古尔班通古特沙漠梭梭与白梭梭利用降雨的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分是干旱区植被生长的主要限制因子,因此干旱区植被对降雨利用的有效性就显的至关重要。梭梭与白梭梭是古尔班通古特沙漠的建群种,因此研究两个物种的用水机制,对于在当前环境变化的背景下预测其种群发展趋势,提出科学合理的保护措施尤为重要。本文通过研究对古尔班通古特沙漠建群种梭梭与白梭梭对降水再配,0~100土层内的根系分布和同化枝的水分特性,来分析梭梭与白梭梭如何利用降雨,及二者利用降雨有效性之间的差异。结果发现:
     (1)在30mm/h的降雨强度下,梭梭与白梭梭的茎流率、穿透率、截留率分别为7.3±0.47%、85.0±0.43%、7.7±0.71%和6.7±0.23%、84.1±1.05%、9.2±1.04%;在20mm/h的降雨强度下,梭梭与白梭梭的茎流率、穿透率、截留率分别为16.7±1.37%、77.8±0.78%、5.3±0.77%和19.2±1.42%、75.6±1.06%、5.2±0.79%。方差分析表明梭梭与白梭梭在相同的降雨强度下,对降雨的再分配无显著差异,但是降雨强度可以显著影响其各自降雨的再分配。
     (2)回归分析表明,茎流量和穿透水量与降雨量之间存在显著的线性关系,截留量与穿透水量之间呈指数关系;茎流率、穿透率和截留率与降雨量之间均呈显著的对数关系。
     (3)无论在哪种降雨强度下白梭梭的茎流汇集率均大于梭梭的汇集率。在30mm/h降雨强度下,梭梭与白梭梭汇集率平均值分别为34.1和43.1;在20mm/h的降雨强度下,梭梭与白梭梭的汇集率平均值分别为70.6和100.2。
     (4)梭梭与白梭梭的水平根系主要分布在0~60cm的浅层土壤里,分别占总侧根的96%和86%。白梭梭在0~60cm浅层土壤根系发达,全部侧根平均值为252.5条,其中直径<1mm的侧根平均值为207.5条。与之相对,梭梭在0~60cm的浅层土壤内侧根稀少,全部侧根平均值为25.25条,而直径<1mm的侧根几乎没有,平均值仅为0.75条。直径为1~5mm和>5mm的白梭梭侧根的水平伸展距离平均值分别为梭梭侧根水平伸展距离平均值的2.2和3.1倍。
     (5)梭梭与白梭梭的同化枝均可以通过同化枝吸水。在浸泡10min时,梭梭与白梭梭同化枝的吸水率分别为5.3%和4.0%;在浸泡20min后梭梭与白梭梭同化枝的吸水率就达到9.8%和7.4%。
     (6)自然风干失水实验的同化枝的干重鲜重比均大于吸水实验的同化枝的干重鲜重比,表明梭梭与白梭梭枝条在浸水过程中有营养元素析出,同样暗示在降雨通过冠层时,梭梭与白梭梭可以通过淋溶将营养元素输送到冠下,尤其是植株基部。
     综合以上研究可以认为,白梭梭主要通过增加茎流和地下根系协同作用,来充分的利用降雨;梭梭则只能十分有限的利用降雨,而趋向于利用地下水。
Water is the main limiting factor of the vegetation that growth in arid areas, so rainfall use efficiency of arid vegetation is very important. Haloxylon ammodendron and Haloxylon persicum are dominant species of Gurbantonggut desert, so study the water use mechanism of them is very important to predict the develop of population and give the scientific protect measurement in the climate change background. This paper in order to analysis how H. ammodendron and H. persicum use of rainfall, and rainfall use efficiency different of the two species by study rainfall redistribution, root distribution in less than 100cm depth and the water traits of the two species. The results showed that:
     (1) In 30mm/h rainfall intensity, stemflow, throughfall, interception of H. ammodendron and H. persicum are 7.3±0.47%,85.0±0.43%,7.7±0.71% and 6.7±0.23%,84.1±1.05%, 9.2±1.04%; in 20mm/h rainfall intensity, stemflow, throughfall, interception of H. ammodendron and H. persicum are 16.7±1.37%,77.8±0.78%,5.3±0.77% and 19.2±1.42%, 75.6±1.06%,5.2±0.79%. AVNOA shows that rainfall redistribution was no significant difference of H. ammodendron and H. persicum in the same rainfall intensity, but rainfall intensity can significantly affect their rainfall redistribution, respectively.
