己二腈催化加氢制备己二胺的工艺及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
己二胺是一种重要的化工原料,主要用于和己二酸反应生产尼龙66,和癸二酸反应生产尼龙610,同时,还可用于生产成聚亚胺羧酸酯泡沫塑料、涂料、粘合剂、橡胶助剂和漂白剂等等,随着科学技术的进步和化工新材料的不断开发,己二胺的用途越来越广泛。
     本文以乙醇为溶剂,雷尼镍为催化剂,对己二腈催化加氢制备己二胺的工艺条件进行研究及优化。设计了均匀实验及单因素实验,系统地考察了反应时间,反应温度,氢气压力,催化剂用量和搅拌速率对己二腈加氢工艺的影响。当在高压釜中加入144g己二腈及同体积无水乙醇时,得到了适宜的反应条件是:反应温度为75℃,反应时间为8h,催化剂加入量为己二腈质量的6.6%(9.5g),氢气压力为3.3Mpa及搅拌速率为500r·min-1时,转化率达到100%,收率达96%以上。
     在消除了内、外扩散影响的条件下,采用雷尼镍催化剂在间歇高压釜中进行了己二腈催化加氢反应动力学的研究。通过测定己二腈催化加氢过程中己二腈、氨基己腈和己二胺浓度随时间变化的c~t曲线,获得了己二腈催化加氢制备己二胺反应中两阶段的反应级数、速率常数和活化能等动力学参数。在温度328~358K,压力2~3.5 MPa范围内,己二腈催化加氢时对己二腈呈一级反应,对氢压呈1.4级反应;中间产物氨基己腈继续加氢形成己二胺时,对氨基己腈为零级反应,而对氢压则为1.3级反应。再对求得的动力学参数进行拟合,得到了己二腈催化加氢的动力学方程。
     本文利用激光监视装置,采用变温溶解法测定了己二胺在甲醇—水以及乙二醇—水中的溶解度。实验的温度范围为5℃~35℃,混合溶剂中水的变化范围为10%~30%。实验结果表明己二胺在不同体系中的溶解度均随温度的升高而增大,在同一温度下随含水量的升高而增大。并用简化的参数方程对实验测定结果进行了关联,计算所得的溶解度与实验结果符合良好。实验所得溶解度数据可对粗产品的分离和提纯提供参考依据。
Hexanediamine is a kind of important chemical raw material, mainly for producing nylon 66 reaction with adipic acid, and for producing nylon 610 reaction with sebacic acid. Recently, with the progress of technology and the development of novel chemical materials, hexanediamine also can be used to produce polyimide acid ester foams, coatings, adhesives, rubber chemicals and bleach, etc. And it has been more and more widely used.
     In the process of catalytic hydrogenation of adiponitrile to hexanediamine, ethanol was taken as solvent and Raney Ni as catalyst. Uniform experiments and single-factor experiments were designed to research the effect of reaction time,reaction temperature,hydrogen pressure, catalyst amount and stirring rate on adiponitrile hydrogenation reaction. The results showed that when the amount of adiponitrile was 144 grams, and the same volume of absolute ethylalcohol were used as solvent, the temperature was 75℃, reaction time was 8 hours, the ratio of catalyst mass was 6.6% of adiponitrile mass, hydrogen pressure was 3.3Mpa and stirring rate was 500r·min-1, the percent conversion reached 100% and the yield was more than 96%.
     The reaction kinetics of catalytic hydrogenation of adiponitrile on Raney-Ni catalyst had been studied in a high-pressure batch reactor. Under the condition of no inside and outside diffusion, the concentration of adiponitrile, aminocaproic nitrile and hexanediamine versus time over the Raney-Ni catalyst were measured. The kinetic parameters of catalytic hydrogenation of adiponitrile to hexanediamine such as reaction order, rate constant and activated energy in each step were obtained.The results show that in the condition of eliminating the influence of inner and outer diffuse, the catalytic hydrogenation of adiponitrile is the level 1 when the temperature is 328K to 358K and the pressure is 2-3.5MPa. As to hydrogen pressure is 1.4 level reaction; while Hexamethylene diamine formed by continuing to aid hydrogen to the interim production aminocaproicnitrile, the reaction is 0 level to aminocaproicnitrile and 1.3 level to hydrogen pressure. Dynamics function of catalyzing adiponitrile could be got by fitting the dynamics parameter which gives a solid theory basement to understand the reaction.
