β-环糊精及化学修饰β-环糊精的分子识别作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:简要介绍了环糊精,化学修饰环糊精以及它们的应用。综述了具有识别功能的环状分子、分子识别的研究方法及其发展概况,简单叙述了分子识别中的手性识别研究。
     第二章:在非除氧的p-环糊精(p-CD)体系中,1,2-二溴甲烷(1,2-DBE)可在室温下诱导萘普生对映体的室温磷光发射。核磁数据证明萘普生分子的萘环部分是从β-CD小口端进入空腔内,羧基部分与p-CD外部的羟基之间形成氢键定位在p-CD腔外。而1,2-DBE则作为一种空间填充剂从大口端处竞争进入β-CD的空腔,从而形成一种稳定的三元混合物。在此基础上,通过荧光法计算了各步的包合常数,进一步证明萘普生对映体和1,2-DBE可以同时进入p-CD的空腔中从而形成三组分包结物。时间分辨磷光光谱法表明萘普生对映异构体都表现出双指数衰减,它们的磷光寿命差异(Δτi/τi)分别为32.9%和34.4%。这表明p-CD/1,2-DBE体系中可以实现萘普生对映体的手性识别。最后,利用分子模拟在分子水平对萘普生对映体的手性识别加以辅证,其结果与实验结果一致。
     第三章:本章通过6-胺基-6-脱氧-,3-胺基-3-脱氧和2-胺基-2-脱氧-p-环糊精合成了2-,3-和6-位取代的S-萘普生-p-CD,利用13CNMR、HNMR、高分辨质谱和圆二色谱等手段对该2-,3-和6-位取代的S-萘普生-β-CD进行了表征。在此基础上,对化合物1的荧光和磷光性质进行了初步探讨,并比较研究了S-萘普生与S-萘普生-p-CD在不同介质中的荧光和磷光特性。实验表明S-萘普生能进入p-CD的空腔,从而增强其荧光和磷光发射。
     第四章:利用室温磷光光谱研究了S-NPX-CDs 1-3对有机客体小分子的选择性识别作用,有机客体小分子包括二溴甲烷、三溴甲烷、二碘甲烷、碘甲烷、四溴化碳、1,2-二溴乙烷、甲醛、溴代环己烷、甲烷、环己烷、甲酸、甲醇、乙醇、和乙酸。实验表明,二溴甲烷可以显著增强S-NPX-CDs 1的室温磷光信号,但对S-NPX-CDs2和3的诱导并不明显。据此,建立了测定痕量二溴甲烷的室温磷光法,并将其用于煤矿矿坑水中痕量二溴甲烷的检测,检测结果与气相色谱-质谱联用法测得的结果相符,进一步表明S-NPX-CDs 1可以作为选择性检测二溴甲烷的超分子受体。最后,通过核磁共振氢谱、圆二色谱、紫外吸收光谱和能量模拟计算等对S-NPX-CDs 1选择性识别二溴甲烷的机理进行了探讨。
Chapter 1:The concept and application of cyclodextrin, modified cyclodextrin were introduced briefly. Summarized the different research technique of chiral discrimination and narrated the orgin and research development of chiral recognition simply.
     Chapter 2:Naproxen enantiomers possess strong room temperature phosphorescence (RTP) in (3-cyclodextrin (P-CD) system with a small amount of 1,2-dibromoethane (1, 2-DBE) under ambient conditions. The effects of pH, concentration ofβ-CD and 1, 2-DBE on the RTP of naproxen enantiomers have been investigated in detail. Time-resolved RTP spectroscopy shows that both naproxen enantiomers exhibit bi-exponential decay pattern with lifetimes ofτ1= 4.79±0.13 andτ2=1.51±0.096 ms for R-naproxen, andτ1= 6.67±0.15 andτ2= 2.13±0.061 ms for S-naproxen. The lifetime differences between these enantiomers areΔτ1=1.88 andΔτ2r=0.62 ms, indicating that chiral discrimination of naproxen enantiomers can be achieved inβ-CD/1,2-DBE system. Naproxen enantiomers can form stable complexes withβ-CD and 1,2-DBE in stoichiometric ratios of 1:1:2 and 1:1:1 (naproxen:β-CD:1,2-DBE) and the association constants are 3.20×103 M-4 and 2.43×103 M-3 for the S- and R-enantiomers respectively. The chiral discrimination of R-naproxen and S-naproxen is realized via their difference in interaction with the chiral cavity ofβ-CD due to their difference in stereochemical structure. Finally, molecular modeling is performed to determine the chiral recognition on a molecular level and the results are in good agreement with the experimental data.