     (2) Regression analysis indicate that stemflow(mm) and throughfall(mm) of H. ammodendron and H. persicum are significant linear relationship and interception(mm) is a significant exponentially with rainfall depth. Stemflow rate, throughfall rate and interception rate are significant logarithmic relationship with rainfall depth.
     (3) Whether in each of the two simulate rainfall intensity, funneling ratio of H. persicum is large than it of H. ammodendron, In 30mm/h rainfall intensity, the average funneling ration of H. ammodendron and H. persicum are 34.1 and 43.1, respectively; in 30mm/h rainfall intensity, the average funneling ration of H. ammodendron and H. persicum are 70.6 and 100.2, respectively.
     (4) The lateral root of H, ammodendron and H. persicum mainly distribute in 0~60cm soil layer, they are occupied 96% and 86% of all lateral roots. The lateral roots of H. persicum are very abundance in 0-60cm soil layer, the average number of all lateral roots is 252.5, but in which diameter5mm.
     (5) H. ammodendron and H. persicum can absorb water by assimilation twig. When submerge in water for 10 minutes the assimilation twig water absorption are 5.3% and 4.0%; for 20 minutes, the water absorption are 9.8% and 7.4%.
     (6) The dry weight of air dry water loss experiment assimilation twig is larger than it of assimilation twig water absorb experiment of the two species. This indicates that the assimilation twig has loss nutrient when it is submerged in water, this also implies that stemflow and throughfall can concentrate nutrient from the assimilation twig.
     Summarize the study above can conclude that H. persicum use rainfall more efficiency by distribute more water to stemflow and cooperate with root distribution. H. ammodendron use rainfall very little, but prefer to use ground water.
引文
[1]Aboal J R, Moralesb D, Hernandezc M, et al. The measurement and modelling of the variation of stemflow in a laurel forest in Tenerife, Canary Islands[J]. Journal of hydrology,1999,211:161-175.
    [2]Bui E N, Box J E. Stemflow, rain throughfall, and erosion under canopies of corn and sorghum[J]. Soil Science Society of America,1992,56:242-247.
    [3]Carlyle-Moses D E. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community[J]. Journal of Arid Environments,2004,58:181-202.
    [4]Chang S C, Matzner E. The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand[J]. Hydrological Processes,2000,14:135-144.
    [5]Cornelissen J H C. Lavorel A J, Gamier S B, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany,2003,51:335-380.
    [6]Crabtree R E, Trudgill S T. Hillslope hydrochemistry and stream response on wooded, permeable bedrock:the role of stemflow[J]. Journal of Hydrology,1985,80:161-178.
    [7]Crockford R H, Richardson D P. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate[J]. Hydrological Processes,2000,14:2903-2920.
    [8]David D B, Nathan G M, Kelly L G, et al. Foliar absorption of intercepted rainfall improves woody plant water status most during drought[J]. Ecology,2008,89(1):41-47.
    [9]Domingo F, Sanchez G, Moro M J, et al. Measurement and modeling of rainfall interception by three semi-arid canopies[J]. Agricultural and Forest Meteorology,1998,91:275-292.
    [10]Dunkerley D L. Measuring interception loss and canopy storage in dryland vegetation:a brief review and evaluation of available research strategies[J]. Hydrological Processes,2000,14:669-678.
    [11]Dunkerley D L. Intra-storm evaporation as a component of canopy interception loss in dryland shrubs: observations from Fowlers Gap, Australia[J]. Hydrological Processes,2008,22:1985-1995.
