尾巨桉苗期指数施肥及其生理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桉树(Eucalyptus)与杨树、松树一起被称为世界三大速生树种,它是我国南方发展速生丰产林的战略性树种。尾巨桉DH32-29具有轮伐期短、木材产量高、干形通直圆满、自然修枝好、抗逆性强等优点,目前在我国南方大多数省市种植面积不断扩大,苗木需求量也随之不断增多,供不应求。但目前我国桉树组培容器苗在苗期生长阶段一般采用经验式的施肥量和施肥方法,集中或周期等量地供应,使苗木生长前期养分浓度过高,肥料流失而造成浪费,而后期施肥不足造成苗木体内养分稀释等问题,制约了苗木生长潜力的最大发挥,存在苗木质量差、肥料浪费和污染环境等问题。因此,幼苗生长阶段的营养调控技术已成为快速培育桉树优质壮苗的关键技术之一。但是,桉树人工林面积在盲目扩大的同时,也逐渐出现了一些如土壤退化、林地肥力下降等问题,如何通过施肥保持土壤肥力,并达到优良的林分生长也是桉树产业面临的主要问题。
     本研究以尾巨桉DH32-29组培苗为材料,从不同施肥方法和施肥量方面对尾巨桉幼苗和出圃苗的生长、生理、光合作用及养分需求等方面的影响研究,得出以下结果:
     (1)设置每株施N0、50、100、150、200mg的5个氮素水平处理,采用砂培法进行尾巨桉幼苗指数施肥试验,探讨不同氮素供应水平对其幼苗生长、质量及养分含量的影响,旨在揭示尾巨桉幼苗的氮素需求特征,确定其适宜施氮量。结果表明:随着施氮量的增加,尾巨桉幼苗的苗高、地径、整株生物量、叶绿素含量(土壤作物分析仪器开发值,SPAD值)与苗木品质指数也随之增大,当施氮量大于100mg株~(-1)后苗木地径、整株生物量和苗木质量指数基本趋于稳定,而苗高和叶绿素含量SPAD值则显著减小;尾巨桉幼苗的苗木质量指数与苗高、地径和整株生物量均存在显著正相关;运用临界浓度法确定出尾巨桉幼苗N、P、K含量的临界值分别为26.6,3.8,16.5g kg~(-1),最适含量范围分别为26.6~38.5,3.8~5.3,16.5~21.4g kg~(-1);综合各指标得出尾巨桉幼苗的最适施氮量为100mg株~(-1);
     (2)以尾巨桉轻基质组培苗为材料,研究4个施氮量和2种施肥方法对苗木生长及生理特性的影响。结果表明,经氮素处理的尾巨桉幼苗的生长指标和叶绿素含量均显著高于对照(P<0.05);指数施氮60mg株~(-1)处理的尾巨桉幼苗的地径、叶面积、叶长、叶宽及各叶绿素含量均为各处理中的最大,且显著大于其它处理;经指数施肥方法处理的尾巨桉轻基质幼苗的根部、茎部和叶片的氮磷含量显著高于经平均施肥方法和对照处理的苗木,平均施肥处理的苗木钾含量则较高;通过主成分分析对9个尾巨桉施肥处理进行综合评价,结果得出指数施肥方法优于平均施肥方法,施氮浓度使苗木生长和生理表现优劣由大到小循序为:60mg株~(-1)>80mg株~(-1)>40mg株~(-1)>20mg株~(-1),指数施氮60mg株~(-1)为该试验中的最优处理组合;
     (3)以尾巨桉出圃苗为试验材料,采用温室盆栽法,研究不同施肥处理对尾巨桉苗期生长、生物量的分配和光合生理特性的影响。结果显示,不同处理下尾巨桉苗木的生长、不同部位的生物量和光合生理指标差异显著(P<0.05);根据新老叶SPAD值差异的大小,不同施肥方法的苗木稳定性由强到弱为:指数施肥>直线施肥>平均施肥;指数施肥2000mg株~(-1)处理的尾巨桉苗木的地径、叶干重、茎干重、地上部分干重、整株生物量、净光合速率和蒸腾速率皆为最大,指数施肥处理的苗木拥有较高的光合速率,因此获得了较多的茎叶生物量;综合各指标得出不同施肥方法对尾巨桉苗期影响的优劣为:指数施肥>直线施肥>平均施肥,经指数施肥方法施氮2000mg株~(-1)的处理组合为该试验中的最佳施肥组合;
     (4)以尾巨桉出圃苗为试验材料,研究不同施肥处理对尾巨桉苗期根系形态特征的影响。结果表明,不同施氮处理对尾巨桉苗木苗期根系的生物量、总根长、根系平均直径及比根长影响差异显著(P<0.05);相同施氮浓度下,不同施肥方法处理的尾巨桉苗木的根系生物量、总根长及根系表面积由大到小的顺序为:指数施肥>直线施肥>平均施肥>CK;3种施肥方法经抛物面模型拟合的方程的拟合度好于经线性模型的拟合,抛物面模型对不同施肥方法下尾巨桉苗木生长指标与根系生物量和比根长进行拟合,获得了较高的R2和较低的残差平方和(RSS)
Eucalypts, together with poplars and pines are known worldwide as the three groups ofthe fastest growing forest trees. In southern China, Eucalyptus urophylla×E.grandis cloneDH32-29has mang advantages including short rotations, fast growth and high yields, straighttrunk,good natural pruning and relatively wide adaptability for their timber.Consequently thearea of the eucalypt plantation resource has increased rapidly over the past20years or so,inmost China’s southern provinces.This rapid increase in plantation areas in conjunction withrelative short lengths used for these species has resulted in the eucalypt seedling demands oftenexceedling supply.
