嫁接提高甜椒幼苗耐冷性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以‘富根卫士’‘部野丁’为砧木,以‘赤峰特选甜椒’为接穗,研究甜椒自根苗(CK)、砧木苗(WO、BO)和嫁接苗(WG、BG)的根系特性,嫁接对甜椒幼苗耐冷的影响及其耐冷机理。结果表明
     1.砧木苗和嫁接苗的根系总长度、重量、体积、根尖数、表面积及根系活力均显著高于自根苗。低温胁迫可使以上指标明显降低,但降低幅度多以WO和WG最小,BO和BG其次,CK的降低幅度最大。将幼苗置常温下恢复5 d后,根系总长度、重量、体积、根尖数和表面积等多未达到胁迫前水平,但根系活力显著增强。
     2.低温胁迫3 d时,甜椒幼苗叶片的光合速率(Pn)、气孔导度(Gs)、和羧化效率(CE)均下降50%以上,之后Pn、Gs趋于平稳,CE持续下降;胞间CO2浓度(Ci)呈先下降,后上升趋势。低温条件下,甜椒幼苗的暗下最大光化学效率(Fv/Fm)、光下实际光化学效率(ФPSⅡ)及电子传递速率(ETR)显著降低,初始荧光(Fo)有所升高,表明其光合结构受到一定的伤害,但处理结束3 d后基本恢复。与自根苗相比,嫁接苗在各处理阶段的Pn、Gs、CE、ФPSⅡ、Fv/Fm和ETR都有不同程度的提高,Fo明显降低。可见,嫁接可显著提高甜椒幼苗的光合功能,减轻低温对其光合作用的影响。
     3.甜椒嫁接苗与自根苗叶片可检测到的脂肪酸种类多于根系;低温胁迫可使甜椒幼苗的不饱和脂肪酸的相对含量升高,胁迫前、胁迫后和恢复后,嫁接苗的不饱和脂肪酸相对含量均高于自根苗。
     4.低温胁迫5 d后,嫁接苗和自根苗叶片中的IAA、GA3含量及根系中GA3含量明显降低,而ABA含量有所升高;嫁接苗叶片胁迫前后的IAA、GA3和ABA含量及根系中的GA3和ABA均高于自根苗, GA3 / ABA比值显著低于自根苗。较低的GA3/ ABA比值是嫁接苗耐冷性提高的内在原因之一。
     5.随着低温胁迫时间的延长,甜椒幼苗的APX、GR活性先升高,后降低。常温下恢复3 d后,APX和GR活性均达到胁迫前水平。嫁接苗在各处理阶段的APX和GR活性显著高于自根苗的,两个嫁接苗相比,WG显著高于BG。可见,嫁接可通过保持较高的抗氧化酶活性,提高活性氧清除能力减轻低温对甜椒幼苗的伤害。
     6.甜椒幼苗的水势和渗透势随着胁迫时间的延长而降低,5 d后快速回升,可溶性糖和脯氨酸含量随着低温胁迫时间的延长而升高。常温下恢复3 d,甜椒幼苗的水势和渗透势持续升高,但未达到胁迫前水平,而可溶性糖和脯氨酸含量先降低,后升高,3 d后显著高于胁迫前水平。嫁接苗的水势和渗透势及可溶性糖与脯氨酸含量多显著高于自根苗,两个嫁接苗相比,WG显著高于BG。嫁接苗的渗透调节物质含量升高是其耐冷性增强的又一重要原因。
The root characteristics of‘Chifengtexuan’own-root seedlings (control, CK),‘Weishi’and‘Buyeding’rootstock seedlings (WO, BO), and graft seedlings which‘Chifengtexuan’scion grafted onto‘Weishi’and‘Buyeding’rootstocks (WG, BG), and graft on mechanism of chilling tolorance in sweet pepper were investigated. The results were as follows.
