混凝土箱梁桥温度效应关键因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度作用在混凝土箱梁桥中产生的应力和应变可以与恒载或活载效应相当,是导致该类桥梁结构在施工与运营期间产生裂缝的重要原因之一,因而对该类桥梁结构的安全性、耐久性和适用性均有显著影响。本文将混凝土箱梁桥温度效应的起因归结为气候因素、人为因素和材料自身因素三大类,并以ANSYS为软件平台,采用三维有限仿真技术,对混凝土箱梁桥各种因素所导致的温度效应进行了全面分析。全文主要工作如下:
     (1)构建了辐射历计时系统,提出了辐历时角的概念,重新定义了太阳高度角和方位角的取值范围,使这两个角度随辐历时角的日变化和年变化具备单值性,在此基础上提出了一套适用于土木工程三维日照热分析的太阳位置计算公式。
     (2)建立了以箱梁轴向方位角为变化参数的温度场分析有限元模型,按照箱梁外表面与外界环境热量交换的不同特性对模型的热边界进行分类,根据箱梁外表面的动态热平衡条件求取外表面各类热边界的辐射气温及其随辐历时角的变化规律。借助ANSYS内嵌的辐射矩阵生成器AUX12基于半立方体法的单元“遮挡与可见性”判断的功能,实现了箱梁外表面在任意辐历时刻日影单元与非日影单元的区分与选择,进而实现了箱梁外表面动态热边界的模拟。采用这种办法对不同地理位置上各种轴向方位上的混凝土箱梁模型进行了温度场的时程计算和参数分析,并作了实桥验证。
     (3)提出了截面竖向温差梯度模式的线性度概念。通过对比现行设计人员常用的简化计算方法和三维实体有限单元法计算同一混凝土连续箱梁桥在同一温差梯度荷载作用下的温度应力计算结果,指出由前者计算得到的温度应力值在分析模型的大部分部位都小于后者,文章分析了这种差别产生的原因。
     (4)对气温骤降作用下混凝土箱梁桥的温度效应进行了参数分析,得到了箱梁截面的特征长度、冷空气对箱梁表面的对流换热系数以及气温骤降的剧烈程度对箱梁温度应力的影响规律。采用“单元生死”技术模拟了沥青摊铺机在桥面的行进过程,分析了高温沥青摊铺作业过程中箱梁内部的温度分布和应力特征。
     (5)按照松弛系数法的有限元格式,借助ANSYS的二次开发功能,写出了用以计算大体积混凝土结构水化热阶段温度应力的命令流。该命令流考虑了混凝土材料在水化热阶段所具备的包括抗拉强度与弹性模量随龄期增长以及徐变与收缩性质的时变特性。对一实际大型桥梁工程箱梁零号块水化热阶段的温度场和温度应力进行了仿真分析。
It is known that temperature stresses and strains are comparable to that induced by thedead load or vehicle load upon concrete box-girder bridges.As one of the most importantfactors that lead to the occurrence of cracks in concrete bridges during construction oroperation period,temperature effect may deteriorate the safety,durability and adaptabilityof the bridge structures.Tracing from different originations the temperature effect ofconcrete box-girder bridge is classified into three categories:climatic temperature effect,artificial temperature effect and material temperature effect (the third one here representsthe effect caused by the hydration heat released by the cement-based concrete materials intheir hardening phase).Taking the general finite element modeling package ANSYS asplatform,a wide variety of thermo-mechanical problems of concrete box-girder bridge areanalyzed by simulating the structure in 3 dimensions.The main works are as follows:
     (1)A new timing system named Radiation Calendar is established.In RadiationCalendar the ranges of solar altitude angle and azimuth angle are redefined,which makesthe angles calculated from the improved formulas single-valued varying to RC hour angle.These improved formulas may be used conveniently when the 3D structural temperatureeffect caused by the solar radiation is to be quantified.