     At present empirical fertilization methodologies are commonly used during thepropagation of eucalypt nursery stock(seedlings and vegetative propagules) in mostnurseries;the fertilizers are supplied intensively,periodically and equivalently.However,thiskind of methodology supplies unnecessarily high nutrient quantities during early growthstages,resulting in wastage of fertilizer,sub-optimal quality seedlings/propagules andenvironmental pollution.So the techologies for nutritional regulation in the growing stage ofseedlings and propagules has already become one of the key techniques of propagating highquality eucalypt propagules.
     In the study reported here,fertilization technologies were studied at the stages of thenursery propagation and early plantation growth for Eucalyptus urophylla×E.grandis cloneDH32-29vegetative propagules. Growth, physiology, photosynthetic indices and nutrientdemands of propagules were studied with different fertilization methods and fertilizer quantitesduring the propagation period.The results are as follows:
     (1) An exponential fertilization trial was conducted with five dose levels of nitrogen(applying a total of0,50,100,150,200mg propagule~(-1)) to assess the effects of nitrogen levelson growth, quality and nutrient status of E. urophylla×E. grandis propagules. The objective of this study was to reveal the nitrogen demand and determine the optimal nitrogen amount for E.urophylla×E. grandis propagules.Height, ground diameter, total plant biomass, soil and plantanalyzer development(SPAD) value and quality index of propagules increased with increasingN supply up to100mg propagules~(-1). At rates above this level, ground diameter, total plantbiomass and quality index remain unchanged, but height and SPAD value decreased markable.Quality index showed a significant positive correlation with height(R=0.423), grounddiameter(R=0.645),and total plant biomass(R=0.834). The critical level approach was used foridentifying N, P and K deficiencies of propagules, and the critical values of those nutrientswere26.6,3.8and16.5g kg~(-1)respectively, while their optimal concentrations ranged from26.6to38.5,3.8to5.3,16.5to21.4g kg~(-1), respectively. In conclusion,100mg propagules~(-1)would be the optimal nitrogen amount for E. urophylla×E. grandis propagules.
     (2) The effects of nitrogen treatments with the exponential fertilization method, meanfertilization method and non-fertilization on the growth and physiological indices of E.urophylla×E. grandis tissue culture propagules in light media were studied during athree-month period. The results indicated that increasing N supply could significantly increasethe growth and chlorophyll contents of propagules (P<0.05).The treatment with60mg Nplant~(-1)provided for significantly higher(P<0.05)ground diameter, root volume, leaf area, leaflength, leaf width and chlorophyll contents than all the other8treatments. N, P contents ofroots, stems and leaves of propagules subject to exponential fertilization treatment were higherthan those given the mean fertilization treatment, but K content of different tissues ofpropagules given the mean fertilization treatment were higher. Principal component analyses ofthe different treatments showed that the exponential fertilization methodology was better thanthe average fertilization methodology with N concentrations in descending sequential orderwas60mg propagule~(-1),80mg propagule~(-1),40mg propagule~(-1)and20mg propagule~(-1).Thetreatment of exponential fertilization methodology with60mg propagule~(-1)N was the optimaltreatment in this study.
     (3) Growth, biomass allocation and photosynthetic characteristics of E. urophylla×E.grandis propagules coming out from nursery was studied by pot culture method in agreenhouse, the results showed that growth, biomass of different tissues and photosyntheticindices of propagules under16treatments(3fertilization methods×5N supply levels,andnon-fertilization) were significantly different (P<0.05). According to the different SPAD valueof new and old leaves, the propagules stability in different fertilization methods from strong toweak is: exponential fertilization> linear fertilization> mean fertilization; Ground diameter,leaf dry weight, stem dry weight, aboveground dry weight, total biomass and netphotosynthetic ratio(Pn) from the exponential fertilization treatment with2000mg N plant~(-1)were all the maximums in all treatments. It was concluded that propagules given exponentialfertilization method were superior to the propagules under other fertilization methods; thetreatment combination of exponential fertilization method with2000mg N propagule~(-1)was theoptimal one in this experiment.