     1. The total length, weight, volume, tips, surface area, and activity of roots in rootstock seedlings and graft seedlings were significant higher than those of roots in own-root seedlings. Low temperature stress decreased the above indexes of all seedlings, but the decreasing amplitude of WO and WG showed the least and CK the largest. Returned to normal condition, the root length, weight, volume, tips, total surface area, et al. of sweet peppers mostly failed to the primary level in 5 days except to the root activity.
     2. Low temperature led to decrease in photosynthetic rate (Pn), stomatal conductance (Gs), and carboxylation efficiency (CE) over 50% in 3 days. Then, the Pn and Gs was tending towards stability, but CE decreased continually.The intercellular CO2 concentration (Ci) declined at first, whereas enhanced at latter four days during stress period. Low temperature and weak light intensity decreased maximal photochemical efficiency of PSⅡin darkness (Fv/Fm), actual photochemical efficiency of PSⅡduring illumination (ФPSⅡ), and electron transport rate (ETR), but increased initial fluorescence (Fo). These implied that low temperature stress caused a damage of photosynthetic apparatus, but the damage recovered in 3 days. Compered with the control, Grafting increased Pn, Gs, CE,ФPSⅡ, and Fv/Fm with various degrees, but decreased Fo after both low temperature stress and recovery. So we conclude that grafting leads to increase in photosynthetic function, and alleviate in the effect of low temperature and light intensity on photosynthesis of sweet pepper seedlings.
     3. Richer kinds of fatty acid were detected in leaves than in roots of own-root and graft sweet pepper seedlings. Low temperature increased the relative content of unsaturated fatty acids in sweet pepper seedlings. The relative content of unsaturated fatty acids in graft seedlings was higher than that of in own-root seedlings on the eve of stress, after stress, and recovery stage.
     4. Low temperature decreased IAA and GA3 contents in leaves and GA3 content in roots of sweet pepper seedlings, but increased ABA content. Graft seedlings showed higher contents of IAA, GA3 and ABA in leaves and GA3 and ABA in roots, lower ratio of GA3 and ABA, compared with own-root seedlings. These data suggest that lower ratio of GA3/ABA is one of the important internal causes of the increase in chilling tolerance in graft seedlings of sweet pepper.
     5. The APX and GR activity increased at first day, whereas decreased at latter six days during stress period, and hadn’t recovery in 3 d under normal condition. Compared with the own- root seedlings, graft seedlings showed higher activity of APX and GR in all treating stages. The APX and GR activity of WG was significant higher than that of BG. These data suggeste that graft alleviate the chilling damage in sweet pepper seedlings by holding higher antioxidation enzymes activity, and improving the eliminating capacity to reactive oxygen species.
     6. Water potential and osmotic potential of sweet pepper seedlings decreased gradually in the first, but increased 5 d latter. The soluble sugar and proline contents increased as stress time increased. The potential and osmotic potential of sweet pepper seedlings increased continually in recovey days, but hadn’t came to the primary levels in 3 d. The soluble sugar and proline contents decreased at first, while increased afterwards, and were significant higher than those on the eve of stress. Graft seedlings showed higher water potential, osmotic potential, soluble sugar and proline contents compared with own-root seedlings, and those of in WG were higher than in BG. Increase in content of osmoregulation substances is one of the important internal causes of the increase in chilling tolerance in graft seedlings of sweet pepper.
引文
艾希珍,于贤昌等.低温胁迫下黄瓜嫁接苗与自根苗某些物质含量的变化(简报).植物生理学通讯, 1999,35(1):26~28
    艾希珍,王秀峰,崔志峰等.钙对弱光亚适温下黄瓜光合作用的影响.中国农业科学, 2006, 39(9): 1865~1871
    柏敏战.番茄枯萎抗病性室内鉴定方法研究.植物病理学报,1997,27(l):59~63
    陈贵林,高洪波等.钙对茄子嫁接苗和抗冷性的影响.植物营养与肥料学报. 2001,8(4):478~482
    陈贵林,李建文等.低温胁迫对西葫芦嫁接苗光合特性的影响.上海农业学报, 2000,16(1):42~45
    陈贵林.西瓜嫁接苗生长动态及生理特性研究.西北农业学报, 2000,9(1):100~103
    陈捷等.植物病理生理学.辽宁科技出版社,1994.农业与技术,2002,20(5):41~42,45.
    陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质和脯氨酸的影响.华南农业大学学报, 1999,20(3):54~58
    陈淑芳,朱月林,刘友良等. NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报, 2005,32(4):609~613
    高俊杰,秦爱国,于贤昌.低温胁迫对嫁接黄瓜叶片抗坏血酸—谷胱甘肽循环的影响.园艺学报, 2009, 36 (2): 215~220
    高梅秀,张云生等.茄子种及其品种过氧化物酶同工酶分析.西北农林科技大学学报, 2002,30(4):65~68
    高青海,吴燕,徐坤,高辉远.茄子嫁接苗根系对低温环境胁迫的响应.应用生态学报,2006, 17 (3): 309~394.
    高青海,徐坤,高辉远等.不同茄子砧木幼苗抗冷性的筛选.中国农业科学, 2005, 38(5): 1005~1010
    郭晓冬,邹志荣,张化生.硝酸钙浸种对低温下辣椒幼苗渗透调节物质的影响.干旱地区农业研究, 2008,26(5):160~163
    和红云,薛琳,田丽萍等.低温胁迫对甜瓜幼苗根系活力及渗透调节物
    质的影响.石河子大学学报(自然科学版), 2008,26(5):583~586
    何丽丽,葛晓光等.嫁接番茄叶霉病效果及其体内几种抗性物质的关系.沈阳农业大学学报, 2001,32(2):99~101
    何若韫.植物低温逆境生理.北京:中国农业出版社,1995
    侯玉杰,屈二军.油菜叶片水势变化初探.平顶山师专学报, 2002,17(2):53~54
    黄婷婷,吉玉玲,王缓.番茄抗病砧木的选育与研究.中国蔬菜,1999,l:10~12
    颉建明,郁继华,颉敏华.低温弱光下辣椒3种渗透调节物质含量变化及其与品种耐性的关系.西北植物学报, 2009,29(1):0105~0110
    江福英,李延,翁伯崎.植物低温胁迫及其抗性生理.福建农业学报, 2002,17(3):190~195.
    李海涛,孟浩.低温弱光对辣椒苗期生长发育及生理特性的影响. 2007(6):6~9
    李合生,孙群,赵世杰.植物生理生化学实验原理和技术.北京:高等教育出版社, 2000
    李建明,黄志,王忠红.低温锻炼对冷胁迫下甜瓜幼苗抗氧化酶活性与质膜透性的影响.西北农业学报, 2007, 16(1):168~171
    李新峥.茄果类蔬菜属间嫁接研究初报.河南农业科学, 2000 (5): 31~32.
    李云鹏,周宝利,李之璞等.嫁接茄的黄萎病抗病性与根际土壤生物学活性的关系.生态学杂志, 2007, 26(6) : 831~834
    李云鹏,周宝利,李之璞等.野生抗病茄植株腐解物对茄子黄萎病菌的化感作用研究.沈阳农业大学学报, 2007, 38(4): 500~503
    梁建生,张建华,曹显祖.根系环境温度变化对根系吸水和叶片蒸腾的影响.植物学报, 1998, 40(12): 1152~1158
    刘鸿先,王以柔,郭俊彦.低温对植物细胞伤害机理的研究.中国科学院华南植物研究所集刊,第五集,北京:科学出版社,1989,1~8
    刘慧英,朱祝军,吕国华.低温胁迫对嫁接苗西瓜耐冷性和活性氧清除系统的影响.应用生态学报, 2004,15(4):659~662
    刘慧英,朱祝军等.低温胁迫下西瓜嫁接苗的生理生化特性与耐冷性关系的研究.中国农业科学, 2003, 36 (11): 1325~1329.