     Chapter 3:S-naproxen-modified-β-CD (S-NPX-CDs 1-3) were synthesized by the reactions of (S)-(-)-naproxen with 6-amino-6-deoxy-,3-amino-3-deoxy-, and mono(2-amino-2-deoxy-altro).-β-CDs, respectively. All of them were characterized by HRMS and 1H and 13C NMR spectra. On this basis, the fluorescent and phosphorescent properties of 1 were studied preliminary. The fluorescent and phosphorescent properties of S-naproxen and S-naproxen-modified-β-CD in different medium were also compared, and the results showed that S-naproxen can enter intoβ-CD cavity, so the fluorescence and phosphorescence were enhance.
     Chapter 4:Firstly, the fluorescence and phosphorescence characteristics of S-NPX-CDs 1-3 were investigated. Then the molecular recognition of S-NPX-CDs 1-3 to small organic objective molecules were explored by RTP method, and the organic small molecules included dibromomethane, bromoform, isodiiodomethane, iodomethane, Carbon Tetrabromide,1,2-dibromomethane, formaldehyde, bromocyclohexane, methane, cyclohexane, formic acid, methanol, ethanol and acetic acid. Among them, only dibromomethane could significantly enhance the RTP signal of S-NPX-CD1, while it had no effect on S-NPX-CDs 2 and 3. Based on this, a RTP method for the determination trace dibromomethane was establised by S-NPX-CDs 1 as the receptor. Then it was applied to determine the content of dibromomethane in coal mine water and the results was in good agreement with the result of GC-MS method. Therefore, a potential RTP sensor of dibromomethane can be developed by S-NPX-CDs 1 as the receptor. Finally, the mechanism was investigated by 1HNMR, dichroism, UV absorption spectra and energy simulatione.
引文
[1](a)Cram, D. J.; Cram, J. M. Host-guest chemistry[J]. Science,1974,183:803-809; (b) Cram, D. J. Cavitands:organic hosts with enforced cavities[J]. Science,1983,219: 1177-1183.
    [2](a) Szejtli, J. Cyclodextrin and their inclusion complexes[M], Akademiai Kiado: Budapest,1982; (b) Szejtli, J.; Osa, T. Eds. Comprehensive supramolecular Chemistry:Cyclodextrins[M]. Vol.3,1996,693pp. Atwood, J. L., Davies, J. E. D., MacNicol, D. D.,Vogtle, F., Eds.; Pergamom:Oxford,1996.
    [3](a) Gutsche, C. D. Calixarenes[M]. The Royal Society of Chemistry, Cambridge, England,1989,223 pp. (b) Vicens, J.; Boehmer, V.; Editors. Calixarenes:A Versatile Class of Macrocyclic Compounds [M]. Topics in Inclusion Science, Vol.3,1991,264 pp. (c) Gutsche, C. David. Calixarenes Revisited [M].1998,233 pp.
    [4](a) Starnes, S, D.; Rudkevich, D, M.; Rebek, J., A Cavitand-Porphyrin Hybrid[J]. Jr. Org.Lett.,2000,2(14):1995-1998. (b) Fukuzumi, S.; Imahori, H.; Yamada, H.; El-K., Mohamed E.; Fujitsuka, M.; Ito, O.; Guldi, D. M. Catalytic Effects of Dioxygen on Intramolecular Electron Transfer in Radical Ion Pairs of Zinc Porphyrin-Linked Fullerenes[J]. J. Am. Chem. Soc.,2001,123(11):2571-2575. (c) Yeh, C, Y, Chang, C, J, Nocera, D, G. "Hangman" Porphyrins for the Assembly of a Model Heme Water Channel [J]. J. Am. Chem. Soc.,2001,123(7):1513-1514.
    [5]Roh, S, G.; Park, K, M.; Park, G, J.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Synthesis of a five-membered molecular necklace:a 2+2 approach[J]. Angew. Chem. Int. Ed., 1999,38(5):638-641.
    [6]Armspach, D.; Ashton, P. R.; Moore, C. P.; Spencer, N.; Stoddart, J. F.; Wear, T. J.; Williams, D. J. Self-assembly of catenanes with cyclodextrin units[J]. Angew. Chem. Int. Ed. Engl.,1993,32(6):854-858.
    [7]Sakamoto, K.; Takashima, Y.; Yamaguchi, H.; Harada, A. Preparation and Properties of Rotaxanes Formed by Dimethyl-β-cyclodextrin and Oligo (thiophene) s with (3-Cyclodextrin Stoppers [J]. J. Org. Chem.,2007,72(2):459-465.