     (2)A parametric finite element modeling of a box-girder segment with any axialdirection is established.The external surface of the segment model is divided into differentareas according to their different characteristics reflected in the heat exchange betweenthese areas and thermal surroundings.By solving the equations that describes the heatequilibrium between these surface areas and thermal surroundings the valves of equivalentradiation air temperature and their variation to RC hour angle can be obtained.Taking useof the ANSYS auxiliary processor (AUX12)that supports the application of Hemi-cubemethod,the recognition of the elements exposed to and shaded from the sunlight is realized.So the thermal conditions that vary not only to time but also to spatial position can be lively simulated.Following these methods,parametric analysis of the transient temperature fieldof box-girder segments located in different geographical positions and axial directions arecarried out.In a comparison the simulation results agree well with the observed values froma practical engineering.
     (3)The definition of linearity of vertical gradient temperature forms is proposed.Through comparing the results calculated from the solid finite element model,theprevailing simplified method through which the thermal stresses are calculated in usualdesign work is proved to be lack of safety from the overall.The reasons for the differencebetween these two series of results are expounded.
     (4)Sudden drop of air temperature causes stresses in the body of box-girder bridge.To investigate the characteristics this kind of temperature effect,the parametric analysisabout the influence of characteristic length of cross section,convective heat transfercoefficient and severe degree of temperature drop on the magnitude of temperature stressesare performed.High temperature asphalt pavement is another factor that changes thetemperature field of box-girder in short time.Making use of the elements’“death and birth”function,the course of asphalt pavers'marching along the girder is simulated,throughwhich the temperature distribution and the stresses caused by asphalt paving is analyzed.
     (5)According to the relaxation coefficient method finite element scheme,takingtime-varying and age-varying properties of concrete into account,a program written inAPDL is proposed to calculate the temperature stresses in massive concrete structuresduring early ages.Through this section of APDL a calculation of temperature field andtemperature stress distribution of an original segment of a long span continuous box-girderbridge is implemented.
引文
[1]郭金琼.箱形梁设计理论.北京:人民交通出版社,1991.
    [2]李国强,黄宏伟,郑步全.工程结构荷载与可靠度设计原理.北京:中国建筑工业出版社,2001
    [3]刘文燕.考虑太阳辐射的混凝土结构温度效应研究综述.工程力学,2004,增刊:561-565
    [4]项海帆.高等桥梁结构理论.北京:人民交通出版社,2001
    [5]Zuk W.Thermal and shrinkage stresses in composite bridges.Journal of America Concrete Institute,1961,58(3):327-340
    [6]Zuk W.Summary review of studies relating to thermal stresses in highway bridges.Highway Research Records,No.103,1965
    [7]Zuk W.End movement studies of various types of highway bridges.Highway Research Records,No.295,1969