    [12]Durocher M G. Monitoring spatial variability of forest interception [J]. Hydrological Processes,1990,4: 215-229.
    [13]Ford E D, Deans J D. The effects of canopy structure on stemflow, throughfall and interception loss in a young sitka spruce[J]. Journal of Applied Ecology,1978,15:905-917.
    [14]Gomez J A, Vanderlinden K, Girldez J V, et al. Rainfall concentration under olive trees[J]. Agricultural Water Management,2002,55:53-70.
    [15]Herwitz S R. Infiltration-excess caused by stemflow in a cyclone-prone tropical rainforest[J]. Earth Surface Processes and Landforms,1986,11:401-412.
    [16]Herwitz, S.R., Levia, D.F. Jr. Mid-winter stemflow drainage from bigtooth aspen (Populus grandidentata Michx.) in central Massachusetts. Hydrol. Process.1997,11:169-175.
    [17]Keim R F, Tromp-van Meerveld H J, McDonnell J J. A virtual experiment on the effects of evaporation and intensity smoothing by canopy interception on subsurface stormflow generation[J]. Journal of Hydrology,2006,327 (3-4):352-364.
    [18]Kittredge J, Loughead H J, Mazurak A. Interception and stemflow in a pine plantation[J]. Journal of Forestry,1941,39:505-522.
    [19]Levia D F, Frost E E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems [J]. Journal of Hydrology,2003,274: 1-29.
    [20]Liang Wei-Li, Kosugi K, Mizuyama T. Heterogeneous soil water dynamics around a tree growing on a steep hillslope[J]. Vadose Zone Journal,2007,16 (4):879-889.
    [21]Liang Wei-Li, Kenichirou Kosugi, Takahisa Mizuyama. Characteristics of stemflow for tall stewartia (Stewartia monadelpha) growing on a hillslope[J]. Journal of Hydrology,2009,378:168-178.
    [22]Limm E B, Simonin K A, Bothman A G, et al. Foliar water uptake:a common water acquisition strategy for plants of the redwood forest[J]. Oecologia,2009,161:449-459
    [23]Lloyd C R, Marques A D O. Spatial viability of throughfall and stemflow measurements in Amazonian rainforest[J]. Agricultural and Forest Meteorology,1988,72:63-73.
    [24]Loescher H W, Powers J S, Oberbauer S F. Spatial variation of throughfall volume in an old-growth tropical wet forest, Costa Rica[J]. Journal of Tropical Ecology,2002,18:397-407.
    [25]Marin C, Bouten W, Sevink J. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia[J]. Journal of Hydrology,2000,237:40-57.
    [26]Martinez-Meza E, Whitford W G. Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs[J]. Journal of Arid Environments,1996,32:271-287.
    [27]Muoghalu J I, Oakhumen A. Nutrient content of incident rainfall, throughfall and stemflow in a Nigerian secondary lowland forest[J]. Applied Vegetation Science,2000,3:181-188.
    [28]Muzylo A, Llorens P, Valente F, et al. A review of rainfall interception modeling[J]. Journal of Hydrology,2009,370:191-206.
    [29]Navar J,Bryan R B.Interception loss and rainfall redistribution by three semi-arid growing shrubs in northeastern Mexico[J]. Journal of Hydrology,1990,115:51-63.
    [30]Navar J. The causes of stemflow variation in three semi-arid growing species of northeastern Mexico[J]. Journal of Hydrology,1993,145:175-190.
    [31]Navar J, Carlyle-Moses D E, Alfonso M M. Interception loss from the Tamaulipan matorral thornscrub of north-eastern Mexico:an application of the Gash analytical interception loss model[J]. Journal of Arid Environments,1999a,41:1-10.
    [32]Navar J, Charles F, Jurado E. Spatial variations of interception loss components by Tamaulipan thornscrub in northeastern Mexico[J]. Forest Ecology and Management 1999b,124:231-239.