    [8]SAENGER W. Cyclodextrin inclusion compounds in research and industry [J]. Angew. Chem. Int. Ed. Engl.,1980,19:344-362.
    [9]刘育.尤长城.张衡益.超分子化学—合成受体的分子识别与组装[M].天津.南开大学出版社,2001,p170.
    [10]SZEJTLI J. Introduction and general overview of cyclodextrin chemistry [J]. Chem. Rev.,1998,98:1743-1753.
    [11]SZEJTLI J. Downstream processing using cyclodextrins [J]. TIBTRCH,1989,7: 171-174.
    [12]Ge, X.; He, J.; Yang, Y.; Qi, F.; Huang, Z.; Lu, R.; Huang, L.; Yao, X. Study on inclusion complexation between plant growth regulator 6-benzylaminopurine and β-cyclodextrin:Preparation, characterization and molecular modeling[J]. Journal of Molecular Structure,2011,994(1-3):163-169.
    [13]Srinivasan, K.; Kayalvizhi, K.; Sivakumar, K.; Stalin, T. Study of inclusion complex of (3-cyclodextrin and diphenylamine:Photophysical and electrochemical behaviors [J]. Spectrochimica Acta, Part A:Molecular and Biomolecular Spectroscopy,2011, 79(1):169-178.
    [14]杨郁,张国梅,双少敏.环糊精包合作用及其分子识别功能的研究进展[J].光谱验室,2003,20(2):170-178.
    [15]GELB R I, SCHWARTZ L M, CARDELINO B, FUHRMAN H S, JOHNSON R F, LAUFER D A. Binding mechanisms in cyclohexaamylose complexes [J]. J. Am. Chem. Soc.,1981,103(7):1750-1757.
    (?),陈丽蓉,化学及生物体系中的分子识别[J].化学进展,1996,8(3):189.
    1171 AMATORE C, BURIEZ O, LABBE E, VERPEAUX J N. Supramolecular effects of cyclodextrins on the electrochemical reduction and reactivity of aromatic carbonyl compounds [J]. J. Electroanal. Chem.,2008,621(2):134-145.
    [18]JADHAV G S, VAVIA P R. Physicochemical, in silico and in vivo evaluation of a danazol-β-cyclodextrin complex [J]. Int. J. Pharm.,2008,352(1-2):5-16.
    [19]刘育,尤长城,张衡益.超分子化学—合成受体的分子识别与组装[M].天津,南开大学出版社,2001,p170.
    [20]Wang, Y.; Feng, T.; Chao, J.; Qin, L.; Zhang, Z.; Jin, W. Phosphorescence properties and chiral discrimination of camphorquinone enantiomers in the presence of a-cyclodextrin and 1,2-dibromoethane[J]. J. Photochem. and Photobio. A:Chemistry, 2010,212(1):49-55.
    [21]Adeagbo, W. A.; Buss. V.; Entel, P. Chiral discrimination of 2,2'-dihydroxy-1, 1'-binaphthyl by β-cyclodextrin:a first-principles study [J]. Phase Transitions,2005, 78(9-11):677-687.
    [22]Wei, Y.; Ren, Y.; Li, J.; Shuang, S.; Dong, C. Characterization of room temperature phosphorescence of propranolol and the chiral discrimination between R- and S-isomers [J]. Analyst,2011,136(2):299-303.
    [23]IKEDA H, MURAYAMA T, UENO A. Skeleton-selective fluorescent chemosensor based on cyclodextrin bearing a 4-amino-7-nitrobenz-2-oxa-1,3-diazole moiety [J]. Org. Biomol. Chem.,2005,3:4262-4267.
    [24]AOYAGI T, NAKAMURA A, IKEDA H, IKEDA T, MIHARA H, UENO A. Alizarin Yellow-modified β-Cyclodextrin as a Guest-Responsive Absorption Change Sensor [J]. Anal. Chem.,1997,69:659-663.
    [25]UENO A, IKEDA A, IKEDA H, IKEDA T, TODA F. Fluorescent cyclodextrins responsive to molecules and metal ions. Fluorescence properties and inclusion phenomena of Na-Dansyl-L-lysine-β-cyclodextrin and monensin-incorporated Na-Dansyl-L-lysine-β-cyclodextrin [J]. J. Org. Chem.,1999,64:382-387.
    [26]邱文革,李宗锋,孟胜男.环糊精与卟啉键合的新型超分子[J].化学世界,2007,2:114-117.