    [8]F.凯尔别克著.刘兴法译.太阳辐射对桥梁结构的影响.北京:中国铁道出版社,1981
    [9]Priestley M J N.Thermal gradient in bridges-some design consideration.New Zealand Engineering,1972,27(7):228-233
    [10]Priestley M J N.Design thermal gradients for concrete bridges.New Zealand Engineering,1976,31(9):2213-219
    [11]Priestley M J N.Linear heat-flow analysis of concrete bridge decks.in Research report,1976,Unversity of Canterbury:Christchurch,New Zealand
    [12]Priestley M J N.Design of concrete bridge for temperature gradients.Journal of American Concrete Institute,1978,75(5):209-217
    [13]Cooke N,Priestley M J N,Thurston S J.Analysis and design of partially prestressed concrete bridges under thermal loadings.PCI Journal,1984,29(3):94-115
    [14]Thurston S J,Priestley M J N,Cooke N.Design of concrete bridge for temperature gradients. Concrete International, ACI, 1984, 6(8): 36-43
    [15] Emerosn M. Bridge temperatures estimated from the shade temperature. TRRL Report (Transport & Road Research Laboratory, Great Britain). 1976(696): 50-57
    [16] Emerosn M. Temperature differences in bridges: basis of design requirements. Journal of the Structural Division, Proceedings of the ASCE. 1977(765): 39-52
    [17] Emerosn M. Temperatures in bridges during the hot summer of 1976. TRRL Report (Transport & Road Research Laboratory, Great Britain). 1977(783): 31-52
    [18] Emerosn M. Bridge temperatures for setting bearings and expansion joints. TRRL Report (Transport & Road Research Laboratory, Great Britain). 1979(479): 21-28
    [19] Emerosn M. Temperatures in bridges during the cold winter of 1978/1979. TRRL Report (Transport & Road Research Laboratory, Great Britain) 1980(926): 34-39
    [20] Churchward A, Sokal Y J. Prediction of temperatures in concrete bridges. Journal of the Structural Division, Proceedings of the ASCE. 1981(107): 2163-2176
    [21] Elbadry M M, Ghali A. User manual for computer program FETAB: Finite Element Thermal Analysis of Bridges, in Research report, 1982, Unversity of Calgary:Calgary, Canada
    [22] Elbadry M M, Ghali A. Temperature variations in concrete bridges. Journal of Structural Engineering, ASCE, 1983, 109(10): 2355-2374
    [23] Elbadry M M, Ghali A. Closure of "Temperature variation in concrete bridges".Journal of Structural Engineering, ASCE, 1984, 110(12): 3063-3065
    [24] Elbadry M M, Ghali A. Thermal stresses and cracking of concrete bridges. Journal of the America Concrete Institute, 1986, 83(6): 1001-1009
    [25] Hoffman P C, McClure R M, West H H. Temperature study of an experimental segmental concrete bridge. Journal of the Prestressed Concrete Institute, 1983, 28(3):78-97
    [26] Hoffman P C, McClure R M, West H H. Temperature problem in a prestressed box-girder bridge. in Transportation Research Record, 1984: 42-50
    [27] Rao D S. Temperature distributions and stresses in concrete bridges. Jounal of the America Concrete Institute, 1986, 83(4): 588-596
    [28] Rao D S. Temperature distributions in concrete bridges for Indian summer conditions. Indian Concrete Journal, 1987, 61(8): 211-218