    [33]Nea] C, Robson A J, et al. Relationships between precipitation, stemflow, and throughfall for a lowland beech plantation, Black Wood, Hampshire, southern England:findings on interception at a forest edge and the effects of storm damage[J]. Journal of Hydrology,1993,146(1):221-233.
    [34]Nihlgard B. Precipitation, its chemical composition and effect on soil water in a beech and a spruce forest in south Sweden[J]. Oikos,1970,21:208-217.
    [35]Nulsen R A, Bligh K J, Baxter I N, et al. The fate of rainfall in a mallee and heath vegetated catchment in southern western Australia [J]. Australian journal of ecology,1986,11:361-371
    [36]Owens M K, Lyons R K, Alejandro C L. Rainfall partitioning within semiarid juniper communities: effects of event size and canopy cover[J]. Hydrological Processes,2006,20:3179-3189.
    [37]Park A, Cameron J L. The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation[J]. Forest Ecology and Management,2008,255:1915-1925.
    [38]Pressland A J. Rainfall partitioning by an arid woodland (Acacia aneura F. Muell.) in south-western Queensland[J]. Australian Journal of Botany,1973,21:235-245.
    [39]Pressland A J. Soil moisture redistribution as affected by throughfall and stemflow in an arid zone shrub community[J]. Australian Journal of Botany,1976,24:641-649.
    [40]Price A G, Dunham K, Carleton T, Band L. Variability of water fluxes through the black spruce (Picea mariana) canopy and feather moss (Pleurozium schreberi) carpet in the boreal forest of northern Manitoba[J]. Journal of hydrology,1997,196:310-323.
    [41]Rodrigo A, Avila A, Rodh F. The chemistry of precipitation, throughfall and stemflow in two holm oak (Quercus ilex L.) forests under a contrasted pollution environment in NE Spain[J]. The Science of The Total Environment,2003,305:195-205.
    [42]Rogerson T L, Byrnes W R. Net rainfall under hardwoods and red pine in central Pennsylvania [J]. Water Resources Research,1968,4:55-57.
    [43]Schrijver A D, Guy Geudens, Laurent Augusto, et al. The effect of forest type on throughfall deposition and seepage flux:a review[J]. Oecologia,2007,153:663-674.
    [44]Shachnovich Y, Berliner P R, Bar P. Rainfall interception and spatial distribution of throughfall in a pine forest planted in an arid zone[J]. Journal of Hydrology,2008,349:168-177.
    [45]Sinun W, Meng W W, Douglas I. Throughfall, stemflow, overland flow and throughflow in the Ulu Segama rain forest, Saban, Malaysia[J]. Philosophical Transactions:Biological Sciences,1992,335: 389-395.
    [46]Slatyer R O. Measurement of precipitation, interception by an arid plant community (Acacia aneura F.Muell.)[J]. Arid Zone Research,1965,25:181-192.
    [47]Sood V K, Singh R, Bhatia. Throughfall, stemflow and canopy interception in three hardwood tree species around Shimla, Himachal Pradesh[J]. Journal of Forest,1993,16(1):39-44.
    [48]Sperry J S, Hacke U G. Desert shrub water relations with respect to soil characteristics and plant functional type[J]. Functional Ecology,2002,16:367-378.
    [49]Tang C. Interception and recharge processes beneath a Pinus elliotii forest[J]. Hydrological Processes, 1996,10:1427-1434.
    [50]Tarrant R F, Lu K C, Chen C S. Nitrogen content of precipitation in a coastal Oregon forest opening[J]. Tellus,1968,20(3):554-556.
    [51]Tiedemann A R, Helvey J D, Anderson T D. Effects of chemical defoliation of Abies grandis habitat on amounts and chemistry of throughfall and stemflow[J]. Journal of Environmental Quality,1980,9: 320-328.
    [52]Tromble J M. Water interception by two arid land shrubs[J]. Journal of Arid Environments,1987,15: 65-70.