     (4) In this study, the effects of nitrogen treatments with different fertilization method onthe biomass and morphology parameters in roots of E. urophylla×E. grandis propagulescoming out from nursery were studied during a three-month period. The results suggested thatthe biomass and morphology parameters were significantly differennt among the treatments(P<0.05). In the same nitrogen application concentration, root biomass, root length and rootsurface-area of propagules from different fertilization methods ranked as exponentialfertilization> linear fertilization> mean fertilization> non-fertilization. Degree of fitting of theParaboloid model equation was superior to that of linear model equation. As a multi-variatenonlinear model, the Paraboloid model when applied to the simulations involving both heightand ground diameter, provided a better fit for both root biomass and specific root length withhigher correlation coefficient(R2)and lower residual sum of squares (RSS)
引文
[1]谢耀坚.我国桉树种质资源现状及育种目标探讨[J].桉树科技,2012,29(2):33~39.
    [2]林国祚.水肥调控对桉树苗木生长及生理特性的影响.中国林业科学研究院硕士学位论文,2012,1~2.
    [3]谢耀坚.桉树环保育苗新技术[C]//谢耀坚.柳暗花明一面对金融危机的桉树研发.北京:中国林业出版社,2010.
    [4]陈少雄,刘杰锋.桉树生物质能源的优势、现状和潜力[J].生物质化学工程,2006(B12):119~128.
    [5]林丽静,李奕震.桉树次生代谢产物作为植物源农药的研究进展[J].广东林业科技,2007,23(5):72~75.
    [6]彭兆平.桉树人工林经营存在问题与丰产造林技术探讨[J].湖北林业科技,2008,(1):70~71.
    [7]张梓萍.不同基质和施肥对尾巨桉组培苗的影响[J].福建林业科技,2003,30(3):65~67.
    [8]刘德朝.尾巨桉扦插繁殖技术研究[J].防护林科技,2005,69(6):16~18.
    [9]李全金,杨林.科学施肥是桉树人工林速生丰产的关键[J].热带林业,2006,34(2):27~28.
    [10]魏红旭,徐程扬.苗木指数施肥技术研究进展[J].林业科学,2010,46(7):140~147.
    [11] Malik V, Timmer V R. Biomass partitioning and nitrogen retraslocation in black spruce seedlings oncompetitive mixed wood sites: a bioassay study[J]. Canada Journal of Forestry Research,1998,28:206~215.
    [12] Nilsson U, Gemmel P, Hallgren J E.Competing vegetation effects on initial growth of planted Piceaabies[J]. New Zealand Journal of Forestry Science,1986,26:84~98.
    [13] Salifu K F, Timmer V R.Nutrient retranslocation response of Picea mariana seedlings to nitrogensupply[J].Soil Science Society of America Journal,2001,65:905~913.
    [14] Malik V, Timmer V R.Interaction of nutrient-loaded black spruce seedlings with neighbouringvegetation in greenhouse environments[J]. Canada Journal of Forestry Research,1995,25:1017~1023.
    [15]魏红旭,徐程扬,马履一,等.不同指数施肥方法下长白落叶松播种苗的需肥规律[J].生态学报,2010,30(3):685~690.
    [16] Timmer VR. Exponential nutrient loading:a new fertilization technique to improve seedlingsperformance on competitive sites[J].New Forests,1996,13:275~295.
    [17] Oliet JA, TejadaM, Salifu K F, et al Performance and nutrient dynamics of holm oak(Quercus ilexL)seedlings in relation to nursery nutrient loading and post-transplant fertility[J]. European Journal ofForest Research,2009,128(3):253~263.
    [18] Salifu K F, JacobsD F, Birge ZK D.Nursery nitrogen loading improves field performance of barerootoak seedlings planted on abandoned mine lands [J]. Restoration Ecology,2009,17(3):339~349.
    [19] Close D C, Bail I, Hunter S, et al. Effects of exponential nutrient-loading on morphological and nitrogencharacteristics and on after planting performance of Eucalyptus globulus seedlings [J]. Forest Ecologyand Management,2005,205(1/2/3):397~403.
    [20] Van den Driessche R. Effects of nutrients on stock performance in the forest [J]//Van den Driessche R(ed). Mineral Nutritional in Conifer Seedlings. Florida: CRC Press,1991:229~260.
    [21] Floistad I S, Kohmamn K. Influence of nutrient supply on spring frost hardiness and time of bud breakin Norway spruce [Picea abies (L.)Karst.]seedlings [J]. New Forests,2004,27(1):1~11.
