ignition engine [J]. Transactions of the ASME, Journal of Engineering for Gas Turbine and Power 2001, 123:440~447
    [18]冀星,李黑虎等,中国生物柴油产业发展战略思考[J],中国能源,2006年第5期
    [19]何东平,张世宏等,我国生物柴油的发展与展望[J],粮油加工与食品机械,2004年第9期
    [20] http://news.bitauto.com/zhanhuixinwen/20100518/0805153579.html
    [21] http://www1.eere.energy.gov/vehiclesandfuels/facts/2011_fotw662.html
    [22] http://www.ebb-eu.org/stats.php
    [23] Haseeb A.S.M.A., Fazal M.A., Jahirul M.I., Masjuki H.H. Compatibility of automotive materials in biodiesel: A review [J]. Fuel 2011, 90:922-931.
    [24] Chemical resistance guide. Grand Terrace, CA: Wilden Pump and Engineering Co.; 2003.
    [25] Parker O-Ring Handbook. Lexington, KY: Parker Hannifin Corporation, O-Ring Division; 2001.
    [26] O-Ring chemical compatibility guide. Sunnydale, CA: eFunda, Inc.; 2004.
    [27] Lamprecht D. Elastomer compatibility of blends of biodiesel and fisher-tropsch diesel [C]. SAE 2007-01-0029.
    [28]莫桂娣,林培喜,黄克明.生物柴油对橡胶密封溶胀性能的影响研究[J]。化学与生物工程2009, 26:63-65.
    [29]火双红,蒋炜,鲁厚芳,梁斌.生物柴油及其柴油混合物的溶解性和橡胶兼容性研究[J]。中国油脂2009, 34:54-57.
    [30]秦敏,陈国需,许世海.橡胶籽生物柴油与橡胶材料的相容性研究[J。石油炼制与化工2009, 40:40-43.
    [31] Trakarnpruk W., Porntangjitlikit, S. Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties [J]. Renewable Energy 2008, 33:1558-1563.
    [32] Maru M.M., Lucchese M.M., Legnani C. et al., Biodiesel compatibility with carbon steel and HDPE parts [J]. Fuel Processing Technology 2009, 90:1175-1182.
    [33] Canakci M., Van Gerpen J.H., Comparison of Engine Performance and Emissions for Petroleum Diesel Fuel, Yellow Grease Biodiesel, and Soybean Oil Biodiesel [C]. ASAE No.016050.
    [34] Szybist J.P., Boehman A.L., Behavior of a diesel injection system with biodiesel fuel [C]. SAE2003-01-1039.
    [35] EPA. A comprehensive analysis of biodiesel impacts on exhaust emissions, Draft tech.491 report, EPA420-P-02-001
    [36]葛蕴珊信建民吴思进孔林河.增压柴油机燃用生物柴油的排放特性[J].燃烧科学与技术, Vol.10, No.2, 2004.4
    [37]谭丕强,胡志远,楼狄明等.非直喷式增压柴油机燃用生物柴油的性能与排放特性[J]。内燃机学报, Vol. 24,No.2,2006
    [38] Christopher A., Sharp S.A., Howell, Joe J. The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part I Regulated Emissions and Performance [C]. SAE 2000-01-1967
    [39] Christopher A., Sharp S.A., Howell, Joe J. The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part II Unregulated Emissions and Chemical Characterization [C]. SAE 2000-01-1968
    [40] Usta N. An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester [J]. Energy Conversion and Management 2005 46:2373–2386.
    [41] Lee C.S., Park S.W., Kwon S.I. An experimental study on the atomization an combustion characteristics of biodiesel-blended fuels [J]. Energy & Fuel 2005 19:2201-2208
    [42] Boehman A.L., Morris D., Szybist J. The Impact of the Bulk Modulus of Diesel Fuels on Fuel Injection Timing [J]. Energy & Fuels 2004, 18:1877-1882
    [43] Lapuerta M., Armas O., Rodríguez-Fernández J. Effect of biodiesel fuels on diesel engine emissions [J]. Prog Energ Combust Sci 2008, 34: 198-223
    [44] Rakopoulos C.D., Antonopoulos K.A., Rakopoulos D.C., Hountalas D.T., Giakoumis E.G. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins [J]. Energy Conversion and Management 2006, 47: 3272-3287.