    [27]张华承,郝爱友,申健.环糊精-杯芳烃偶合体系研究进展及前景展望[J].有机化学,2008,28(6):954-963.
    [28]RONG D, D'SOUZA V T. A convenient method for functionalization of the 2-position of cyclodextrins[J]. Tetrahedron Lett.,1990,31(30):4275-4278.
    [29]尤长城,刘育.超分子体系中的分子识别研究[J].高等学校化学学报,2000,21(2):249-251.
    [30]Croft, Alan P.; Bartsch, Richard A. Synthesis of chemically modified cyclodextrins [J]. Tetrahedron,1983,39(9):1417-1474.
    [31]Khan, A. R.; Forgo, P.; Stine, K. J.; D'Souza, V. T. Methods for Selective Modifications of Cyclodextrins [J]. Chem. Rev.,1998,98(5):1977-1996.
    [32]Freudenberg, K.; Jacobi, R. Schardinger's dextrins from starch [J]. Justus Liebigs Annalen der Chemie,1935,518:102-108.
    [33]Gattuso, G.; Nepogodiev, S. A.; Stoddart, J. Fraser.Synthetic Cyclic Oligosaccharides [J] Chem. Rev.,1998,98(5):1919-1958.
    [34]Khan, A. R.; Forgo. P.; Stine, K. J.; D'Souza, V. T. Methods for Selective Modifications of Cyclodextrins [J]. Chem. Rev.,1998,98(5):1977-1996.
    [35]Engeldinger, E.; Armspach, D.; Matt, D. Capped Cyclodextrins [J]. Chem. Rev.,2003, 103(11):4147-4173.
    [36]Gorin, D. A.; Portnov, S. A.; Inozemtseva, O. A.; Karagaichev, A. L.; Neveshkin, A. A.; Khlebtsov, B. N.; Shtykov, S. N. Polyelectrolyte microcapsules containing molecules of sulfated β-cyclodextrin in the structure of nanosized shell [J]. Colloid Journal,2008,70(2):152-157.
    [37]Gan, Y.; Zhang, Y.; Xiao, C.; Zhou, C.; Zhao, Y. A novel preparation of methyl-β-cyclodextrin from dimethyl carbonate and β-cyclodextrin [J]. Carbohydrate Research,2011,346(3):389-392.
    [38]Zhan, G.; Hao, L. Preparation of inclusion compound of volatile oils of folium Artemisia argyi with hydroxypropyl-β-cyclodextrin [J]. Hecheng Huaxue,2010, 18(4):493-496.
    [39]Fujita, K.; Ejima, S.; Imoto, T. Fully collaborative guest binding by a double cyclodextrin host [J]. Chem. Comun.,1984, (19),1277-8.
    [40](a)Liu, Y.; Han, B. H.; Sun, S. X.; Wada, T.; Inoue, Y. Molecular Recognition Study on Supramolecular Systems.20. Molecular Recognition and Enantioselectivity of (?)atic Alcohols by L-Tryptophan-Modified β-Cyclodextrin [J]. J. Org. Chem., 1999,64(5):1487-1493. (b)Liu, Y.; Li, B.; Wada, T.; Inoue, Y. Molecular recognition study on a supramolecular system. Part 15. Enantioselective recognition of aliphatic amino acids by organoselenium-modified β-cyclodextrins [J]. Supramol. Chem.,1999,10(3):173-184. (c)Liu, Y.; Li, B.; Wada, T.; Inoue, Y. Molecular recognition study on a supramolecular system. Part 21. Inclusion complexation thermodynamics of aliphatic alcohols by organoselenium modified β-cyclodextrins [J]. J. Inclusion Phenom. Macrocyclic Chem.,2000,36(3):311-325.
    [41]Lida, K. Modified cyclodextrins as molecular sensors [J]. Research Journal of Chemistry and Environment,2008,12(2):102-103.
    [42j Szejtli, J. Cyclodextrins and Their Inclusion Complexes [M], Budapest,1982,274 pp.
    [43]林鸿,超分子体系中的分子识别[J],金华职业技术学院学报,2003,Vol3.
    [44]Ovchinnikov Y A. Second FEBS-Ferdinand Springer lecture:Membrane active complexones [J]. FEBS lett.,1974,44(1):1-21.
    [45]官景渠,选择性分子识别在化学中的应用进展[J],山东师大学报,1991,6(2):99-104
    [46]Gutsche, C. D. Calixarenes [J].Acc. Chem. Res.,1983,16(5):161-70.