    [29] Richardson M, Selby A R. Temperature distributions and stresses in concrete bridges. Structrual Engineer, 1987, 65B( 1): 11 -15
    [30] Potgieter C, William L G. Nonlinear temperature distributions in bridges at different locations in the United State. PCI Journal, 1989, 34(4): 81-103
    [31] Fu H C, Ng S F, Cheung M S. Thermal behavior of composite bridges. Journal of Structural Engineering, ASCE, 1990, 116(12): 3302-3323
    [32] Moorty S, Roeder C W. Temperature-dependent bridge movement. Journal of the Structural Division, ASCE, 1992, 118(4): 1090-1105
    [33] Mase M A, Dilger W H, Ballyk P D. Extreme values of thermal loading parameters in concrete bridges. Canadian Journal of Civil Enginering, 1992, 19(6): 935-946
    [34] Mirambell E, Aguado A. Temperature and stresses distributions in concrete bidges.Jounal of Structural Engineering, 1990, 116(9): 2388-2409
    [35] Mirambell E, Costa J. Thermal stresses in composite bridges according to BS5400 and EC1. in Proceedings of the Institution of Civil Engneers, Structures and Buildings. 1997, 122(3): 281-292
    [36] Branco F A, Mendes P A. Thermal actions for concrete bridge design. Journal structural Engineering, 1993, 119(8): 2313-2331
    [37] Saetta A, Scotta R, Vitaliani R. Stress analysis of concrete structures subjected to variable thermal loads. Journal of Structural Engineering, ASCE, 1995, 121(3):446-457
    [38] Froli M, Hariga N, Orlandini M et al. Research on the longitudinal thermal behavior of a prestressed concrete box girder bridge in Italy. Structural Engineering International, IABSE, 1996, 6(4): 237-242
    [39]Shushkewich K W.Design of Segmental Bridges for Thermal Gradients.PCI Journal,1998,43(4):120-137
    [40]Silveria A P,Branco F A.Statistical analysis of thermal actions for concrete bridge design.Structural Engineering International,2000(1):33-38
    [41]Lucas J M,Berred A,Louis C.Thermal actions on a steel box girder bridge.Proceedings of the institution of Civil Engineers:Structures and Buildings,2003,156(2):175-182
    [42]Barsotti R,Froli M.Statistical analysis of thermal actions on a concrete segmental box-girder bridge.Structrual Engineering International,IABSE,2000,10(2):111-116
    [43]Roberis-Wollman C L,Breen J E,Cawrse J.Measurement of thermal gradients and their effects on segmental concrete bridge.Jounal of Bridge Engineering,2002,7(3):166-174
    [44]Li D N,Maes M A,Dilger W H.Evaluation of Temperature Data of Confederation Bridge:Thermal Loading and Movement at Expansion Joint.Proceedings of the ASCE:Structure Congress,2008,120(1):314-324
    [45]中华人民共和国行业标准.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB 10002.3-2005).北京:中国铁道出版社,2004
    [46]刘兴法.预应力混凝土箱梁温度应力计算方法.土木工程学报,1986,19(1):44-54
    [47]屈兆均.用有限单元法解温度应力的计算原理.桥梁建设,1982(3):25-50
    [48]王效通.预应力混凝土箱梁温度场计算的有限元法.西南交通大学学报,1985(3):52-62
    [49]房国安.预应力混凝土梁的温度分布计算.铁道标准设计,1980(6):7-16
    [50]管敏鑫.混凝土箱形梁温度场、温度应力和温度位移的计算方法.桥梁建设,1985(1):40-49
    [51]孙长荣.太阳辐射热作用下混凝土箱形截面桥梁温度场的计算与研究.哈尔滨 建筑工程学院学报,1988(1):92-102
    [52]盛洪飞.混凝土箱形截面桥梁日照温差应力简化计算.哈尔滨建筑工程学院学报,1992,25(1):78-83
    [53]魏光坪.单室预应力混凝土箱梁温度场及温度应力研究.西南交通大学学报,1989,74(4):90-97