    [45] Kalam M. A., Husnawan M., Masjuki H. H. Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine [J]. Renewable Energy 2003, 28:2405-2415.
    [46] McCormick R.L., Graboski M.S., Alleman T.L., Herring A.M. Impact of biodiesel source material and chemical structure on emissions of criteria pollutions from a heavy-duty engine [J]. Environmental Science and Technology 2001, 35:1742-1747
    [47] Kidoguchi Y., Yang C., Miwa K. Effects of fuel properties on combustion and emission characteristics of a direct-injection diesel engine [C]. SAE 2000-01-1851.
    [48] Lapuerta M, Hernandez JJ, Ballesteros R, Dura′n A. Composition and size of diesel particulate emissions from a commercial European engine tested with present and future fuels. IMechE 2003;217 (Part D):907–19.
    [49] Schmidt K., Van Gerpen J.H. The effect of biodiesel fuel composition on diesel combustion and emissions [C]. SAE 961086.
    [50] Choi C.Y., Bower G.R., Reitz R.D. Effects of biodiesel blended fuels and multiple injections on D.I. diesel engines [C]. SAE 970218.
    [51] Boehman A.L., Song J., Alam M. Impact of biodiesel blending on diesel soot and the regeneration ofparticulate filters [J]. Energy Fuels 2005,19:1857–64.
    [52]张丽坤,张武高,张利静,朱磊,黄震,增压柴油机燃用不同掺比菜籽油甲酯的燃烧和排放的试验研究,内燃机工程[J],2007年第6期
    [53]吕兴才,乙醇/生物柴油双燃料发动机的燃烧过程与排放特性研究,内燃机学报[J],2008年第2期
    [54]楼狄明沈航泉胡志远等,基于不同原料生物柴油混合燃料的发动机性能研究,内燃机工程[J],2011年第1期
    [55]于超,肖建华,王建昕,帅石金,EGR率对燃用生物柴油的重型柴油机排放特性影响[J],汽车工程, 2008年第10期
    [56]谭满志,金文化,张淑华等,电控高压共轨柴油机燃用生物柴油的排放特性[J],吉林大学学报(工学版),2010年第3期
    [57]高继东,宋崇林,高俊华,张铁臣,直喷式轿车柴油机燃用生物柴油的排放特性[J],燃烧科学与技术,2008年第3期
    [58]袁银南,江清阳,孙平,王忠,柴油机燃用生物柴油的排放特性研究[J],内燃机学报,2003年第6期
    [59] Dollard G J. Ambient concentration of 1,3-butadiene in the UK [J]. Chem- boil Interact 2001, 135-136:177-206.
    [60] Arapaki N., Bakeas E., Karavalakis G., Tzirakis E., Stournas S., Zannikos F. Regulated and unregulated emissions characteristics of diesel vehicle operating with diesel biodiesel blend [C]. SAE 2007-01-0071.
    [61] Cheung C.S., Di Y., Huang Z.H. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol [J]. Atmospheric Environment 2009, 42: 8843-8851
    [62] Lin Y.C., Lee W.J., Wu T.S., Wang C.T., Comparison of PAH and regulated harmful matter emissions from biodiesel blends and paraffinic fuel blends on engine accumulated mileage test [J]. Fuel 2006, 85: 2516-2523.
    [63] Assessment and Standards Division (Office of Transportation and Air Quality of the US Environmental Protection Agency). A comprehensive analysis of biodiesel impacts on exhaust emissions, 2002;
    [64] Chao M.R., Lin T.C., Chao H.R., Chang F.H., Chen C.B. Effects of methanol-containing additive on emission characteristics from a heavy-duty diesel engine [J]. The Science of the Total Environment 2001, 279: 167-179.
    [65] Lu X., Yang J., Zhang W., Huang Z. Effect of Cetane Number Improver on Heat Release Rate and Emissions of High Speed Diesel Engine Fueled with Ethanol-Diesel Blend Fuel. Fuel 2004, 80:2013~2020.