    [47]Shinkai, S.; Mori, S.; Tsubaki, T.; Sone, T.; Manabe, O. New water-soluble host molecules derived from calix [6] arene [J]. Tetrahedron Lett.,1984,25(46):5315-18.
    [48]Wang, C. Z.; Zhu, Z. A.; Li, Y, et al. Chiral recognition of amino acid esters by zinc porphyrin derebatives [J]. New J. Chem.,2001,25:801-806.
    [49]Takashi, H.; Toshihiro, A.; Masanori, N, et al. Chiral recognition and chiral sensing using zinc porphyrin dimmers [J]. Tetrahedron,2002,58:2803-2811
    [50]Takashi, H.; Masanori, N.; Toshihiro, A. et al. Molecular recognition of a, ω-diamines by metalloporphyrin dimmer [J]. Tetrahedron Lett.,1997,38(9): 1603-1606.
    [51]Tadashi, M.; Tskuya, K.; Takeshi, M, et al. Molecular recognition of carbohydrares by zinc porphyrins:lewis acid/lewis base combinations as a dominant factor for their selectivity [J]. J. Am. Chem. Soc.,1997,119:8991-9001.
    [52]Ruan, W. J.; LI, Y.; Zhao, X. J, et al. Synthesis characterization and weak intramolecular interactions of porphyrin bearing nucleobases[J]. Chinese J. Chem., 2003,21:1451-1457.
    [53]刘学良,刘莺,王俊德,等.分子烙印技术的应用与最新进展[J].分析化学,2002,30(10):1260-1266
    [54]尤启冬,林国强.手性药物:研究与应用[M].北京:化学工业出版社,2003,3-5.
    [55]Drayer, D. E. Pharmacodynamic and pharmacokinetic differences between drugenantiomers in humans:An overview [J]. Clin. Pharmcol. Theor.,1986,40: 125-133.
    [56]尤田耙.手性化合物的现代研究方法[M].合肥:中国科学技术大学出版社,1993,13-16.
    [57]Furumi, S.; Yokoyama, S.; Otomo, A. et al. Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect [J]. Thin Solid Films,2006,499(1-2): 322-328.
    [58]Wu, S. L.; Lai, F. S. Synthesis and ferroelectric properties of new chiral liquid crystals derived from (S)-lactic acid with alkoxyethanols [J]. Liq. Cryst.,2005, 32(10):1243-1249.
    [59]Coles, H. J.; Pivnenko, M. N. Liquid crystal 'blue phases' with a wide temperature range [J]. Nature,2005,436(7053):997-1000.
    [60](a) Cramer, F. D. Pure and Applied Chemistry [M].1995,5:143. (b)克莱末,F.D.;李森译.包结化合物[M].任新民校,科学出版社,1963.
    [61]Wei, Y. S.; Jin, W. J.; Zhu, R. H.; Xing, G. W, et al. Spectrochim. Part A.,1996,255: 351.
    [62]Zhang, X. H.; Wang, Y.; Jin, W. J. Enantiomeric discrimination of 1,'1-binaphthol by room temperature phosphorimetry using y-cyclodextrin as chiral selector [J]. Analytica Chimica Acta.,2008,622:157-162.
    [63]鲁子贤,崔涛,圆二色性和旋光色散在分子生物学中的应用[M],北京:科学出版社,1987,p2.
    [64]Donafi, I.; Oamini, A. Determination of the diadic composition of alginate by means of circular dichroism:a fast and accurate improved method [J]. Carbohydr. Res., 2003,338:1139-1142.
    [65]刘海洋,应晓,胡希明.苯丙氨酸桥联金属双卟啉的诱导圆二色光谱研究[J].光谱学与光谱分析,2000,20(4):495-497.
    [66]Guo, C.; Shah, R. D.; Dukor, R. K. et al. Determination of enantiomeric excess in samples of chiral molecules using fourier transform vibrational circular dichroism spectroscopy:simulation of real-time reaction monitoring [J]. Anal. Chem.,2004, 76(23):6956-6966.
    [67]Lei, G..; Linda, B.; Mc, G. Determination of enantiomeric excess by fluorescence-detected circular dichroism[J]. Anal. Chem.,1994,66(19):3243-3246.
    [68]Dong, J. G..; Wada, A.; Takakuwa, T. et al. Sensitivity enhancement of exciton coupling by fluorescence detected circular dichroism (FDCD) [J]. J. Am. Chem. Soc., 1997,119(49):12024-12025.