    [22] Imo M,Timmer V R. Vector diagnosis of nutrient dynamics in mesquite seedlings[J]. Forest Science,1997,43(2):268~273.
    [23] Quoreshi M, Timmer V R. Growth,nutrient dynamics,and ectomycorrhizal development of container-grown Picea mariana seedlings in response to exponential nutrient loading[J]. Canadian Journal ofForest Research,2000,30(2):191~201.
    [24]朱存福,李福秀,丁长秀.不同施肥方法对台湾相思苗木生长的影响[J].山东林业科技,2010,(1):28~30.
    [25]刘洲鸿,刘勇,段树生.不同水分条件下施肥对侧柏苗木生长及抗旱性的影响[J].北京林业大学学报,2002,24(5/6):56~60.
    [26]王冉,李吉跃,张方秋,等.不同施肥方法对马来沉香和土沉香苗期根系生长的影响[J].生态学报,2011,31(1):98~106.
    [27]陈竣,李贻铨,杨承栋.中国林木施肥与营养诊断研究现状[J].世界林业研究,1998,11(3):58~65.
    [28]杨石清,张余炳,周华光,等.马尾松苗木施肥效果研究[J].福建林学院学报,1996,16(3):22~228.
    [29]高椿翔,赵瑞青,贾改霞,等.速生杨扦插育苗施肥方法的研究[J].河北林业科技,2004(1):11~12.
    [30]黄仕键.南方红豆杉苗期施肥效应试验[J].华东森林经理,2005,19(4):25~28.
    [31]赵占合,姚延祷,张兰芳,等.不同施肥对沙地柏苗木生长的影响[J].山西农业大学学报:自然科学版,2007,27(3):250~253.
    [32] Larimer J,Struve D. Growth,dry weight and nitrogen distribution of red oak and‘autumn flame’redmaple under different fertility levels[J]. Journal of Environmental Horticulture,2002,20(1):28~35.
    [33] Manter D K,Kavanagh K L,Rose C L. Growth response of Douglas fir seedlings to nitrogen fertilization:importance of Rubisco activation state and respiration rates[J]. Tree Physiology,2005,25(8):1015~1021.
    [34] Graciano C,Goya J F,Frangi J L,et al. Fertilization with phosphorus increases soil nitrogen absorption inyoung plants of Eucalyptus grandis[J]. Forest Ecology and Management,2006,236(2/3):202~210.
    [35] Thomas D S,Montagu K D,Conroy J P. Leaf inorganic phosphorus as a potential indicator ofphosphorus status, photosynthesis and growth of Eucalyptus grandis seedlings[J]. Forest Ecology andManagement,2006,223(1/2/3):267~274.
    [36]徐大平.不同磷水平对不同种源尾叶桉的生长和养分吸收的影响[J].热带亚热带土壤科学,1997,6(2):76~81.
    [37]吴楚,王政权,范志强,等.不同氮浓度和形态比例对水曲柳幼苗叶绿素合成、光合作用以及生物量分配的影响[J].植物生态学报,2003,27(6):771~779.
    [38]郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005,25(6):1291~1297.
    [39]吴楚,王政权,孙海龙,等.氮磷供给对长白落叶松叶绿素合成、叶绿素荧光合光合速率的影响[J].林业科学,2005,41(4):31~36.
    [40]王慧娟,孟月娥,赵秀山,等.不同施肥水平对茶条槭生长和光合生理特性的影响[J].植物营养与肥料学报,2008,14(5):1023~1026
    [41]左海军,马履一,王梓,等:苗木施肥技术及其发展趋势[J].世界林业研究,2010,23(3):39~43
    [42] Aiyelaagbe I O O, Fagbayide J A, Makinde A I. Effects of N fertilization on the vegetative growth ofpassion fruit (Passiflora edulis f. flavicarpa)seedlings [J]. International Journal of Food,Agriculture andEnvironment,2005,3(3/4):62~64.
    [43] Ballard R. Optimum nitrogen rates for fertilization of loblolly pine plantations [J]. Southern Journal ofApplied Forestry,1981,5(4):212~216.
    [44]杨众家.不同氮磷钾处理对无患子幼龄林生长影响研究[J].安徽农学通报,2011,17(5):131~132.
    [45]刘梅,陈春伟,侯艳,等.新播长白落叶松苗期施肥效果分析[J].防护林科技,2006(2):14~16.
    [46]蔡伟建,窦霄,高捍东.氮磷钾配比施肥对杂交鹅掌楸幼林初期生长的影响[J].南京林业大学学报(自然科学版),2011,35(4):27~33.
    [47]钟宇,罗启高,冯茂松,等.氮磷钾配施对巨按木材纤维素含量的影响[J].生物数学学报,2011,26(4):666~674.