    [66] Canakci, M., Sayin, C., Gumus, M. Exhaust emissions and combustion characteristics of a direct injection (DI) diesel engine fueled with methanol-diesel fuel blends at different injection timings [J]. Energy & Fuels 2008, 22: 3709-3723.
    [67] Sayin C., Ilhan M, Canakci M, Gumus M. Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends [J]. Renewable Engery 2008, 5:1-9.
    [68] Merritt M.P., Ulmet V., McCormick R.L., Mitchell W.E., Baumgard K.J. Regulated and unregulated exhaust emissions comparison for three tier non-road diesel engines operating on ethanol-diesel blends. SAE 2005-01-2193.
    [69]邢元,尧命发,张福银,郑尊清,乙醇与柴油混合燃料燃烧特性及排放特性的试验研究,内燃机学报[J],2007年第1期
    [70]任毅,黄佐华,李蔚等,柴油机燃用柴油/乙醇混合燃料的性能与排放特性研究,西安交通大学学报[J],2007年第3期
    [71] Hu C., Shuai S.J., Wang J.X. Study on combustion characteristics and PM emission of diesel engines using ester–ethanol–diesel blended fuels [J]. Proceedings of Combustion Institute 2007, 31:2981-2989.
    [72] Kumar M.S., Kerihuel A., Bellettre J., Tazerout M. Effect of water and methanol fractions on the performance of a CI engine using animal fat emulsion as fuel [J]. Proc. Instn Mech. Engrs. Part A: J. Power and Energy 2005, 219: 583-592.
    [73] Kumar, M.S., Kerihuel, A., Bellettre, J., Tazerout, M. Ethanol animal fat emulsions as a diesel engine fuel - Part 2: Engine test analysis [J]. Fuel 2006, 85: 2646-2652.
    [74] Shudo T., Hiraga K., Ogawa H. Mechanisms in reducing smoke and NOx from BDF combustion by ethanol blending and EGR [C]. SAE 2007-01-0622.
    [75] Bhale, P.V., Deshpande, N.V., Thombre, S.B. Improving the low temperature properties of biodiesel fuel [J]. Renewable Energy 2009, 34: 794-800.
    [76] Akihama K., Takatori Y., Inagaki K., Sasaki S. Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature [C]. SAE 2001-01-0655
    [77] Alriksson M., Denbratt I. Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR [C]. SAE 2006-01-0075.
    [78] Fang T., Coverdill R.E., Lee C.F., White R.A. Low Temperature Combustion within a Small BoreHigh Speed Direct Injection Diesel Engine [C]. SAE 2005-01-0919.
    [79] Aceves S.M., Flowers D.L. A Detailed Chemical Kinetic Analysis of Low Temperature Non-Sooting Diesel Combustion [C]. SAE 2005-01-0923.
    [80] Kook S., Bae C., Miles P.C., Choi D. Pickett L.M. The Influence of Charge Dilution and Injection Timing on Low-temperature Diesel Combustion and Emissions [C]. SAE 2005-01-3837.
    [81] Kalghatgi G.T., Risberg P., Angstrom H.E. Advantages of Fuel with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion [C]. SAE 2006-01-3385.
    [82] Genzale C.L., Reitz R.D., Musculus M.P.B. Effects of spray targeting on mixture development and emissions formation in late-injection low-temperature heavy-duty diesel combustion [J]. Proceeding of the Combustion Institute 2009,32:2767-2774.
    [83] Kamimoto T., Bae M. High combustion temperature for the reduction of particulate in diesel engines [C]. SAE 880423.
    [84] Akihama K., Takatori Y., Inagaki K., Sasaki S., Dean A.M. Mechanism of the smokeless rich diesel combustion by reducing temperature [C]. SAE 2001-01-0665.
    [85] Ogawa H., Li T., Kido S., Shimizu H., Miyzmoto N. Dependence of ultra-high EGR and low temperature diesel combustion on fuel injection conditions and compression ratio [C]. SAE 2006-01-3386.
    [86] Kitano K., Nishiumi R., Tsukasaki Y., Tanaka T., Morinaga M. Effects of Fuel Properties on Premixed Charge Compression Ignition in a Direct Injection Diesel Engine [C]. SAE 2003-01-1815.