    刘星辉,余文琴,张惠斌.龙眼、荔枝叶片膜脂脂肪酸与耐寒性的研究.福建农业大学学报,1996,25(3):297~301
    刘正鲁,朱月林,胡春梅等.氯化钠胁迫对嫁接茄子生长、抗氧化酶和活性氧代谢的影响.应用生态学报, 2007,18(3): 537~541
    刘正鲁,朱月林,魏国平等. NaCl胁迫对茄子嫁接幼苗叶片抗坏血酸和谷胱甘肽代谢的影响.西北植物学报, 2007,27(9):1795~1800
    罗娅,汤浩茹,张勇.低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响,园艺学报, 2007, 34 (6): 1405~1410
    罗正荣.植物激素与抗寒力的关系.植物生理学通讯, 1989(3):1~5
    马建忠.膜脂与植物的抗寒.生物技术通报,1997(2):6~9
    孟浩,王丽萍,王鑫等.辣椒耐低温弱光的研究进展.北方园艺2007(5):55~57
    潘杰,简令成.植物寒害和抗寒机制中膜与蛋白质研究的进展.植物学通报,1990,7(1):l~5
    潘瑞炽.植物生理学.高等教育出版社. 2004
    齐红岩,刘轶飞,李丹等.嫁接对薄皮甜瓜养分吸收、伤流液中激素含量和产量的影响.植物生理学通讯, 2006,42(2):199~202
    钱芝龙,丁犁平,曹守椿等.低温胁迫对辣椒幼苗过氧化水平及保护酶活性的影响.园艺学报, 1994,2(2):203~204
    任旭琴,缪旻珉,陈晓明等.低温逆境下甜椒根系的生长及生理特性的响应.中国蔬菜, 2007(3):12~14
    沈满曼.植物抗寒机制研究进展.植物学通报, 1997,14(2):1~3
    史作安.甜樱桃休眠花芽内源激素的高效液相色谱测定.落叶果树, 2004(5):1~3
    孙清鹏,许煌灿,张方秋等.低温胁迫对大叶相思和马相思某些生理特性的影响.林业科学研究, 2002,15(1):34~40
    孙艳,黄炜,田霄鸿等.黄瓜嫁接苗生长状况、光合特性及养分吸收特性的研究.植物营养与肥料, 2002,8(2):181~185.
    孙玉英,庞雄等.茄子/番茄嫁接的抗病效果及增产作用.上海蔬菜. 2005(5):57~58
    王富.番茄耐低温研究.东北农业大学博士学位论文,2000
    王洪涛,艾希珍等.几个甜椒砧木品种对低温弱光耐受性的差异.西北农业学报, 2008,17 (1): 233~237
    王镜岩,朱胜康,徐长法.高级生物化学.北京:高等教育出版社,2002
    王丽萍.茄子嫁接栽培研究进展.河南农业科学, 2003(9):56~58
    王丽萍,王鑫,邹春蕾.低温弱光胁迫下辣椒内源激素含量的变化.辽宁农业科学, 2008(2):24~26
    王茹华,周宝利等.茄子/番茄嫁接植株的生理特性及与其对黄萎病的抗性.植物生理学通讯,2003,39(4):330~332
    王孝宣,李树德,东惠茹等.低温胁迫对番茄苗期和开花期脂肪酸的影响.园艺学报, 1997,24(2):161~164
    王毅,杨宏福,李树德.园艺植物冷害和抗冷性的研究一一文献综述.园艺学报,1994,21(3):239~244
    郄丽娟,齐铁权,苏俊坡等.低温弱光对不同砧木嫁接黄瓜幼苗生理特性的影响.西南大学学报(自然科学版),2008,30(10):68~72
    刑国明,亢秀萍,姬青云等.茄果类嫁接栽培研究进展.沈阳农业大学学报,2000,31(1):114~146
    熊书萍,田时炳.番茄嫁接栽培技术研究.西南园艺. 2004(3):1~3
    熊先军,刘明月.辣椒抗寒性生理生化研究进展.辣椒杂志, 2003, (1): 9~12.