    [48]黄科,刘明月,何长征。氮磷钾配施对马铃薯净光合速率的影响研究[J].湖南农业科学2011,(15):53~55,59.
    [49]潘春扬,郑荔敏,黄珍发,等.花生测土配方施肥技术试验研究[J].现代农业科技,2013,(08):214~216.
    [50]莫汝叶.玉米“3414”施肥的效果[J].农技服务,2011,28(09):1296~1297.
    [51]郑丽,王建庆.麦盖提县棉花“3414”肥效试验[J].农村科技,2011,(10):15~16.
    [52]聂友雅,聂喜秀,邓春云,等.早稻“3414”肥效试验初报[J].安徽农学通报.2011,17(18):49~52.
    [53]江永,敖俊华,卢颖林,等.湛江市甘蔗“3414”肥料效应试验[J].广东农业科学,2011,(19):69~72.
    [54]王双喜,吴彦梅,侯永佳,等.单种冬小麦“3414”肥效试验研究[J].宁夏农林科技,2011,52(10):15~16,18.
    [55]李召平.冬种马铃薯氮磷钾肥料效应[J].福建农业科技,2011,(4):70~71.
    [56]李志军,高成平,魏样,郑秋霞,贺晓.神木县大豆“3414”肥效试验报告[J].陕西农业科学,2013,(02):86~87.
    [57]李永胜,杜建军,龙增群,等.氮磷钾配施对油麦菜肥料效应及硝酸盐含量的影响[J].仲恺农业工程学院学报.2012,(04):23~29.
    [58]付强,刘云彩,刘永刚,等.思茅松人工幼林“3414”施肥试验[J].西部林业科学,2011,40(1):66~70.
    [59]曹帮华,巩其亮,齐清.三倍体毛白杨苗期不同配方施肥效应的研究[J].山东农业大学学报:自然科学版,2004,35(4):512~5l6.
    [60]刘水娥,张方秋,陈祖旭,等. N、P、K营养元素不同配比对马占相思苗期生长的影响[J].林业科学研究,2002,15(2):163~168.
    [61]薛丹,陈金林,于彬,等.杨树苗木配方施肥试验[J].南京林业大学学报:自然科学版,2009,33(5):37~40.
    [62]梁坤南,潘一峰,刘文明.柚木苗期多因素施肥试验[J].林业科学研究,2005,18(5):535~540.
    [63]袁巍,皮兵.林业有机高效系列专用肥的推广与应用[J].湖南林业科技,2005,32(2):62~63.
    [64]曾令海,连辉明,何波祥,等.广东省林科院桉树专用肥规模化推广效果评价[J].广东林业科技,2006,2(4):59~62.
    [65] Hawkins B J, Henry G, King J. Response of western hemlock crosses to nitrogen and phosphorus supply[J]. New Forests,2000,20(2):135~143.
    [66] Warren C R, Adams M A. Phosphorus affects growth and partitioning of nitrogen to rubisco in Pinuspinaster[J]. Tree Physiology,2002,22(1):11~19.
    [67] Portsmuth A, Niinemets U. Interacting controls by light availability and nutrient supply on biomassallocation and growth of Betula pendula and B. pubescens seedlings [J]. Forest Ecology andManagement,2006,227(1/2):122~134.
    [68]张吉平,于学恩,许多.日本落叶松商品幼苗施肥效应的研究初报[J].辽宁林业科技,2003(2):17~19,43.
    [69]范里,仲秀林,陈卫平.雪松苗期施肥试验[J].江苏林业科技,2001,28(3):25~26,43.
    [70]刘寿坡,刘献忠,南健德.意大利214杨林地施肥效应研究[J].林业科学,1990,20(6):485~494.
    [71] Jose S, Merritt S, Ramsey C L. Growth, nutrition,photosynthesis and transpiration responses of longleafpine seedlings to light, water and nitrogen[J].Forest Ecology and Management,2003,180(1):335~344.
    [72]安国英,陈玉娥,牛三义,等.白榆幼林施肥效应的研究[J].河北林业科技,1996(3):1~3,26.
    [73]曲芬霞,吴桂容,姚霞震.西藏砂生槐施肥试验[J].贺州学院学报,2008(2):137~139.
    [74]周林,马以秀,潘勇,等.杨树林带施肥效应及其收获量[J].防护林科技,2008(5):57~58.
    [75] Justus von Liebig. Letters on modern agriculture [M]. London: Walton and Maberly,1859.
    [76]李贻铨.林木施肥与营养诊断[J].林业科学,1991,27(4):435~442.
    [77] Spillman W J. The Law of diminishing returns [M]. New York: World Book Company,1924.
    [78] Browne C A. Liebig and the law of the minimum [J]. American Association for the Advancement ofScience,1942,16:71~82.
