海水太阳池的实验和数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐梯度太阳池(SGSP)作为兼集热和长期蓄热为一体的能量利用装置,是当前新能源应用领域一个活跃的课题。本文所提出的海水太阳池模型是对盐梯度太阳池的发展和创新,具有造价低廉、运行简便、实用性强的优点。
     本文主要针对海水非对流型盐梯度太阳池,进行如下主要工作:
     1.建立了海水太阳池的物理模型,重点进行可用太阳辐射能近似计算、太阳池内温度分布和盐梯度分布的理论计算、以及太阳池的热稳定性和能量平衡及效率的分析等;
     2.完成了海水太阳池的建造、池水灌注、盐梯度保持等一系列实验工作,对太阳池进行了持续、简便的测量,得到了大量有关温度分布和盐浓度分布的数据;
     3.应用有限差分法对太阳池内的瞬态行为进行模拟,研究各层厚度及取热速率等因素对温度场的影响,研究温度场的演变情况等;
     4.讨论了盐水的辐射透射率对太阳池性能的影响,比较了三种典型的太阳池辐射透射模型,并且分析辐射透射率对温度场分布的影响。
     本文得到的主要结论包括理论模型、实验和数值模拟三个方面,对于温度场和浓度场的分布、各典型参数的影响、辐射透射率的影响等重要问题均有相应结论。
A salt-gradient solar pond (SGSP) is an excellent design for energy collection as well as for long-term energy storage, and it is also an active topic in the new energy source application domain. The seawater solar pond model is a development and innovation from the traditional SGSP, with the character of lower cost, simpler operation and more practical.
    This thesis has carried out the following working according to the seawater non-convection solar pond:
    1. Building up the model of seawater solar pond, then the approximate calculation about available solar radiation, the theory calculation of temperature and salt gradient distribution in the solar pond, and the analysis of the thermal stability, energy balance and efficiency have been emphasized.
    2. Completing the construction, filling and salt gradient maintenance of the pond. With the chronic and simple measurements, quantity of data about temperature and salt concentration distribution has been acquired.
    3. Using finite difference approach to simulate the transient performance of the solar pond, and study the effect of each layer's thickness and heat extraction on the temperature distribution, and the evolvement of the temperature profile.
    4. Discussing the effect of brine's radiation transmission on the thermal performance of the solar pond. Comparisons were made among three typical models for radiation transmission, and a numerical simulation was performed to study the effect of the radiation transmission on the temperature profile.
    The conclusion acquired from this thesis included theory model, experiment and numerical simulation. The temperature and concentration distribution, each typical parameter's effect and the radiation transmission's effect have also been concluded.
引文
[1] Hershel Weinberger,The Physics of the Solar Pond,Solar Energy,1964,Vol 8(2) :pp.45-56.
    [2] An Rabl,Carl E.Nielsen,Solar Ponds for Space Heating,Solar Energy,1975,Vol 17: pp.1-12.
    [3] H.C.Bryant,Ian Colbeck,A Solar Pond for London? Solar Energy,1977,Vol 19: pp.321-322.
    [4] A.Akbbarzadeh,G.Ahmadi,Computer Simulation of the Performance of A Solar Pond In the Southern Part of Iran,Solar Energy,1980,Vol 24:pp.143-151.
    [5] C.F.Kooi,The Steady State Salt Gradient Solar Pond,Solar Energy,1979,Vol 23: pp.37-45.
    [6] M.N.A.Hawlader,B.J.Brinkworth,An Analysis of the Non-Convecting Solar Pond, Solar Energy,1981,Vol 27:pp.195-204.
    [7] Syed A.Shah,Ted H.Short and R.Peter Fynn,Modeling and Testing A Salt Gradient Solar Pond in Northeast Ohio,Solar Energy,1981,Vol 27:pp.393-401.
    [8] Y.F.Wang,A.Akbarzadeh,A Parametric Study On Solar Ponds,Solar Energy,1983, Vol 30:pp.555-562.