    [54]姜全德,蒋鸿.钢筋混凝土箱形梁桥日照温分析方法.桥梁建设,1990(3):34-48
    [55]罗旗帜,预应力混凝土箱梁桥顶板上的开裂问题.佛山大学学报,1992,10(6):59-66.
    [56]葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究.中国公路学报,1996(2):76-83
    [57]刘耀东,陈祥宝.采用人工神经网络求解箱梁温度场算法研究.中国公路学报,2000,13(1):69-72
    [58]郭棋武,方志,裴炳志.混凝土斜拉桥的温度效应分析.中国公路学报,2002,15(2):48-51
    [59]邵旭东,李立峰,鲍卫刚.箱形梁横向温度应力计算分析.重庆交通学院学报,2000,19(4):5-10
    [60]应国刚,颜东煌.桥梁施工控制中结构温度场短期预测方法.长沙交通学院学报,2002,18(4):60-63
    [61]王步,华毅杰,黄鼎业.大吨位梁太阳辐射温度效应瞬态分析.结构工程师,2002(4):29-33
    [62]王解军,李全林,卢向华.混凝土箱梁桥施工控制的温度效应.公路,2003(1):129-131
    [63]郭健.混凝土斜拉桥主梁的非稳态温度场与应力场分析.中国公路学报,2005,18(2):65-68
    [64]张建荣,周元强,林建萍,张志燕.太阳辐射对混凝土箱梁温度效应的影响.同济大学学报(自然科学版),2008,36(11):1479-1484
    [65]王毅.预应力混凝土连续箱梁温度作用的观测与分析研究[博士学位论文].南 京:东南大学,2006
    [66]汪剑.大跨预应力混凝土箱梁桥非荷载效应及预应力损失研究[博士学位论文].长沙:湖南大学,2006
    [67]彭友松.混凝土桥梁结构日照温度效应理论及应用研究[博士学位论文].成都:西南交通大学,2007
    [68]刘华波.异形截面预应力混凝土箱梁温度场及温度效应研究[博士学位论文].上海:同济大学,2005
    [69]刘开元.混凝土曲线箱型桥的温度效应[硕士学位论文].北京:北京交通大学,2002
    [70]李全林.日照下混凝土箱梁温度场和温度应力研究[硕士学位论文].长沙:湖南大学,2004
    [71]康为江.钢筋混凝土箱梁f日1照温度效应研究[硕士学位论文].长沙:湖南大学,2000
    [72]贾琳.太阳辐射作用下混凝土箱梁的温度分布及温度应力研究[硕士学位论文].南京:东南大学,2001
    [73]郭河.大跨径预应力混凝土箱梁桥的空间温度场研究[硕士学位论文].北京:北京科技大学,2005
    [74]谢青华.大跨径预应力混凝土连续箱梁桥温度效应分析[硕士学位论文].武汉:武汉理工大学,2008
    [75]徐钢.箱梁温度场及其效应分析[硕士学位论文].上海:同济大学,2008
    [76]资源.预应力混凝土箱梁温度效应研究[硕士学位论文].武汉:武汉理工大学,2008
    [77]Hattel J H,Thorborg J.A numerical model for predicting the thermomechanical conditions during hydration of early-age concrete.Applied Mathematical Modelling,2003(27):1-26
    [78]冯德飞,卢文良.混凝土箱梁水化热温度试验研究.铁道工程学报,2006(8):62-68
    [79]臧华,王立波,刘钊.混凝土箱梁水化热效应分析.现代交通技术,2006(6):45-48
    [80]刘三元,曹阳,王波,张华兵,张海龙.薄壁墩混凝土水化热及收缩徐变分析.世界桥梁,2006(3):42-44
    [81]陈志军,康文静,李黎.空心薄壁墩水化热温度效应研究.华中科技大学学报(自然科学版),2007,35(5):105-108
    [82]王解军,李辉,卢二侠.大体积混凝土桥墩水化热温度场的数值分析.中南林业科技大学学报(自然科学版),2007.27(1):124-128
    [83]陈强,彭学理,马林,牛斌.斜拉桥大体积混凝土浇筑水化热温度监测及分析.铁道建筑,2007(10):1-3
    [84]张亮亮,陈天地,袁政强.桥墩混凝土的水化热温度分析.公路,2007(9):66-70
    [85]张岗,贺拴海,宋一凡.混凝土箱梁水化热温度损伤安全评价模型研究.安全与环境学报,2007,7(4):143-147
    [86]丁庆军,高纪宏,景强.移动模架法施工大跨径混凝土箱梁水化热温度场研究.混凝土,2008(1):105-108
    [87]刘其伟,朱俊,唐蓓华,蔡永胜.沥青高温摊铺时钢筋混凝土箱梁的温度分布试验.中国公路学报,2007,20(4):96-100
    [88]奚勇.火灾受损桥梁的检测与评估.世界桥梁,2007(4):62-65
    [89]刘其伟,王峰,徐开顺,陈晓强.火灾受损桥梁检测评估与加固处理.公路交通科技,2005,22(2):71-74
    [90]贠英伟.厚壁圆筒热冲击作用下应力分布研究[硕士学位论文].哈尔滨:哈尔滨工程大学,2004
    [91]刘永军.火灾下建筑构件内温度场数值模拟基础.北京:科学出版社,2006
    [92]王润富,陈国荣.温度场和温度应力.北京:科学出版社,2005
    [93]Lesnic D,Elliott L,Ingham D B.Application of the boundary element method to inverse heat conduction problems.International Journal of Heat and Mass Transfer,1996,39(7):1503-1517
    [94]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1996
    [95]刘念雄,秦佑国.建筑热环境.北京:清华大学出版社,2005
    [96]Brown A D.A physical model of the atmospheric aerosol turbidity for estimating the illuminance of direct sunlight.Lighting Res.Technol,2008,40(1):347-358
    [97]文小航.中国大陆太阳辐射及其与气象要素关系的研究[硕士学位论文].兰州:兰州大学,2008
    [98]Ran H J,Thomas R,Mavris D.A Comprehensive Global Model of Broadband Direct Solar Radiation for Solar Cell Simulation,in 45th AIAA Aerospace Sciences Meeting and Exhibit.2007,American Institute of Aeronautics and Astronautics:Reno,Nevada.