    [79]李娜,曹继钊,唐黎明.不同施肥方式和施肥量对桉树生长量影响初探[J].广西林业科学,2009,38(02):102~106.
    [80]江松远,杨曾奖,徐大平,等.施肥对尾叶桉萌芽林生长的影响[J].林业科学研究.2002,15(6):666~671.
    [81]汤加荣.施肥对桉树幼林生长量的影响[J].防护林科技,2007,(6):28~30.
    [82]谢耀坚,陈帅飞,谭晓风.不同营养液对水培桉树采穗条生长发育的影响[J].林业科学,2007,43(12):144~148
    [83]沈云,吴兵,申文辉,等.尾巨桉人工林萌芽更新最佳经营模式技术[J].广西林业科技,2006,35:14~17.
    [84]林国祚,彭彦,谢耀坚.不同营养液下尾巨桉幼苗生长及生理特性的变化[J].热带作物学报,2012,33(3):499~504
    [85]陆梅,李宝福,俞元春.桉树施用腐植酸专用肥的营养效应及肥效的持续性分析[J].武夷科学,2007,23(1):69~76.
    [86]梁坤南,周文龙,李贻铨.施肥对尾叶桉MLA无性系幼林生物量及养分含量的影响[J].林业科学研究2004,17(3):327~333.
    [87]操国兴,谢德体.多枝桉叶氮磷钾含量季节变化与施肥效应的研究[J].生物学杂志,2003,20(3):14~15.
    [88]蓝佩玲,李淑仪,廖新荣,等.刚果2号桉幼林喷施微肥的效应[J],热带亚热带土壤科学,1997,6(4):299~301.
    [89]梁坤南,周文龙,李贻铨.尾叶桉实生林施肥6a试验研究[J].林业科学研究,2002,15(6):644~665.
    [90]武晓红.林地土壤肥力及理化性质研究[J].林业科技,2008,(01):15~16.
    [91]黄欣明.有机复混肥对桉树林地土壤理化性质的影响[J].大众科技,2008(11):169~170.
    [92]林德喜,罗水发,陈南舟.引种尾叶桉后前3年土壤变化研究[J].福建林学院学报,1998.18(3):235~237.
    [93]曹继钊,卢志锋,韦昌幸.广西速生桉施肥对林区内水体富营养物质的影响[J].生态环境,2007,16(2):373~377.
    [94]农必昌,张英,曹继钊,等.广西桉树造林区施肥与林区水体富营养化现状调查[J].广西林业科技,2006,35(3):147~151.
    [95] Garmash EV. Temperature controls a dependence of barley plant growth on mineral nutrition level [J].Russian Journal of Plant Physiology,2005,52(3):338~344.
    [96] Xu X J,TimmerV R. Biomass and nutrient dynamics of Chinese fir seedlings under conventional andexponential fertilization regimes[J]. Plant and Soil,1998,203:313~322.
    [97] Ingestad T,Agren G I. Plant nutrition and growth: basic principles[J]. Plant and Soil,1995,168/169:15~20.
    [98] Ingestad T, Lund A B. Theory and techniques for steady state mineral nutrition and growth of plants[J].Scandinavian Journal of Forest Research,1986,1:439~453.
    [99] Zabek LM, PrescottC E. Steady-state nutrition of hybrid poplar grown from un-rooted cuttings [J]. NewForests,2007,34(1):13~23.
    [100] Timmer V R,ArmstrongG.Growth and nutrition of containerized Pinus resinosa seedlings atexponentially increasing nutrient additions[J].Canadian Journal of Forest Research,1987,17:644~647.
    [101] Ingestad T.New concepts in soil fertility and plant nutrition as illustrated by research on forest treesand stands[J].Geoderma,1987,40:237~252.
    [102] Timmer V R,Miller B D.Effects of contrasting fertilization and irrigation regimes on biomass, nutrientsand water relations of container grown red pine seedlings[J]. New Forest,1991,5:335~348.
    [103] Hawkins B J,Burgess D,Mitchell A K. Growth and nutrient dynamics of western hemlock withconventional or exponential greenhouse fertilization and planting in different fertilityconditions[J].Canada Journal of Forestry Research,2005,35:1002~1016.
    [104] Quoreshi A M,Timmer V R.Exponential fertilization increases nutrient uptake and ectomycorrhizaldevelopment of black spruce seedlings[J]. Canada Journal of Forestry Research,1998,28:674~682.
    [105] Quoreshi A M,Timmer V R. Early outplanting performance of nutrient-loaded containerized blackspruce seedlings inoculated with Laccaria bicolor:a bioassay study[J].Canada Journal of ForestryResearch,2000,30:744~752.
    [106] Boivin J R,Miller B D,Timmer V R. Late-season fertilization of Picea mariana seedlings undergreenhouse culture: biomass and nutrient dynamics[J]. Annals of Forest Science,2002,59:255~264.