    [87] Risberg P., Kalghatgi G., ?ngstrom H., W?hlin F. Auto-ignition quality of Diesel-like fuels in HCCI engines [C]. SAE 2005-01-2127.
    [88] Li T., Izumi H., Shudo T., Ogawa H. Characterization of low temperature diesel combustion with various dilution gases [C]. SAE 2007-01-0126.
    [89] Akihiko A., Hiroaki I. Effect of CO2 and N2 mixing into ambient air on flame temperature and soot formation in intermittent spray combustion [C]. SAE 2007-01-1844.
    [90] Kook S., Bae C., Miles P.C., Choi D., Pickett L.M. The influence of charge dilution and injection timing on low temperature diesel combustion and emissions [C]. SAE 2005-01-3837.
    [91] Upatnieks A., Muller C.J., Martin G.C. The influence of charge gas dilution and temperature on DI diesel combustion processes using a short ignition delay, oxygenated fuel [C]. SAE 2005-01-2088.
    [92] Ladommatos N, Abdelhalim S, Zhao H. The effects of exhaust gas recirculation on diesel combustion and emissions [J]. Int J Engine Res 2000, 44:389-97.
    [93] Zheng M., Mulenga M.C., Reader G.T., Wang M., Ting D.S.K., Tjong J. Biodiesel engineperformance and emissions in low temperature combustion [J]. Fuel 2008, 87:714-722.
    [94] Zheng M., Han X., TanY., Kobler M.S., Ko S.J., wang M. Low temperature combustion of neat biodiesel fuel on a common-rail diesel engine [C]. SAE 2008-01-1396.
    [95] Fang T., Lee C.F. Bio-diesel effects on combustion processes in an HSDI diesel engine using advanced injection strategies [J]. Proceeding of combustion institute 2009, 32,: 2785-2792.
    [96] Fang T., Coverdill R.E., Lee C.F., White R.A.. Low-Temperature Combustion within a hsdi diesel engine using multple injection strategies [J]. Journal of Engineering for Gas Turbines and Power 2009, 131.
    [97] Fang T., Lin Y.C., Foong T.M., Lee C.F. Reducing NOx Emissions from a Biodiesel-Fueled Engine by Use of Low-Temperature Combustion [J]. Environ. Sci. Technol. 2008, 42:8865–8870.
    [98]吕兴才,燃料设计控制发动机燃烧与排放的试验研究[D],博士学位论文,上海交通大学,2004
    [99]侯玉春,燃料设计控制HCCI燃烧与排放的试验研究[D],博士学位论文,上海交通大学,2007
    [100]马骏骏,基于燃料设计与管理的HCCI/DI分层复合燃烧的试验研究[D],博士学位论文,上海交通大学,2009
    [101]吉丽斌,基于燃料设计与管理的复合HCCI燃烧的试验研究[D],博士学位论文,上海交通大学,2011
    [102] LüX.C., Chen W., Huang Z. A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR, Part 1: The basic characteristics of HCCI combustion [J]. Fuel 2005, 84:1074-1083.
    [103] Lu X.C., Chen W., Huang Z. A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR, Part 2: Effect of operating conditions and EGR on HCCI combustion [J]. Fuel 2005, 84: 1084-1092.
    [104] Hou Y., Huang Z., Lu X., Fang J., Zu L. Fuel design real time to control HCCI combustion [J].Chinese Science Bulletin, 2006, 51:2673-2680.
    [105] LüX.C., Hou Y.C., Ji L.B. et al. Heat Release Analysis on Combustion and Parametric Study on Emissions of HCCI Engines fueled with 2-Propanol/n-Heptane Blend Fuels [J]. Energy & Fuels 2006, 20:1870-1878.
    [106] Demirba A. Fuel properties and calculation of high heating values of vegetable oils [J]. Fuel 1998, 77:1117-1120.
    [107] Allen C.A.W., Watts K.C., Ackman R.G., Pegg M.J. Predicting the viscosity of biodiesel fuels from their fatty acid ester composition [J]. Fuel 1999, 78:1319-1326.
    [108] Knothe G.―Designer‖biodiesel: Optimizing fatty ester composition to improve fuel properties [J].Energy Fuels 2008, 22:1358-1364.