    [69]Ilona, F.; Julia, V.; Ferenc Z. et al. Selective binding of imatinib to the genetic variants of human α1-acid glycoprotein [J]. Biochimica et Biophysica Acta.,2006, 1760:1704-1712.
    [70]Babu, R. R.; Ramesh, V. K. Pesticide residues in air from coastal environment [J]. Chemosphere,1999,39(10):1699-1706.
    [71]Hutta, M.; Rybar, I. Chalanyovam, M. Liquid chromatographic method development for determination of fungicide epoxiconazole enantiomers by achiraland chiral column switching technique in water and soil[J]. J. Chromatogr. A.,2002, 959(1):143-152.
    [72]Schurig, V.; Negura, S.; Mayer S. et al. Enantiomer separation on a Chirasil-Dex-polymer-coated stationary phase by conventional and micro-packed high-performance liquid chromatography [J]. J. Chromatogr. A.,1996,755(2): 299-307.
    [73]Padiglioni, P.; Polcaro, C. M.; Marchese S. Enantiomeric separations of halogen-substituted 2-ary-loxypropionic acids by high-performance liquid chromatogramphy on a terguride-based chiral stationary phase [J]. J. Chromatogr. A., 1996,756(1):119-127.
    [74]Schurig, V. Separation of enantiomers by gas chromatography. [J]. Chromatogr. A, 2001,906:275-299.
    [75]Shen, M.Y.; Xie, M. Y.; Nie, S. P.; Wan, Y. Q.; Xie, J. H. Discrimination of Different Ganoderma Species and their Region Based on GC-MS Profiles of Sterols and Pattern Recognition Techniques[J]. Analytical Lett.,2011,44(5): 863-873.
    [76]Schurig, V. Use of derivatized cyclodextrins as chiral selectors for the separation of enantiomers by gas chromatography [J]. Annales Pharmaceutiques Francaises,2010, 68(2):82-98.
    [77]Nogle, L. M.; Mann, C. W.; Watts, W. L.; Zhang, Y. Preparative separation and identification of derivatized β-methylphenylalanine enantiomers by chiral SFC, HPLC and NMR for development of new peptide ligand mimetics in drug discovery[J]. Journal of Pharmaceutical and Biomedical Analysis,2006,40(4): 901-909.
    f78]陈培榕,邓勃主编,现代仪器分析实验与技术[M].清华大学出版社,1999:237-238.
    [79]Li, N.; Zhong, W. Capillary electrophoresis of nucleic acids at the single-cell level [J]. Chemical Cytometry,2010,75-91.
    [80]Cao, F.; Luo, Z.; Zhou, D.; Zeng, R.; Wang, Y. Hydroxyethylcellulose-graft-poly (2-(dimethylamino) ethyl methacrylate) as physically adsorbed coating for protein separation by CE [J]. Electrophoresis,2011,32(10):1148-1155.
    [81](a) Hirai, H.; Toshima, N.; Uenoyama, S. Inclusion complex Formation of y-Cyclodextrin. One Host-Two Guest Complexation with Water-soluable Dyes in Groud State [J]. Bull. Chem. Soc. Jpn.,1985,58:1156-1164. (b) Clarke, R. J.; Coates, J. H.; Lincoln, S. F. Complexation of roccelline by β-and y-cyclodextrin [J]. J. Chem. Soc. Faraday Trans.,1986,82:2333-2343.
    [82]Gaku, F.; Tadashi, M.; Takehiko, W.; Yoshihisa, I. The first supramolecular photosensitization of enantiodifferentiating bimolecular reaction:anti-Markovnikov photoaddition of methanol to 1,1-diphenylpropene sensitized by modified β-cyclodextrin [J]. Chem. Commun.,2006,1712-1713.
    [83](a) Nunez-Agiiero, C. J.; Escobar-Llanos, C. M.; Diaz, D.; Jaime, C.; Garduno-Juarez R. Chiral discrimination of ibuprofen isomers in β-cyclodextrin inclusion complexes: experimental (NMR) and theoretical (MD, MM/GBSA) studies [J]. Tetrahedron, (?),62:4162-4171. (b) Yang, H.; Bohne, C. Chiral discrimination in the fluorescence quenching of pyrene complexed to (3-cyclodextrin [J]. J. Photoch. Photobio A:Chem.,1995,86:209-217.
    [84]宁凤容,黄可龙,刘素琴,焦飞鹏.手性流动相HPLC法拆分萘普生对映体的研究[J].分析实验室.2006,25(6):1-5.
    [85]Arancibia, J. A.; Escandar, G. M. Determination of naproxen in pharmaceutical preparations by room-temperature phosphorescence. A comparative study of several organized media [J]. Analyst,2001,126:917-922.