    许大全,徐宝基,沈允钢. C3植物光合效率的日变化.植物生理与分子生物学学报, 1990, 16: 1~5
    徐敬华. PAL活性与嫁接西瓜枯萎病抗性传递的相关性.上海交通大学学报(农业科学版), 2004,22(1):12~16
    严岳华,何少波,李觅路.低温胁迫对观赏柑桔CAT活性与水势的影响.湖南农业科学, 2005(4):104~106
    杨广东,张战备,郭瑜敏等.脂肪酸与青椒苗期和花期抗冷性关系.北方园艺,1999(4):1~4
    杨立飞,朱月林,胡春梅等. NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响.西北植物学报, 2006,26(6):1195~1200
    姚明华,徐跃进,李晓丽等.茄子耐冷性生理生化指标的研究.园艺学报,2001,28(6):527~531
    余叔文.植物生理与分子生物学.科学出版社,1992
    于文进,杨尚东,龙明花.嫁接对苦瓜在水渍条件下的产量及某些生理生化特性的影响.中国蔬菜, 2001 (1):7~10.
    于贤昌,刑禹贤,马红.低温胁迫下黄瓜嫁接苗和自根苗内源激素的变化.园艺学报, 1999,26(6):406~407
    于贤昌,邢禹贤,马红等.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响.中国农业科学, 1998,31(2):11~17.
    于贤昌,邢禹贤.黄瓜嫁接苗抗冷性研究.园艺学报, 1997,24(4): 348~352.
    于贤昌,刑禹贤等.黄瓜嫁接苗对不同低温胁迫的反应.上海农业科学, 1999,15(1):47~50
    岳丹,王友科.杏树内源激素含量与抗寒性关系研究.安徽农业科学, 2008,6(23): 9951~9952,10023
    曾义安,朱月林,黄保健等.嫁接黄瓜的光合特性及叶片激素含量和可溶性蛋白研究.南京农业大学学报,2005,28 (1): 16~19
    曾昭西,王以柔,李美茹.不同胁迫预处理提高水稻幼苗抗冷性期间膜保护系统的变化比较.植物学报,1997,39:308~314
    曾昭西,王以柔.低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响.植物生理学报,1990,16(l):37~42
    张凤丽,周宝利,王茹华等.嫁接茄子根系分泌物的化感效应.应用生态学报, 2005,16(4): 750~753
    张娟,徐坤,孙杰.番茄不同砧木材料幼苗对低温胁迫的反应.西北农业学报, 2004,13 (2): 104~108.
    张自坤,刘作新,张颖.铜胁迫对嫁接和自根黄瓜幼苗光合作用及营养元素吸收的影响.中国生态农业学报, 2009,17(1):135~139
    赵世杰,刘华山,董新纯主编.植物生理学实验指导.北京:中国农业科技出版社, 1998
    赵凌侠.青椒适宜砧木的筛选研究.北方园艺,1994(2):17~18
    赵鑫,周宝利等.辣椒嫁接效果试验研究.北方园艺, 2000,4:8~9
    郑楠,王美玲等.嫁接对低温弱光下甜椒幼苗光合作用的影响.应用生态学报, 2009,20(3):591~596
    郑群,宋维慧.国内外蔬菜嫁接技术研究进展(上).长江蔬菜, 2000(8):1~4
    郑阳霞,钟宇,李能芳.嫁接对蔬菜生理生化特性影响的研究进展.北方园艺, 2005(1):7~8
    周宝利,姜何,赵鑫.不同砧木嫁接茄子黄萎病特性及其根系分泌物的关系.沈阳农业大学学报, 2001,32(6):414~417
    周宝利,林贵荣.嫁接茄抗黄萎病特性与苯丙烷类代谢的关系.沈阳农业大学学报, 2000,31(1):57~60
    周宝利,王茹华.主要蔬菜异属间嫁接研究进展.长江蔬菜, 2002.学术专刊:16~17
    周碧燕,李宇彬,吴楚彬等.低温胁迫下PP333对荔枝IAA、ABA、蒸腾速率和水势的影响.果树学报, 2003(2):93~95
    朱进,别之龙,黄远.不同砧木嫁接对NaCl胁迫下黄瓜幼苗生长、渗透调节和酶活性的影响.上海交通大学学报(农业科学版),2008,26(5):393~397
    朱素琴.膜脂与植物抗寒性关系研究进展.湘潭师范学院学报(自然科学版),2002,24(4):49~54
    Ahn S J,Im Y J,Chung G C,Seong K Y,Cho B H. Sensitivity of plasma membrane H+-ATPase of cucumber root system in response to low root temperature.Plant Cell Rep, 2000.19:831~835
    Allen C, Good P. Acyl lipid in photosynthetic systems. Method Enzymol, 1971, 23:523~547
    Bowler C,Van Montahu M,Inze D.Superoxide dismutase and stress tolerance. Ann Rev plant Physiol Plant Mol Biol,1992,43:83~116.