    [9] Z.Panahi,J.C.Batty,J.P.Riley,Numerical Simulation of the Performance of a Salt-Gradient Solar Pond,JSEE,1983,Vol 105:pp.369-374.
    [10] K.A.Meyer,A Numerical Model to Describe the Layer Behavior in Salt-Gradient Solar Ponds,JSEE,1983,Vol 105:pp.341-346.
    [11] S.G.Schladow,The Upper Mixed Zone of A Salt Gradient Solar Pond:Its Dynamics,Prediction and Control,Solar Energy,1980,Vol 33:pp.417-426.
    [12] P.D.Lund and J.T.Routh,Feasibility of Solar Pond Heating For Northern Cold Climates, Solar Energy,1984,Vol 33:pp.209-215.
    [13] J.R.Hull,K.V.Liu and W.T.Sha,Dependence of Ground Heat Loss Upon Solar Pond Size and Perimeter Insulation,Solar Energy,1984,Vol 33:pp.25-33.
    [14] J.R.Hull,Solar Pond Ground heat Loss to A Moving Water Table,Solar Energy,1985, Vol 35:pp.211-217.
    [15] V.V.N.Kishore and Veena Joshi,A Practical Collector Efficiency Equation For Nonconvecting Solar Ponds,Solar Energy,1984,Vol 23:pp.391-395.
    [16] F.Zangrando,A Simple Method to Establish Salt Gradient Solar Ponds,Solar
    
    Energy,1980,Vol 25:pp.467-470.
    [17] J.R.Hull,Maintenance of Brine Transparency in Salinity Gradient Solar Ponds,JSEE, 1990,Vol 112:pp.65-68.
    [18] A.Vitner and S.Sarig,Variations of Temperature,Concentration,and Supersaturation in A Laboratory-Scale Saturated Solar Pond,Solar Energy,1990,Vol 45:pp.185-188.
    [19] T.A.Newell,R.G.Cowie,Construction and Operarion Activities At the University of Illinois Sat Gradient Solar Pond,Solar Energy,1990,Vol 45:pp.231-239.
    [20] Kimio Kanayama,Hideo Inaba,Hiromu Baba and Takeyuki Fukuda,Experiment and Analysis of Practical-Scale solar Pond Stabilized With Salt Gradient,Solar Energy, 1991,Vol 46:pp.353-359.
    [21] B.S.Sherman and Jorg Imberger,Control of a Solar Pond,Solar Energy,1991,Vol 46: pp.71-81.
    [22] Sergio Folchitto,Seawater As Salt and Water Source For Solar Ponds,Solar Energy, 1991,Vol.46:pp.343-351.
    [23] B.S.Sherman,Gradient Maintenance:Using Discrete Brine Injections in a Salt Gradient Solar Pond,Solar Energy,1992,Vol 49:pp.321-327.
    [24] M.Hassairi,M.J.Safi and S.Chibani,Natural Brine Solar Pond:An Experimental Study,Solar Energy,2001,Vol 70:pp.45-50.
    [25] G.Lesino,L.Saravia and D.Galli,Industrial Production of Sodium Sulfate using Solar Ponds,Solar Energy,1990,Vol 45:pp.215-219.
    [26] H.Z.Tabor,B.Doron,The Beith Ha'arava 5 MW(e) Solar Pond Power Plant (SPPP)-Progress Report,Solar Energy,1990,Vol 45:pp.247-253.
    [27] Francisco Collado and Preston lowrey,Temperature,Thermal Efficiency,and Gradient Performance From Two Seawater-SZ Solar Ponds,Solar Energy,1991,vol 46: pp361-370.
    [28] F.Munoz,R.Almanza,A Survey of Solar Pond Developments,Energy,1992,Vol 17: pp.927-938.
    [29] Z.M.Zhang,Y.F.Wang,A Study On the Thermal Storage of the Ground Beneath Solar Ponds By Computer Simulation,Solar Energy,1990,vol 44:pp.243-248.