    [86](a) Scypinski, S.; Love L. J. C. Transient digitizer for the determination of microsecond luminescence lifetimes [J]. Anal. Chem.,1984,56:322-327. (b) de la Pena, A. M.; Mahedero, M. C.; Espinosa, M. A.; Bautista, S. A.; Reta, M. Room temperature phosphorescence of 1-naphthalenacetamide included in P-cyclodextrin in presence of 1,3-dibromopropane [J]. Talanta,1999,48:15-21.
    [87]Betzel, C.; Saengner, W.; Hingerty, E.; Brown, G. Circular and Flip-Flop Hydrogen Bonding in (3-Cyclodextrin Undecahydrate:A Neutron Diffraction Study [J]. J. Am. Chem. Soc.,1984,106:7545-7557.
    [88]Ramirez, J.; Ahn, S.; Grigorean, G.; Lebrilla, C. B. Evidence for the Formation of Gas-Phase Inclusion Complexes with Cyclodextrins and Amino Acids[J]. J. Am. Chem. Soc.,2000,122:6884-6890.
    [89](a) Orienti, I.; Fini, A.; Bertasi, V.; Zecchi, V. Diffusion of naproxen in presence of β-cyclodextrin across a silicone rubber membrane [J]. Eur. J. Pharm. Biopharm., 1991,37:110-112. (b) Junquera, E.; Aicart, E. A fluorimetric. potentiometric and conductimetric study of the aqueous solutions of naproxen and its association with hydroxypropyl-β-cyclodextrin [J]. Int. J. Pharm.,1999,176:169-178.
    [90](a) Jansook, P.; Moya, O. M. D.; Loftsson T. Effect of self-aggregation of γ-cyclodextrin on drug solubilization[J]. J. Incl. Phenom. Macrocycl. Chem.,2010, 68:229-236. (b) Messner, M.; Kurkov, S. V.; Jansook, P.; Loftsson, T. Self-assembly of cyclodextrins:The effect of the guest molecule [J]. Int. J. Pharm., 2010,387:199-208.
    [91]Bikadi, Z.; Kurdi, R.; Balogh, S.; Szeman, J.; Hazai, E. Aggregation of cyclodextrins as an important factor to determine their complexation behavior [J]. Chem. Biodivers., 2006,3:1266-1278.
    [92]Zhang, H. R.; Guo, S. Y.; Li, L.; Cai, M. Y. Effect of small organic molecules on room temperature phosphorescence properties of naphthol ternary inclusion complexes in β-cyclodextrin [J]. Anal. Chim. Acta.,2002,463:135-142.
    [93]Inoue, Y.:Yamanoto, K.; Wada, T.; Everitt, S.; Gao, X. M.; Hou, Z. J.; Tong, L. H.; Jiang, S. K.; Wu, H. M. Inclusion complexation of (cyclo) alkanes and (cyclo) alkanols with 6-O-modified cyclodextrins[J]. J. Chem. Soc., Perkin Trans.2,1998,2: 1807-1816.
    [94]Zhu, X.; Lin, B.; Epperlein, U.; Koppenhoeffr, B. Enantiomeric resolution of some nonsteroidal antiinflammatory and anticoagulant drugs using β-cyclodextrins by capillary electrophoresis [J]. Chirality,1999,11:56-62.
    [95]Daza, M. C.; Doerr. M.; Salzmann. S.; Marian, C. M.; Thiel, W. Photophysics of phenalenone:quantum-mechanical investigation of singlet-triplet intersystem crossing [J]. Phys. Chem. Chem. Phys.,2009,11:1688-1696.
    [96]Ponce, A.; Wong, P. A.; Way, J. J.; Nocera, D. G. Intense phosphorescence triggered by alcohols upon formation of a cyclodextrin ternary complex[J]. J. Phys. Chem., 1993,97:11137-11142.
    [97]. Ikeda H, Nakamura M, Ise N, et al. Fluorescent cyclodextrins for molecule sensing: Fluorescent properties, NMR characterization, and inclusion phenomena of N-dansylleucine-modified cyclodextrins[J]. J. Am. Chem. Soc.,1996,118(45): 10980-10988
    [98](a) Brown, S. E.; Coates, J. H.; Coghlan, D. R.; Easton, C. J.; van Eyk, S. J.; Janowski, W.; Lepore, A.; Lincoln, S. F.; Luo, Y.; et al. Synthesis and properties of 6A-amino-6A-deoxy-α- and -β-cyclodextrin[J]. Aust. J. Chem.,1993,46:953-958. (b) Yuan, D.-Q.; Tahara, T.; Chen, W.-H.; Okabe, Y.; Yang, C.; Yagi, Y.; Nogami, Y.; Fukudome, M.; Fujita, K. Functionalization of Cyclodextrins via Reactions of 2,3-Anhydrocyclodextrins[J]. J. Org. Chem.,2003,68:9456-9466.