    Cabrera RM,Saltveit ME,Owens K. Cucumber cultivars differ in their response to chilling temperature. J Am Soc Hortic Sci, 1992.117:802~807
    Cakmak I,Marschner H. Magnesinm deficiency and high light intensitu enhance activities of superoxide dimutase,ascorbate peroxidase ,andglutathione reductase in bean leaves. Plant Physiol,1992. 98:1222~1227
    Cheong Y W , Grant JJ , Pandey GK , Luan S. CIPK3 , a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell,2003, 15:411~423
    Choi KJ, Chung GC, Ahn SJ. Effect of root zone temperature on the mineral composition of xylem sap and plasmamembrane K+-Mg2+-ATPase activity of grafted-cucumber and fig leaf gourd root systems. Plant Cell Physiol, 1995, 36(4): 639~643.
    Cohen S, Naor A. The effect of three rootstocks on water use canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant Cell and Environment, 2002,25:17~28
    Demming-Adams B, Adams WW. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 1996, 198: 460~470
    Edwards GE, Baker NR. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll analysis. Photosynthesis Research. 1993, 37: 89~102
    Erez A,Cohen E,Frenkel C. Oxygen-mediated cold-acclimation in cucumber (Cucumis sativus) seedlings. Physiol Plant , 2002.115:541~549
    Estan MT, Martinez-Rodriguez MM, Perez-Alfocea F, etal. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany, 2005,56:703~712
    Evans JR. The relationship between carbon olioxide limited photosynthetic rate and ribulose-1,5-bisphosphate.car-boxylase content in two nuclear-cytoplasm substitution lines and electron transport capcities. Planta,1986,167:351~358
    Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Reviews in Plant Physiology, 1982, 33: 317~345
    Fornazier RF, Ferreira RR, Vitória AP, et al. Effect of cadmium on antioxidantenzyme activities in sugar cane. Biol Plant, 2002, 45(1): 91~97
    Frachebound Y, Haldimann P, Leipner J, Stamp P. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize(Zea mays L.). Journal of Experimental Botany, 1999, 50:1 533~1 540.
    Gallego SM, Benavides MP. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science,1996,121:151~159.
    Giannopolitis CN,Ries SK. Superoxide dimutasel Occurrence in higher plants. Plant Physiol, 1997.59:309~314
    Gong M, Chen S N, Song Y et al. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant system in maize seeding. Aust. J. Plant Physiol,1997,24:371~379
    Haldimann P, Fracheboud Y, Stamp P. Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature. Plant, Cell and Environment, 1996, 19: 85~92
    Ibrahim M. Response of bean (phaseolusvulgaris) to exogenous putrescine treatment under salinity stress. Parkistan Journal of Biological Sciences, 2004, (2): 219~225
    Irring RM, Lampher FO. ABA Levels and effects in chilled and hardened phaseolus rulgaris. PlantPhysiol, 1989, 43(1): 7~9.