    [109]硫化橡胶耐液体试验方法. GB/T 1690-1992.
    [110]硫化橡胶或热塑性橡胶拉伸应力应变性能的测定. GB/T 528-1998.
    [111]硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样). GB/T 529-1999.
    [112] Hu J., Du Z., Tang Z., Min E. Study on the solvent power of a new green solvent: biodiesel [J]. Industrial & engineering chemistry research 2004, 43:7928-7931.
    [113] Sgroi M., Bollito G., Saracco G., Specchia S. BIOFEAT: Biodiesel fuel processor for a vehicle fuel cell auxiliary power unit_Study of the feed system [J]. J. Power Source 2005, 149: 8-14.
    [114] Kline S.J., McClintock F.A. Describing uncertainties in single sample experiments [J]. Mech Eng 1953; 75: 3-8.
    [115] Ames WF, Cain G, Steele WG. Mathematics for mechanical engineers. Boca Raton, Fla. : CRC Press, 2000.
    [116] Bresenham D., Reisel J., Neusen K.. Spindt Air-Fuel Ratio Method Generalization for Oxygenated Fuels[C]. SAE 982054.
    [117] Ozsezen A.N., Canakci M., Turkcan A., Sayin C. Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters[ J]. Fuel 2009, 88:629–36.
    [118] Tsolakis A., Megaritis A., Wyszynski M.L., Theinnoi K. Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation) [J]. Energy 2007, 32:2072–80.
    [119] Donahue R., Foster D.E. Effects of oxygen enhancement on the emissions from a DI diesel via. Manipulation of fuels and combustion chamber gas composition [C]. SAE 2000-01-0512.
    [120] L. Zhu, C.S. Cheung, W.G. Zhang, Z. Huang. Influence of methanol-biodiesel blends on the particulate emissions of a direct injection diesel engine [J]. Aerosol Science and Technology 2010, 44:362-369.
    [121] Lyon R.K., Cole J.A., Kramlich J.C., Chen S.L. The selective reduction of SO3 to SO2 and the oxidation of NO to NO2 by methanol [J]. Combustion and Flame 1990, 81: 30-39.
    [122] Hjuler K, Mutally Promoted Thermal Oxidation of Nitric Oxide and Organic Compounds [J]. Ind. Eng. Chem. Res. 1995, 34: 1882-1888.
    [123] Takada K., Yoshimura F., Ohga Y., Kusaka J., Daisho Y. Experimental study on unregulated emission characteristics of turbocharged di diesel engine with common rail fuel injection system [C]. SAE 2003-01-3158.
    [124] Guarieiro L.L.N., Pereira P.A.P., Torres E.A., da Rocha G.O., de Andrade J.B. Carbonyl compoundsemitted by a diesel engine fuelled with diesel and biodiesel-diesel blends: Sampling optimization and emissions profile [J]. Atmospheric Environment 2008, 42,: 8211-8218.
    [125] da Silva T.O., Pereira P.A.de P. Influence of time, surface-to-volume ratio, and heating process (continuous or intermittent) on the emission rates of selected carbonyl compounds during thermal oxidation of palm and soybean oils [J]. Journal of Agricultural and Food Chemistry 2008, 56,:3129-3135.
    [126] Osswald P., Struckmeier U., Kasper T., et al. Isomer-specific fuel destruction pathways in rich flames of methyl acctate and ethyl formate and consequences for the combustion chemistry of esters [J]. The Journal of Physical Chemistry 2007, 111:4093-4101.
    [127] Zervas E., Montagne X., Lahaye J. Emission of Alcohols and Carbonyl Compounds from a Spark Ignition Engine. Influence of Fuel and Air/Fuel Equivalence Ratio [J]. Environmental Science & Technology 2002, 36: 2414-2421.
    [128] Chao H.R., Lin T.H., Chao M.R., Chang F.H., Huang C.I., Chen C.B. Effect of methanol-containing additive on the emission of carbonyl compounds from a heavy-duty diesel engine [J]. Journal of Hazardous Materials 2000, 73: 39-54.
    [129]吴君华,增压二甲醚发动机燃烧和排放控制试验研究[D],博士学位论文,上海交通大学,2007.