    [107] Mcalister J A,Timmer V R. Nutrient enrichment of white spruce seedlings during nursery culture andinitial plantation establishment[J]. Tree Physiology,1998,18:195~202.
    [108] Burgess D. Western hemlock and Douglas-fir seedling development with exponential rates of nutrientaddition [J].Forestry Science,1991,37:54~67.
    [109] Qu L,Quoreshi A M,Koike T. Root growth characteristics,biomass and nutrient dynamics of seedlingsof two larch species raised under different fertilization regimes[J]. Plant and Soil,2003,255:293~302.
    [110] Salifu K F,Timmer V R.Nitrogen retralocation response of young Picea mariana to nitrogen-15supply[J].Soil Science Society of America Journal,2003,67:309~318.
    [111] Timmer V R,Munson A D. Site-specific growth and nutrition of planted Picea mariana in the Ontarioclay belt. IV. Nitrogen-loading response[J]. Canada Journal of Forestry Research,1991,21:1058~1065.
    [112] Juntunen M L,Rikala R.Fertilization practice in Finnish forest nurseries from the stand point ofenvironmental impact[J].New Forests,2001,21:141~158.
    [113]郑槐明,贾慧君.植物稳态矿质营养理论与技术研究及展望[J].林业科学,1999,35(1):94~104.
    [114]贾慧君,Ingestad T.兰考泡桐和刺槐幼苗最适营养需要的研究[J].林业科学,1989,25(1):1~7.
    [115]贾慧君,郑槐明.兰考泡桐幼苗稳态矿质营养比较研究[J].北京林业大学学报,1993,15(3):12~19.
    [116]贾慧君,郑槐明,李江南,等.稳态营养原则在杉木、湿地松苗木施肥中的应用[J].北京林业大学学报,1994,16(4):65~75.
    [117]李素艳,孙向阳,刘凯英.指数施肥技术在草坪培育中的应用[J].北京林业大学学报,2003,25(4):44~48.
    [118]刘洲鸿,刘勇,段树生.不同水分条件下施肥对侧柏苗木生长及抗性的影响[J].北京林业大学学报,2002,24(5/6):56~61.
    [119]滕汉书.马尾松容器育苗轻型基质筛选及指数施肥研究[D].福州:福建农林大学,2004.
    [120]陈琳,曾杰,徐大平,等.氮素营养对西南桦幼苗生长及叶片养分状况的影响[J].林业科学,2010,46(5):35~40.
    [121] Salifu K F,Jacobs D F,Birge Z K D. Performance of nutrient-loaded red oak and white oak seedlings onmine lands in southern Indiana[J]. Rocky Mountain Research Station,2008a,57:65~71.
    [122] Salifu K F,Jacobs D F,Birge Z K D. Nursery nitrogen loading improves field performance of barerootoak seedlings planted on abandoned mine lands[J]. Restoration Ecology,2008b,11:1~12.
    [123] Miller B D,Timmer V R.. Nutrient dynamics and carbon partitioning in nutrient loaded Picea mariana(Mill) B. S. P. seedlings during hardening [J]. Scand Journal of Forestry Research,1997,12:122~129.
    [124] Miller B D,Timmer V R. Steady-state nutrition of Pinus resinosa seedlings response to nutrientloading,irrigation and hardening regimes[J]. Tree Physiology,1994,14:1327~1338.
    [125] Xu X J,Timmer V R. Growth and nitrogen nutrition of Chinese fir seedlings exposed to nutrientloading and fertilization[J]. Plant and Soil,1999,216:83~91.
    [126] Timmer V R,Teng Y. Pretransplant fertilizatoin of containerized Picea mariana seedlings: calibrationand bioassay growth response[J].Canada Journal of Forestry Research,2004,34:2089~2099.
    [127] Lim M T, Cousens J E. The internal transfer of nutrients in Scot pine stand. I. Biomasscomponents,current growth and their nutrient contents[J]. Forestry,1986,59:1~6.
    [128] Kim Y T, Glerum C, Stoddart J,et al. Effect of fertilization on free amino acid concentration in blackspruce and jack pine containerized seedlings[J]. Canada Journal of Forestry Research,1987,17:27~30.
    [129] Burdett A N. Physiological process in plantation establishment and development of specifications forforest planting stock[J]. Canada Journal of Forestry Research,1990,20:415~427.
    [130] Atkin O K. Reassessing the nitrogen relationships of artic plants:A mini-review[J]. Plant,Cell&Environment,1996,19:695~704.
    [131] Miller H G, Cooper J M, Miller J D, et al.. Nutrient cycles in pines and their adaptation to poor soils.Canada Journal of Forestry Research,1979,9:19~26.