    [53]Whitford W G, Anderson J, Rice P M. Stemflow contribution to the'fertile island'effect in creosotebush, Larrea tridentate[J]. Journal of Arid Environment,1997,35:451-457.
    [54]Xu Hao, Li Yan. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J]. Plant and Soil,2006,285:5-17.
    [55]Xu Hao, Li Yan, Xu Guiqing, et al. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation[J]. Plant Cell and Environment, 2007,30:399-409.
    [56]阿拉木萨,蒋德明,裴铁璠.沙地人工小叶锦鸡儿植被根系分布与-土壤水分关系研究[J].水土保持学报,2003,17(3):78-81.
    [57]陈步峰,周光益,曾庆波,等.热带山地雨林生态系统水文动态特征的研究[J].植物生态学报,1998,22(1):68-75.
    [58]陈钧杰,蒋进,付恒飞,等.古尔班通古特沙漠腹地十壤水分动态[J].干旱区地理,2009,32(4):537-543.
    [59]陈书军,田大伦,闫文德,等.樟树人工林生态系统不同层次穿透水水化学特征[J].生态学杂志,2006,25(7):747-752.
    [60]邓世宗,韦炳式.不同森林类型林冠对大气降雨且再分配的研究[J].林业科学,1990,26(3):271-276.
    [61]董世仁,郭景唐,满荣洲.华北油松人工林的透流、干流和树冠截留[J].北京林业大学学报,1987,9(1):58-67.
    [62]范世香,裴铁番,蒋德明,等.两种不同林分截留能力的比较研究[J].2000,11(5):671-674.
    [63]巩合德,王开运,杨万勤,等.川西亚高山白桦林穿透雨和茎流特征观测研究[J].生态学杂志2004,23(4):17-20.
    [64]巩合德,王开运,杨万勤.川西亚高山3种森林群落穿透雨和茎流养分特征研究[J].林业科学,2005,41(5):14-20.
    [65]郭泉水,王春玲,郭志华,等.我国现存梭梭荒漠植被地理分布及其斑块特征[J].林业科学,2005,41(5):2-7.
    [66]何常清,薛建辉,吴永波,等.岷江上游亚高山川滇高山栎林的降雨再分配[J].应用生态学报,2008,19(9):1871-1876.
    [67]黄承标,文受春.里骆林区常绿阔叶林和人工杉木林气候水文效应[J].生态学杂志,1993,12(3):1-7.
    [68]黄刚,赵学勇,赵玉萍,等.科尔沁沙地两种典型灌木独生和混交的根系分布规律[J].中国沙漠,2007,27(2):239-243.
    [69]黄忠良.鼎湖山季风常绿阔叶林的水文学过程及其氮素动态[J].植物生态学报,1994,18(2):194-199.
    [70]康博文,刘建军,孙建华,等.陕北毛鸟素沙漠黑沙蒿根系分布特征研究[J].水土保持研究,2010,17(4):119-123.
    [71]孔繁智,宋波,裴铁播.林冠截留量与大气降水关系的数学模型[J].应用生态学报,1990,1(3): 201-208.
    [72]李海涛,韩兴国,陈灵芝.华北暖温带山地落叶阔叶混交林的茎流研究[J].生态学报,1997,17(4):371-376.
    [73]李振新,欧阳志云,郑华,等.岷江上游两种生态系统降雨分配的比较[J].植物生态学报2006,30(5):723-731.
    [74]刘斌,刘彤,李磊,等.古尔班通古特沙漠西部梭梭人面积退化的原因[J].生态学杂志,2010,29(4):637-642.
    [75]刘瑛心.中国沙漠植物志(第一卷)[M].北京:科学出版社,1985,342-343.
    [76]吕瑜良,刘世荣,孙鹏森,等.川西亚高山不同暗针叶林群落类型的冠层降水截留特征[J].应用生态学报,2007,18(11):2398-2405.
    [77]罗艳,周国逸,张德强,等.鼎湖山三种主要林型水文学过程中总有机碳浓度对比[J].生态学报,2004,24(12):2973-2978.