    [30] A.Akbarzadeh,P.Golding,The Importannce of Wall Angle for Stability in Solar Ponds,Solar Energy,1992,vol 49:pp.123-126.
    [31] K.A.Antonopoulos,E.E.Rogdakis,Correlations for the Yearly or Seasonally Optimum Salt-Gradient Solar Pond In Greece,Solar Energy,1993,vol 50:pp.417-424.
    [32] Meng Peinan,Zheng Hongfei,Optimum Thickness of the Gradient Layer and
    
    Maximum Energy Gains of a Solar Pond, Energy, 1994, vol 8:pp.901-904.
    [33]J. Wang, j. Seyed-Yagoobi, Effect of Water Turbidity On Thermal Performance of A Salt-Gradient Solar Pond, Solar Energy, 1995, vol 54: pp.301—308.
    [34]K. Al-Jamal, S. khashan, Parametric Study of a Solar Pond for Northern Jordan, Energy, 1996, vol 21: pp.939-946.
    [35]F. B. Alagao, Simulation of the Transient Behavior of a Closed-Cycle Salt-Gradient Solar Pond, Solar Energy, 1996, vol 56: pp.245-260.
    [36]R.kayali, S. Bozdemir and K. Kiymac, A Rectangular Solar Pond Model Incorporating Empirical functions for Air and Soil Temperratures, Solar Energy, 1998, vol 46: pp.345-353.
    [37]宋爱国,徐河,李申生,非对流型实验性太阳池的研究,太阳能学报,1984,第5卷,第1期:pp.111-115,
    [38]徐河,李申生,太阳池的研究与应用,太阳能学报,1983,第4卷,第1期:pp.74-86.
    [39]马文麒,李申生,太阳池和池下土壤的跨季度蓄热,太阳能学报,1984,第5卷,第4期:pp.358—367.
    [40]王义方,张卓敏,用计算机模拟法研究热量提取方式对太阳池动态性能的影响,太阳能学报,1987,第8卷,第2期:pp.109—117.
    [41]徐河,C. E. Nielsen, 盐梯度太阳池内部稳定性的实用判据和监测方法,太阳能学报,1990,第11卷,第1期:pp.79-87.
    [42]郑宏飞,蒙沛南,周科,圆形斜壁氯化镁溶液太阳池梯度区温度分布的研究,太阳能学报,1992,第13卷,第4期;pp.353-357.
    [43]蒙沛南,郑宏飞,洪军,氯化镁溶液太阳池梯度区浓度分布的研究,新能源,1992,第14卷,第2期:pp.1—3.
    [44]邸乃力,李申生,微型太阳池不同盖层的对比实验研究,太阳能学报,1988,第9卷,第3期:卯.332—337.
    [45]叶晓明,宋爱国,李申生,太阳池盐水溶液的折射率,太阳能学报,1987,第8卷,第1期:pp.241—247.
    [46]李申生,全饱和型太阳池的热稳定性条件,太阳98学报,1995,第16卷,第4期:pp.333—339.
    [47]葛新石,黄护林,带有透明蜂窝漂浮式选择性吸热器的小型净水太阳池数值模拟分析,太阳能学报,1995,第16卷,第3期:pp.240—246.
    [48]邱国全,李业发,喷射集热器型淡水太阳池的实验研究,新能源,1999,21(6):pp.5—9.
    [49]郑宏飞,蒙沛南,动态太阳池的火用分析,新能源,2000,22(3):pp.1—4,15.
    
    
    [50]蒋展鹏,祝万鹏编著,环境工程监测,清华大学出版社
    [51]王福明,贺正辉,索瑾编著,应用数值计算方法,科学出版社
    [52]陆金甫,顾丽珍,陈景良编著,偏微分方程差分方法,高等教育出版社
    [53]俞佐平,陆煜编著,传热学,高等教育出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700