     In this dissertation, laser monitoring device was used, poikilothermic dissolution method was adopted to determine the solubility of hexanediamine in methanol-water and ethylene glycol-water system. The temperature range of this experiment is form 5℃to 35℃, Water range of the mixed solvent is from 10% to 30%. The results showed that hexanediamine's solubility increased with the temperature increasing in different systems, hexanediamine's solubility increased with the increasing of water content at the same temperature. And the experimental results were correlated by using simplified Parameter equation, the calculated results and the experimental data were in good correspondence. Solubility data obtained in this study can supply reference for the separation and purification of the crude products.
引文
[1]李文杰.已二胺的现状与发展[J].化工管理,2007(8):54-58
    [2]平子庆之.苄胺的制造法[P].日本,特开昭62-129257,1987
    [3]叶姣.陈声宗.苯甲腈液相催化加氢工艺[J].湖南化工,1998,28(5):12-14
    [4]叶姣,陈声宗,文生,刘庆辉,周善华.间苯二甲腈催化加氢工艺条件优化研究[J].现代化工,1998(12):19-20
    [5]姜海源,石福祥,张门兰.已二胺生产工艺[J].化学工程师,1997(6):46-47
    [6]李猛,崔宝军,徐晓沐.多相催化加氢动力学方程的建立与推导[J].化学与黏合,2005,27(2):90-95
    [7]唐培坤.中间体化学及工艺学[M].北京,化学工业出版社,1984
    [8]Mao,Z.B.; Luo,T.L.;Cheng,H.T.;Liang,M.;Liu.G.J. Intrinsic Kinetics of Catalytic Hydrogenation of Cardanol[J]. Ind.Eng.Chem.Res,2009,48(22):9910-9914
    [9]尹国平.二级连串反应动力学方程的求解[J].渭南师范学院学报,2005,5:38-39
    [10]张应茂,李再资,郑惠国,庄礼秋.葡萄糖催化加氢制山梨醇的动力学研究[J].化工学报,1991,4:475-481
    [11]唐红宁,李长海,王晶瑞.糠醛气相催化加氢制2-甲基呋喃及动力学初步研究[J].吉林化工学院学报,2004,21(1):63-65
    [12]李建伟,李英霞,陈标华.裂解汽油中唾盼硫在Co-Mo/Al2O3上的催化加氢宏观动力学[J].燃料化学学报,2005,33(5):576-582
    [13]Mercs,E.; Poraicu,M.; Carp,D. Kinetic study of diethly mateate synthesis. Lucr. The-Stiint: Chem Technolchem.Ses Comum[M]. Festivalului Cintarea Rom,1997
    [14]Toshior,Y.; Yoshio, I. Simmlation of Continuous Direct Esterification Process Between Terephthalic Acid and Ethylene Glycol [J]. Polym-Hast Technol.1989,28(8):811-876
    [15]Chawa,H.; Sthussain,S.;Zahed. Kinetics of Esterilication of Maleic Anhydride with Ethanol Catalyzed by Sulfuric Acid[J]. Indian J.Technol,1982,20(1):22-28
    [16]孙晓波,栾向海,毛治博,刘焕,刘国际.磷钨杂多酸催化合成戊二酸二甲酯宏观动力学研究[J].化学世界,2009,5:303-305
    [17]毛治博,孙晓波,任珂,刘国际.已二酸二甲酯合成动力学研究[J].化工时刊,2006,20(10):24-26
    [18]栾向海,孙晓波,石晓华,王宁宁,蒋登高.已二酸二正辛酯的催化合成及反应动力学[J].精细化工,2008,25(12:1232-1235
    [19]施介华,张谦,石程Raney-Ni催化剂上去氢芳樟醇催化加氢反应动力学[J].浙江工业大学学报,2006,34(6):606-610
    [20]Janssen,H.J.; Kruithof,A.J.; Steghuis,G.J., et al. Kinetics of the catalytic hydrogenationof 2,4-dinitrotoluene.Ⅱ.Modeling of the rea -ction rates and catalyst activity [J]. Ind.Eng. Chem. Res.,1990,29:1822-1829
    [21]鲁越青,陆维敏,王向宇,郑小明.二乙酰一肟催化加氧反应动力学的研究[J].分子催化,2000,14(2):147-150
    [22]张琪,吴指南.丁二酸二乙酯气相催化加氢本征动力。学研究[J].催化学报,1991,12(5):346-352
    [23]刘蒲,朱卫卫,殷元骐.琥珀酸酐均相催化加氢生成γ-丁内酯的反应动力学研究[J].化学研究,2002,13(1):7-10
    [24]Octave,L. Chemical reaction engineering(3rd et)[M]. New York:Hamilton Printing Company 2002,185-188
    [25]牛立金,刘荣勋,袁挽青.糠醛液相催化加氢反应动力学研究[J].北京化工学院学报.1992,19(4):17-21
    [26]张成中,李建伟.裂解汽油中环戊烯和笨乙烯催化加氢本征动力学研究[J].北京化工大学学报,2005,32(5):24-28