    [132] Fagerstrom T, Lohm U. Growth in Scot pine (Pinus sylvestris):mechanisms of response to nitrogen[J].Oecologia,1977,26:305~315.
    [133] Munson A D, Margolis H A, Brand D G. Seasonal nutrient dynamics in white pine and white spruce inresponse to environmental manipulation[J]. Tree Physiology,1995,15:141~149.
    [134] Miller H G, Cooper J M, Milller J D. Effect of nitrogen supply on nutrient in litter fall and crownleaching in a stand of Corsican pine[J].Journal of Appled Ecology,1976.,13:233~256.
    [135] Proe M F, Millard P. Relationship between nutrient supply, nitrogen partitioning, and growth in youngSitka spruce (Picea sitchensis)[J].Tree Physiology,1994,14:75~88.
    [136]郝俊颖,刘洋.指数施肥理论及技术在林木上应用前景分析[J].吉林农业科技学院学报,2010,19(3):13~14.
    [137] Salifu K F, JacobsD F. Characterizing fertility targets and multi-element interactions in nursery cultureof Quercus rubra seedlings [J].Annals of Forest Science,2006,63:231~237.
    [138]杜阿朋,韦东艳,张婧,等.不同造林措施对桉树人工林地土壤养分的影响[J].桉树科技,2012,29(2):1~7.
    [139] Farley R A, Fitter A H. The responses of seven co-occurring woodland herbaceous perennials tolocalized nitrogen-rich patches [J]. Journal of Ecolopy,1999,87:849~869
    [140] King J S, ThomasR B, Strain B R.Morphology and tissue quality of seeding root systems of Pinusteada and Pinus ponderosas affected by varying CO2,temperature and nitrogen[J]. Plant and Soil.1997,195:107~119.
    [141] Rytter L, Ericsson T, Rytter R M. Effects of demand–driven fertilization on nutrient use,root: plantratio and field performance of Betula pendula and Picea abies[J]. Scandinavian Journal of ForestResearch,2003,18:401~415
    [142] Dumroese, R.K., Page-Dumroese,D.S. Exponential fertilization of Pinus monticola seedlings: nutrientuptake efficiency,leaching fractions,and early outplanting performance[J]. Canadian Journal of ForestResearch,2005,35:2961~2967.
    [143]彭玉华,郝海坤,曹艳云,等.大叶栎容器苗育苗期的施肥试验[J].西部林业科学,2010,39(4):8~14.
    [144]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2008.
    [145] Ulrich A, Hill F. Principles and practices of plant analysis [A]. Westerman R L. Soil test and plantanalysis part Ⅱ.[M].Msdison, US: Soil Science Society of America,1967,1~24.
    [146]黄益宗,冯宗炜,李志先,等.尾叶桉叶片氮磷钾钙镁硼元素营养诊断指标[J].生态学报,2002,22(8):1254~1259.
    [147]何茜,王冉,李吉跃,等.不同浓度指数施肥方法下马来沉香与土沉香苗期需肥规律[J].植物营养与肥料学报,2012,18(5):1193~1203.
    [148]吴志华,赵桂香,谢耀坚,等.缺素桉树叶片图像特征提取研究[J].热带作物学报,2011,32(4):1~7.
    [149] Robinson D, Hodge A, Fitter A.Constraints on the form and function of root systems∥Kroon HD,eds.Root Eeology. Heidelbelg: Springer Verlag,2003,1~26.
    [150] Liu Y Q, Sun X Y, Wang Y, et al. Effects of shades on the photosynthetic characteristics andchlorophyll fluorescence parameters of Urtica dioica [J]. Acta Ecologica Sinica,2007,27:34573464
    [151] Song C. Lorentzian model of root for understory yellow birch and sugar maple sapings[J]. Journal ofTheoretical Biology,2007,246:309~322.
    [152] Fransen B, Rroon H D, Berendse F. Root morphological plasticity and nutrient acquisition of Perennialgrasss Peeies from habitats of different nutrient availability[J].Oeeologia,1998,115(3):351~358.
    [153] Field C, Mooney H A. The photosynthesis-nitrogen relationship in wild plants//Givinish T J ed. On theEconomy of Plant Form and Function. Cambridge: Cambridge University Press,1986:25~55
    [154] Eissenstat D M. On the relationship between speeifie root length and the rate of root Proliferation; afield study suingeitr Usrootstoeks[J]. New Phytologist,1991,118:63~68.
    [155] Hodge A, Robinson D, Griffiths B S, Fitter A H. Why plants bother: root proliferation results inincreased nitrogen capture from an organic patch when two grasses compete[J]. Plant Cell andEnvironment,1999,22:811~820.
    [156] Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients [J]. New Phytologist,2004,162:9~24
    [157]林艳.桉树组培容器苗稳态营养调控技术及其机理[D].福州,福建农林大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700