    [99]成驰.我国墙面晴天太阳辐射气候学研究[硕士学位论文].南京:南京信息工程大学,2007
    [100]王大鹏,傅智,房建宏,李焕青.太阳辐射对青藏高原不同路面类型表面热状况及其下伏多年冻土的影响.公路交通科技,2008,25(3):38-43
    [101]杨春平,吴健,冷杰.地表反射太阳辐射的参数化计算方法.强激光与粒子束,2007,19(2):215-218
    [102]林黎虹,张健,石耀霖.利用遗传算法反演大气的垂直温度结构.中国科学院研究生院学报,1997,14(1):43-50
    [103]范貌宏,Robert C B,石耀霖等.影响平板式太阳能热水器热效率诸因素的研究.环境科学进展,1999,7(6):122-126
    [104]Mirambell E,Mendes P A,Aguado A,Branco F A.Design temperature differences for concrete bridges.Structural Engineering International,1991,1 (3):36-40
    [105]Branco F A,Mendes P A,Mirambell E.Heat of hydration effects in structures.ACI material Journal,1992,189(2):139-145
    [106]张建荣,刘照球.混凝土对流换热系数的风洞实验研究.土木工程学报,2006,39(9):39-42
    [107]张家诚,林之光.中国气候.上海:科学技术出版社,1985
    [108]陆亚群.混凝土温度作用中的气象因素分析[硕士学位论文].上海:同济大学,2007
    [109]暖通规范管理组.暖通空调设计规范专题说明选编.北京:中国计划出版社,1990
    [110]张建荣,陆亚群,刘恩.温度作用设计中气象参数代表值的确定.建筑科学,2007,23(3):23-25
    [111]胡婷.中国区域气溶胶的光学厚度特征和气候效应研究[博士学位论文].南京:南京信息工程大学,2008
    [112]中国气象科学数据共享服务网.http://cdc.cma.gov.cn/
    [113]陈衡治,谢旭,张治成等.混凝土箱梁桥温度场和应力场研究.中国公路学会桥梁和结构工程分会2004年全国桥梁学术会议论文集.北京:人民交通出版社,2004.706-713
    [114]张建荣,徐向东,刘文燕.混凝上表面太阳辐射吸收系数测试研究.建筑科学,2006,22(1):42-45
    [115]Hambly E C.Temperature distributions and stresses in concrete bridges.Structrual Engineer,1978,56(5):143-148
    [116]汪剑,方志,颜江平.混凝土箱梁日照温差的试验研究.第十六届全国桥梁学术会议.2004.北京:人民交通出版社,2004.774-781
    [117]何波.大跨度连续刚构桥设计若干关键技术问题研究[博士学位论文].武汉:华中科技大学,2007
    [118]黄皖苏,潘陆桃.画法几何及阴影透视.北京:机械工业出版社,2005
    [119]杨钢,荆华.用计算机求解建筑日照问题.哈尔滨建筑大学学报,2000,33(1):87-91
    [120]陈晓宁,王怀.日照阴影三维可视化.长安大学学报(自然科学版),2003,23(1):108-110
    [121]罗庆,李百战,姚润明.城市建筑日照分布数字图像分析.太阳能学报,2006,27(12):1247-1250
    [122]王长波,谢步瀛,彭群生.建筑物日影的实时模拟.武汉大学学报(工学版),2006,39(4):122-126
    [123]黄跃峰,李满春,刘永学等.EDM上大规模空间遮挡判断方法研究.地理与地理信息科学,2005,21(1):34-37
    [124]金晓飞,范峰,沈世钊.巨型射电望远镜(FAST)反射面支承结构日照温度场效应分析.土木工程学报,2008,41(11):71-77
    [125]张朝晖.ANSYS8.O热分析教程与实例解析.北京:中国铁道出版社,2005
    [126]耿旭.复杂结构辐射换热工程应用及数值计算[博士学位论文].北京:清华大学,1997
    [127]杨贤荣,马庆芳,原庚新等.辐射换热角系数手册.北京:国防工业出版社,1982
    [128]张国智,胡仁喜,陈继刚.ANSYSl0.0热力学有限元实例指导教程.北京:机械工业出版社,2007
    [129]Cohen M F,Greenberg D P.The Hemi-Cube:A radiosity solution for complex environments.Computer Graphics,1985,19(3):31-40
    [130]Barsotti R,Froli M.Statistical analysis of thermal actions on a concrete segmental box-girder bridge.Journal of the International Association for Bridge and Structural Engineering (IABSE),2000,10(1):111-116
    [131]夏桂云,李传习.考虑剪切变形影响的杆系结构理论与应用.北京:人民交通出版社,2008
    [132]季夜眉,吴大贤.概率与数理统计.北京:电子工业出版社,2006
    [133]邵旭东,程翔云,.李立峰.桥梁设计与计算.北京:人民交通出版社,2007
    [134]张子明,石端学,倪志强.寒潮袭击时的温度应力及简化计算.红水河,2006,25(2):119-121
    [135]朱伯芳.大体积混凝土温度应力与温度控制.北京:中国电力出版社,1999