    [27]Mednikov,F.A.; Pasechnik,M.S.; ZHilnikov,V.I.;et al. Kinetics of the hydrogenation of rosin[J]. NauchTr, Leningrad Lesotekh Akad,1969,4:46-50
    [28]唐忠,陶庭树,冯仰渝.芳烃催化加氢反应动力学的研究[J].苏、冀、皖、赣、鄂石油学会第22届学术年会论文集,2004年
    [29]梅铭,李蕾,张红星.SBS选择性催化加氢动力学研究[J].北京化工大学学报,2004,31(4):82-86
    [30]Hougen,O.A.; Watson,K.M. Chemical Process Principle[M]. New York:Wiley,1947
    [31]Kut,O.M.; Brehlmann,T.; Mayer,F.;et al. Kinetics of liuid-phase reduction of 2,4-dimethyl nitrobenzene to 2,4-dimethylaniline by hydrogen with Pd/C as catalysts [J]. J.Chem. Technol. Biotechnol.;Biot-echnol.,1987,39:107-114
    [32]Wright.L.W. Sorbitol and Maintol[J]. Ind.Eng.Chem Chemteck.,1974,4(1):42-46
    [33]孙羽蒙,吴平东.对销基笨甲酸催化加氢本征动力学[J].化学反应工程与工艺,1999, 15(1):1-7
    [34]刘迎新.镍基催化剂上间一二硝基苯催化加氢反应性能及其反应动力学的研究[D].天津大学博士论文,2002
    [35]黄阳卫.葡萄糖加氢合成山梨醇Ru/U催化剂及动力学研究[D].浙江工业大学学报,2002,34(6):67-69
    [36]陈小鹏,王琳琳,阳承利,段文贵Raney镍上松香催化加氢本征动力学[J].化工学报,2002,53(5):522-526
    [37]Simonik,J.; Beranek,L. Kinetics of complex heterogeneous catalytic reactions. V.Parallel. Consecutive hydrogenation of croton-aldehyde crotonaldehyde [J]. J.Catal.,1972, (24): 348-356
    [38]陈小鹏,王琳琳,邓双,阳承利,童张法Raney镍上α-蒎烯催化加氢本征动力学[J].化学反应工程与工艺,2002,18(3):212-218
    [39]段文贵,陈小鹏,王琳琳.松香催化加氢本征动力学研究[J].林产化学与工业,2002,22(2):1-6
    [40]Walas SM著,韩世钧等译.化工相平衡[M].北京:中国石化出版社,1992
    [41]Fu-an Wang, Liu-cheng Wang, Jian-chi Song, Lei Wang, and Hai-song Chen. Solubilities of Bis(2,2,6,6-tetramethyl-4-piperidinyl) Maleate in Hexane, Heptane, Octane, m-Xylene, and Tetrahydrofuran from (253.15 to 310.15) K[J]. J.Chem.Eng.Data,2004,49:1539-1541
    [42]王福安,曹庭珠,赵天源,赵燕等.哇诺酮类药物的溶解度模型[J].化工学报,1996,47(5):615-620
    [43]Apelblat A, Manzurola E. Solubilities of o-acetylsalicylic,4-aminosalic,3,5-dinitrosalicylic, p-toluic acid and magesiun-DL-aspartate in water from T=(278 to 348)K[J]. Journal of Chemical Thermodynamics,1999,31:85-91
    [44]韩君,毋俊生.苯基膦酸在水中溶解度的测定及关联[J].辽宁化工,2006,35(6):363-365
    [45]韩金玉,肖剑,王华等.紫杉醇溶解度的测定与关联[J].化工学报,2001,52(1):64-67
    [46]Jiang Qin, Gao Guang-hua, Yu Yang-xin,et al. Solubility of sodium dimethyl Sophthalate-sulfonate in water and in water+ methanol containing Sodium sulfate[J]. J.Chem.Eng.Data,2000,45(2):292-294
    [47]董奕,马沛生,许文.顺丁烯二酸配在六氢化邻苯二甲酸二异丁酷、六氢化邻苯二甲酸二乙醋中溶解度的研究[J].高校化学工程学报,2000,14(2):160-163
    [48]Ma Peisheng, Chen Minghe, Dong Yi. Solid-Liquid Equilibria of Several Binary
    and Ternary Systems Containing Maleic Anhydride[J]. Chinese Journal of Chemical Engineering,2002,10(3):323-327
    [49]周彩荣,蒋登高,王斐.1,2-环已二醇溶解度的测定及关联[J].化工学报,2004,55(9):1413-1414
    [50]任保增,李晨,袁晓亮,王福安.三聚氰胺溶解度的测定与关联[J].化工学报,2003,54(7):1001-1003
    [51]任保增,李晨,李玉,等.三聚氰酸、三聚氰酸二酰胺、三聚氰酸—酰胺在乙醇中的溶解度[J].高校化工学报,2003,17(6):612-615
    [52]金克新,陈勇强,魏东炜.二氯苯同分异构体及1,2,4—三氯苯体系固液平衡测定[J].化学工业与工程,1992,9(3):17-25
    [53]胡英.流体相平衡研究的进展[J].化工进展,1989(1):1-7
    [54]Gmehling Jurgen. Present status of group-contribution methods for the synthesis and design of chemical processes[J]. Fluid Phase equilibria,1998,144:37-47
    [55]陈新志,侯虞钧.含固相物系相平衡研究的现状和进展[J].化工进展,1993(5):21-24
    [56]丁绪淮.工业结晶[M].北京:化学工业出版社,1985.