    [130] He B.Q., Shuai S.J., Wang J.X., He H.. The effect of ethanol blended diesel fuels on emissions from a diesel engine [J]. Atmospheric Environment 2003, 37: 4965-4971.
    [131] Petit A., Montagne X.. Effects of the gasoline composition on exhaust emissions of regulated and speciated pollutants [C]. SAE 932681.
    [132] Zervas E., Montagne X., Lahaye J. Influence of fuel and air/fuel equivalence ratio on the emission of hydrocarbons from a SI engine. 2. Formation pathways and modeling of combustion processes [J]. Fuel 2004, 83: 2313-2321.
    [133] Victorin K., Margareta S. A method for studying the mutagenicity of some gaseous compounds in salmonella typhimurium [J]. Environmental and Molecular Mutagenesis 1998, 11: 65-77.
    [134] Krahl J., Munack A., Schroder O., Dutz M., Bunger J. Exhaust gas emissions and health effects from biodiesel, fossil diesel fuel, and Swedish low sulfur diesel fuel MKI [C]. ASAE 02-6082.
    [135] Correa S.M., Arbilla G. Aromatic hydrocarbons emissions in diesel and biodiesel exhaust [J]. Atmospheric Environment 2006, 40: 6821-6826.
    [136] Inal F, Senkan S.M. Effect of the oxygenate additives on polycyclic aromatic hydrocarbons (PAHs) and soot formation [J]. Combustion science and technology 2002, 174: 1-19.
    [137] Tree D. R., Svensson K. T. Soot processes in compression ignition engines [J]. Prog Energ CombustSci 2007, 33: 272-309.
    [138] Taylor P.H., Cheng L., Dellinger B. The influence of nitric oxide on the oxidation of methanol and ethanol [J]. Combustion and Flame 1998, 115: 561-567.
    [139] Ozaktas T., Ergeneman M., Karaosmanoglu F., Arslan H.E. Ignition delay and soot emission characteristics of methanol-diesel fuel blends [J]. Petro Sci Tech 2000, 18: 15-32.
    [140] Ladommatos N., Abdelhalim S.M., Zhao H., Hu Z. The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions-Part 2: Effects of Carbon Dioxide [C]. SAE 961167.
    [141] Colban W.F., Miles P.C., Oh S. On the Cyclic Variability and Sources of Unburned Hydrocarbon Emissions in Low Temperature Diesel Combustion Systems [C]. SAE 2007-01-1837.
    [142] Donaldson K., Li X. Y. MacNee W. Ultrafine (nanometer) particle mediated lung injury [J]. J Aerosol Sci. 1998, 29: 553-560.
    [143] Zheng M., Asad U., Han X., Wang M., Reader G.T., Hydrocarbon impact on NOx survivability during diesel low-temperature combustion cycles [J]. Proc. IMechE. Part D: J. Automobile Engineering 2009, 224:271-284.
    [144] Mclintock S. The effects of various diluents on soot production in laminar ethylene diffusion flames [J]. Combustion and Flame 1968, 12: 217-225.
    [145] Cheng A.S., Upatnieks A., Mueller C.J. Investigation of the impact of biodiesel fuelling on NOx emissions using an optical direct injection diesel engine [J]. International Journal of Engine Research 2006, 7: 297-318.
    [146] Jha S.K., Fernando S., Filip To S.D., Flame temperature analysis of biodiesel blends and components [J]. Fuel 2008, 87:1982-1988.
    [147] Hayes C.J., Burgess D.R., Kinetic barriers of H-atom transfer reaction in alkyl, allylic and oxoallylic radicals as calculated by composite ab initio methods [J]. The Journal of Physical Chemistry 2009, 113:2473-2482.
    [148] Ban-Weiss G.A., Chen, J.Y., Buchholz B.A., Dibble R.W., A numerical investigation into the anomalous slight NOx increase when burning biodiesel: A new (old) theory [J]. Fuel processing technology 2007, 88:659-667.
    [149] Schonborn A., Ladommatos N., Williams J., Allan R., Rogerson J., The influence of molecular structure of fatty acid monoalkyl esters on diesel combustion [J]. Combustion and Flame 2009, 156:1396-1412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700