    [136]李昶,顾兴宇.大跨径刚桥桥面铺装力学分析与结构设计.南京:东南大学出版社,2007
    [137]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998
    [138]黄爱国.寒潮影响下的混凝土坝块的表面温度与表面保护.武汉水利电力大学学报,1995,28(2):118-122
    [139]吕琦,陈尧隆,王功等.寒潮对碾压混凝土重力坝的影响性分析.西北水力发电,2006,22(3):37-40
    [140]王瑞俊,王党在,陈尧隆.寒潮冷击作用下堆石坝混凝土面板温度应力研究.水力发电学报,2004,23(6):45-49
    [141]王丽,韦惠红,金琪等.湖北省一次罕见寒潮天气过程气温陡降分析.气象,2006,32(9):72-76
    [142]王遵娅,丁一汇.近53年中国寒潮的变化特征及其可能原因.大气科学,2006,30(6):1068-1076
    [143]陈雪珍,李冬梅,裴秀苗等一次强寒潮天气过程综合分析,2006(76):6-8
    [144]张占军,曹东伟,胡长顺.水泥混凝土桥面沥青铺装层厚度的研究.西安公路交通大学学报,2000,20(2):15-19
    [145]杨普新,马翎.沥青混合料摊铺作业探讨.公路交通技术,2007,6(3):63-65
    [146]小岚工作室.最新经典ANSYS及Workbench教程.北京:电子工业出版社,2004
    [147]张小川.桥梁大体积混凝土温控与防裂[硕士学位论文].成都:西南交通大学,2006
    [148]王甲春,阎培渝.早龄期混凝土结构的温度应力分析.东南大学学报(自然科学版),2005,35(增刊):1 5-18
    [149]Faria R,Azenha M,Figueiras J A.Modelling of concrete at early ages:Application to an externally restrained slab.Cement and Concrete Composites,2006(28):463-471
    [150]Cristofari C,Notton G,Louche A.Study of the thermal behavior of a production unit of concrete structural components.Applied Thermal Engineering,2004,2004(24):1087-1101
    [151]马龙.现代混凝土徐变的几个问题探讨[硕士学位论文].南京:河海大学,2006
    [152]Schindler A K,Ruiz J M,Rasmussen R O et al.Concrete pavement temperature prediction and case studies with the FHWA HIPERPAV models.Cement and Concrete Composites,2004(26):463-471
    [153]Poppe A,De Schutter G.Cement hydration in the presence of high filler contents.Cement and Concrete Research,2005(35):2290-2299
    [154]Lagier F,Kurtis K E.Influence of Portland cement composition on early age reactions with metakaolin.Cement and Concrete Research,2007(37):1411-1417
    [155]D'Aloia L,Chanvillard G.Determining the "apparent" activation energy of concrete E_a--numerical simulations of the heat of cement.Cement and Concrete Research,2002(32):1277-1289
    [156]Kaszy(?)sk M.Early age properties of high-strength/high-performance concrete.Cement and Concrete Composites,2002(24):253-261
    [157]Zhang Y S,Sun W,Liu S F.Study on the hydration heat of binder paste in high-performance concrete.Cement and Concrete Research,2002(32):1483-1488
    [158]潘家铮.水工建筑物的温度控制.北京:水利水电出版社,1990
    [159]朱伯芳.再论混凝土弹性模量的表达式.水力学报,1996(3):89-91
    [160]王岩,方元龙,吴胜兴.泄洪闸闸墩施工期温度场与温度应力分析.常州工学院学报,2005,18(增刊):129-134
    [161]傅作新.工程徐变力学.北京:水利电力出版社,1985
    [162]黄国兴,惠荣炎.混凝土的收缩.北京:中国铁道出版社,1990
    [163]中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004
    [164]Kwak H G,Ha S J,Kim J K.Non-structural cracking in RC walls:Part Ⅰ.Finite element formulation.Cement and Concrete Research,2006(36):749-760

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700