    [57]Wilson G M. Vapor-liquid equilibrium M. A new expression for the excess free energy of mixing[J]. J Am Chem. Soc.1964,86:127-130
    [58]Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. A I Ch E J,1968,14:135-144
    [59]Abrams D S, Prausnitz J M. Statistical thermodynamics of liquid mixtures:A new expression for the excess Gibbs energy of partly or completely miscible systems[J]. A I Ch EJ,1975,21:116-128
    [60]J.M.普劳斯尼茨等.骆赞椿等译.流体相平衡的分子热力学[M].北京:化学工业社,1990
    [61]Apelblat A, Manzurola E. Solubilities of o-acetylsalicylic,4-aminosalic,3,5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T=(278 to 348)K[J]. Journal of Chemical Thermodynamics,1999,31:85-91
    [62]Buchowski H, Kslazcak A and Pletrzyk S. Solvent activity along a saturation line and solubility of hydrogen-bonding solids[J]. J.Phys. Chem,1980(84):975-979
    [63]Li.X.L; Zhang,S.H. Study on esterification of acetic acid with ethanol by phosphorous modified HZSM-5 zeolite[J]. Speciality petrochemicals,1992(4):27-29
    [64]Ren,L.G; Gao,W.L.; Zhang,X.L. Esterification reaction mechanism on thesurface of SO2-4/ZrO2 solid superacid catalysts[J]. Journal of Fushunpetroleum institute.2003. 23(1):33-36
    [65]刘华,万建平.均匀试验设计的方法与应用[J].阜阳师范学院学报(自燃科学版),2003,20(1):12-16
    [66]方开泰.均匀试验设计的理论、方法和应用—历史回顾[J].数理统计与管理,2004,23(3):69-80
    [67]李波,泽民,李方等.试验设计与优化[J].中国皮革,2003,32(1):26-28
    [68]胡延韶.已二腈催化加氢制已二胺[J].化工生产与技术,2005,12(1):43-44
    [69]华燕,赵铎.低压加氢已二胺生产中提高反应产能的有效途径[J].河南化工,2006,2(7):32-33.
    [70]陈尚标,丁浩军,顾建燕.癸二腈加氢制癸二胺的工艺研究[J].精细化工中间体,2008,38(6):44-47.
    [71]赵磊,王彩云,陈吉祥等.已二腈加氢合成6-氨基已腈的研究进展[J].石油化工,2007,36(5):519-526
    [72]赵会吉,邢金仙,殷长龙等.辛二腈加氢制取辛二胺的研究[J].石油大学学报(自燃科学版),2001,25(3):59-61
    [73]Brahme,P.H.; Doralswamy,L.K. Mpdeling of Slurry Reaction,Hydrogenation of Glucose on Raney Nickel.Ind.Eng.Chem.1976,15(1):130-132
    [74]Li D.Q, Liu J.C, Liu D.Z, Wang F.A. Solubilities of terephthalaldehydic P-toluie, benzoic terephthalic, and isophthalic acids in N, N-dimethylofmramide from 294.75K to 370.75K[J]. Fluid Phase Eqilibria,2002,200(1):69-74
    [75]Li D.Q, Liu D.Z, Wang F.A. Solubilities of 4-methylbeznoic acid between 288K and 370K[J]. J.Chem.Eng.Data,2001,46(2):234-236
    [76]王莹,雒廷亮,李延勋,刘国际.已二胺溶解度的测定及关联[J].化工中间体,2008(12):54-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700