    Kang HM,Saltveit ME. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedlings radicles. PhysiolPlant, 2001,113:548~556
    Kang HM, Saltveit ME. Reduced chilling tolerance in elongating cucumber seedlings radicles is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity. Physiol Plant, 2002a ,115:244~250
    Kang HM,Saltveit ME. Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity Of high-andlow-vigor cucumber seedling radicles. Plant Cell Environ, 2002b, 25:1233~1238
    Kang HM,Saltveit ME. Chilling tolerance of maize, cucumber and riceseedling leaves and roots are differentially affected bysalicylic acid. PhysiolPlant, 2002c, 115:571~576
    Kato T, Lou H. Effect of root stock on the yield, mineralnutrition and hormone level in xylem sap in eggplant. Jpn Soc Hortic Sci,1989,58(2):345~352
    Khah EM. Effect of grafting on growth, performance and yield of aubergine (Solanum melongena L.) in the field and greenhouse. Journal of Food, Agriculture and Environment, 2005, 3(4): 92~94
    Lidon FC, Teixeira MG. Oxy radicals’production and control in the chloroplast of Mn-treated rice. Plant Science,2000,152:7~15
    Lockwood JL, Yoder DL, Beute MK. Grafting eggplants on resistant rootstocks as a possible approach for control of verticillium wilt. Plant Disease Reporter, 1970, 54: 846~848
    Lyons JM.1973.Chilling injury in plants. Ann Rev Plant Physiol, 24:445~466
    Markhart AH. Chilling injury: a review of possible causes. HortScience, 1986,21:1329~1333
    Mccord J.M and Fridorich I. Superoxide dimutase, an enzymic function for erythrocuprein. Biol. Chem, 1996,224:6049~6055
    Moline HE,Abbott JA. A comparison of the effects of ABA and an antitranspirant on chilling injury of coleus, cucumbers, and dieffenbachia. Jam Soc Hortic Sci, 1986,111:866~868
    Monroy AF, Dhindsa RS. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25℃.The plant cell.,1995,7:321~331
    Monroy AF, Sangwan V, Dhindsa RS. Low-temperature signal transduction: Protein Phosphates 2A as an early target for cold-inactivation, Plant J.,1998,13(5):653~660
    Morillon R, Chrispeels MJ. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Proc Nat lA cad Sci USA, 2001, 98(24): 14138 ~14143
    Morra L, Bilotto M. Evaluation of rootstocks for sweet pepper (Capsicumannuum L.) grown in Campania region. Colture-Protette (Italy). 2003, 32 (11): 83~91.
    Murata N, Ishizakj Nishizawa O, Higashi S, et al. Genetically engineered alter-ation in the chilling sensitivity of plants. Nature, 1992.356(23):710~713.
    Nada K,Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol,2000, 124:431~439
    Naylor A W. Chilling-enhanced photooxidation:the peroxidative destruction of lipids during chilling injury tophotosynthesis and ultrastructure. PlantPhysiol, 1987a, 83:272~277
    Nederhoff, EM. Vegter, J.G Canopy photosynthesis of tomato, cucumber and sweet pepper in greenhouses: measurements compared to models. Annals of Botany. [London ; New York : Academic Press] Apr 1994. v. 73 (4) p. 421~427
    Nervo G., Soave I., Strazzanti L. Higher yield with appropriate grafting of sweet pepper. Informatore-Agrario (Italy). (10-16 Nov 2000). v. 56(44) p. 43~49.
    Otani T, Seike N. Comparative effects of rootstock and scionon dieldrin and endrin uptake by grafted cucumber(Cucumissativus).Journal of Pesticide Science, 2006,31:316~321
    Pandey S, Tiwari S B. Upadhyaya K C et al. Calcium signaling: linking environmental sigals to cellular functions. Critical Reviews in Plant Sci.,2000,19(4):291~318
    Pardossi A, Vernieri P, Tognoni F. Involvernent of abscisic acid in regulating water status in Phaseolus vulgaris L during chilling. Plant Physiol, 1992,100(3):1243~1245.