    [99](a) Grundler, P. Chemical Sensors:An Introduction for Scientists and Engineers [M]. Springer Verlag,2007. (b) Janata, J. Principles of Chemical Sensors [M]. Springer, 2009.
    (?)Ueno, A.; Kuwabara, T.; Nakamura, A.; Toda, F. A modified cyclodextrin as a guest responsive colour-change indicator [J]. Nature,1992,356:136-137. (b) Ikeda, H.; Ueno, A. Cyclodextrin Materials Photochemistry, Photophysics and Photobiology [M]. Douhal A. Ed. p267,2006. (c) Yashima, E.; Maeda, K.; Sato, O. Switching of a Macromolecular Helicity for Visual Distinction of Molecular Recognition Events [J]. J. Am. Chem. Soc.,2001,123:8159. (d) Ueno, A. Review:fluorescent cyclodextrins for molecule sensing [J]. Supramol. Sci.,1996,3:31-36.
    [101](a) Turro, N. J.; Bolt, J. D.; Kuroda, Y.; Tabushi, I. A study of the kinetics of inclusion of halonaphthalenes with β-cyclodextrin via time correlated phosphorescence [J]. Photochem. Photobiol.,1982,35:69-72. (b) Turro, N. J.; Cox, G. S.; Li, X. Remarkable inhibition of oxygen quenching of phosphorescence by complexation with cyclodextrins[J]. Photochem. Photobiol.,1983,37:149-153. (c) Stephen S.; Cline Love L. J. Anal. Chem.,1982,54:322.
    [102](a) Hamai, S. Inclusion of 2-Chloronaphthalene by β-Cyclodextrin and Room-Temperature Phosphorescence of 2-Chloronaphthalene in Aqueous D-Glucose Solutions Containing β-Cyclodextrin [J]. J. Phys. Chem. B,1997,101: 1707-1712. (b) Wu, J.-J.; Wang, Y.; Chao, J.-B.; Wang, L.-N.; Jin, W.-J. Room Temperature Phosphorescence of 1-Bromo-4-(bromoacetyl) naphthalene Induced Synergetically by β-Cyclodextrin and Brij30 in the Presence of Oxygen [J]. Phys. Chem. B,2004,108:8915. (c) Lammers, I.; Buijs, J.; van der Zwan, G.; Ariese, F.; Gooijer, C. Phosphorescence for sensitive enantioselective detection in chiral capillary electrophoresis[J]. Anal. Chem.,2009,81:6226-6233.
    [103]Lammers, I.; Buijs, J.; van der Zwan, G.; Ariese, F.; Gooijer, C. Phosphorescence for sensitive enantioselective detection in chiral capillary electrophoresis [J]. Anal. Chem.,2009,81:6226-6233.
    [104](a) Steinberg, S. M.; Pignatello, J. J.; Sawhney, B. L. Persistence of 1, 2-dibromoethane in soils:entrapment in intraparticle micropores[J].Environ. Sci. Technol.,1987,21:1201-1208. (b) Van Bladeren, P. J.; Breimer, D. D.; Rotteveel-Smijs, G. M. T.; Mohn, G. R. Mutagenic activation of dibromomethane and diiodomethane by mammalian microsomes and glutathione S-transferases [J]. Mutat. Res., Environ. Mutagen. Relat. Subj.,1980,74:341-346. (c) Sheridan, P. J.; chnell, R. C.; Zoller, W. H.; Carlson, N. D.; Rasmussen, R. A.; Harris, J. M.; Sievering, H. Composition of Br-containing aerosols and gases related to boundary layer ozone destruction in the Arctic [J]. Atmos. Environ. Part A,1993,27A: 2839-2849.
    [105]Abraham, R. J.; Fisher, J.; Loftus, P. In Introduction to NMR Spectroscopy; Wiley and Sons:Chichester. England,1988.
    [106]Sauvage, J. P.; Dietrich-Buchecker, C. Eds. A Journey Through the World of Molecular Topology [J]. Molecular Catenanes, Rotaxanes and Knots; Wiley-VCH, Weinheim,1999. p368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700