    Paula SC, Virginia Q, Jose CR, Maria AN. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of coffeasp. Plants. Journal of plant physiology, 2003, 160: 283~293.
    Photosynthesis: Genotypic variation within cucumis sativus. Plant CellPhysiology, 43(10):1 182~1 188.
    Popov VN,Dubinina IM,Burakhanova EA,Trunova T. The decreased cold-resistance of chilling-sensitive plants is related to suppressed CO2 assimilation in leaves and sugar accumulation in roots. Russ J Plant Physl, I2002,49:776~781
    Prasad TK,Anderson MP,Martin BA. etal. Evidence for chilling induced oxidative stress in maize seedlings and regulatory role for hydrogen peroxide. Plant Cell,1994,6:65~74
    Prasad TK. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. Plant Physiol,1997,114:1369~1376
    Prigogine J. Introduction to thermodynamics of irreversible processes. 3rd.New York: Interscience Pub, 1957
    Pugh EL,Ferrante G. Regulation of membrane fluidity by lipid desaturases. Biomembranes, 1984,12:379~395
    PurvisAC, Shewfelt RL. Doesthe alterative pathway ameliorate chilling injury in sensitive plant tissues. Physiol Plant, 1993,88:712~718
    Quartacci MF, Cosi E, Nacari-Izzo F. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J.Exp.Bot, 2001, 52:77~84
    Roberts RH. Bot. Rev, 1949, 15(7):423~463
    Rochat E, Therrien HP. Can JBot,1975,53:2417~2424
    Saltveit ME. Reduced chilling tolerance in elongating cucumber seedlings radicles is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity. Physiol Plant, 2002a,115:244~250
    Saltveit ME. Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high-andlow-vigorcu cumber seedling radicles. Plant Cell Environ, 2002b,25:1233~1238
    Saltveit ME. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are different ially affected by salicylicacid. PhysiolPlant, 2002c,115:571~576
    Santos HS, Goto R. Sweet pepper grafting to control phytophthora blight under protected cultivation. Horticultura Brasileira, Brasília. 2004, 22 (1): 45-49.
    Scandalios JG. Oxygen stress and superoxide dismutases. Plant Physiol, 1993.101:7~12.
    Talanova VV, Titov AF. Endogenous abscisic acid content in cucumber leaves under the influence ofunfavorable temperatures and salini. Journal of Experimental Botany, 1994, 45(276): 1031~1033.
    Tasumi Y, Murata T, J. Japan. Soc. Hort. Sci., 1981, 50:108~113
    Tripathy BC. Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.). Planta, 1999.208:431~437
    Vassilev A, Lidon F, Scottip P, etal, Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biologia Planntarum, 2004, 48 (1): 153~156
    Wada H,Gombos Z,Murata N. Enhancement of chilling tolerance of a cyanobacterium by genetic manupulation of fatty acid desaturation. Nature,1990,347:200~203
    Waldman M, Binin A, Doviat A, etal, Hormonal regulation of morphogenesis and cold-resistance. J Exp Bot, 1975, 26: 853~859
    Wang Y-R, Liu H-X, Li P, etal. The effects of low temperature on GSH reducase activity in rice seedlings. Acudemia Sinica, 1989,4:153~169
    Yamakawa K. Use of rootstocks in solanaceous fruit-vegetable production in Japan. Japanese Agricultural Research, 1982, 15: 175~179
    Zeng Z-X, Wang Y-R . Effects of low temperature stress on the ascorbate peroxidase and GSH contents in cucumber cotyledon. Acta Plant Physiol Sin , 1990,16(1):37~42
    Zhang ZJ, Wang YM, Long LK, Lin Y, Pang JS, Liu B. Tomato rootstock effects on gene expression patterns in eggplant scions. Russian Journal of Plant Physiology, 2008, 55(1): 93~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700