    [78]马雪华.在杉木林和马尾松林中雨水的养分淋溶作用[J].生态学报,1989,9(1):15-20.
    [79]马雪华,杨茂瑞,胡星弼.亚热带杉木、马尾松人工林水文功能的研究[J].林业科学,1993,29(3):199-206.
    [80]莫江明,方运霆,冯肇年,孔国辉.孟泽鼎湖山人为干扰下马尾松林水文生态功能[J].热带亚热带植物学报,2002,10(2):99-104.
    [81]秦艳,王林和,张国盛,等.毛乌素沙地臭柏与油蒿群落细根生物量的季节动态及其空间变化[J].中国沙漠,2008,28(3):455-461.
    [82]琼斯KO,伯内O,卡尔B P, et al干旱地区水文学[M].中国农业科技出版社,1988.
    [83]任安芝,高玉葆,王金龙.不同沙地生境下黄柳(Salix gordejevii)的根系分布和冠层结构特征[J].生态学报.2001,21(3):399-404.
    [84]单立山,张希明,花永辉,等.塔克拉玛干沙漠腹地梭梭幼苗根系分布特征对不同灌溉量的响应[J].植物生态学报,2007a,31(5):769-776.
    [85]单立山,张希明,魏疆,等.塔克拉玛干沙漠腹地两种灌木有效根系密度分布规律的研究[J].干旱区地理,2007b,30(3):400-405.
    [86]盛晋华,乔永祥,刘宏义.梭梭根系的研究[J].草地学报,2004,12(2):91-94.
    [87]时忠杰,王彦辉,徐丽宏,等.六盘山华山松(Pinus armandii)林降雨再分配及其空间变异特征[J].生态学报,2009,29(1):76-85.
    [88]孙东霞,杨建成.古尔班通古特沙漠腹地与周边的降水特征分析[J].干旱区地理,2010,33(5):769-774.
    [89]汤英,周宏飞,徐利岗.农林生态系统中茎流的水文及生物化学特性研究综述[J].水资源与水工程学报,2007,18(6):13-19.
    [90]田大伦,项文化,杨晚华.第2代杉木幼林生态系统水化学特征[J].生态学报,2002,22:859-865.
    [91]万师强,陈灵芝.东灵山地区大气降水特征及森林树干茎流[J].生态学报,2000,20(1):61-67.
    [92]王登芝,聂立水,李吉跃,北京西山地区油松林水文过程中营养元素迁移特征[J].生态学报,2006,26(7):2101-2107.
    [93]王震洪,段昌群,梁国江,等.牟定城区面山三种人工林群落比较水文生态学研究[J].云南大学学报,2001,23(2):153-158.
    [94]王正宁,王新平.荒漠灌丛树干茎流及其入渗、再分配特征[J].中国沙漠,2010,30(5):1108-1113.
    [95]魏晓华,周晓峰.三种阔叶次生林的茎流研究[J].生态学报,1989,9(4):325-329.
    [96]徐贵青,李彦.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J].2009,29(1):130-137.
    [97]闫文德,田大伦,陈书军,等.4个树种茎流养分特征研究[J].林业科学,2005,41(6):50-56.
    [98]袁春明,郎南军,孟广涛,等.长江上游云南松林水土保持生态效益的研究[J].水土保持学报,2002,16(2):87-90.
    [99]杨志鹏,李小雁,刘连友,等.毛鸟素沙地固沙灌木树干茎流特征[J].科学通报,2008a,53(8):939-945.
    [100]杨志鹏,李小雁,孙永亮,等.毛鸟素沙地沙柳灌丛降雨截留与树干茎流特征[J].水科学进展,2008b,19(5):693-698
    [101]于小军,汪思龙,邓仕坚,等.亚热带常绿阔叶林和杉木人工林茎流与穿透雨的养分特征[J].生态学杂志,2003,22(6):7-11.
    [102]赵鸿雁,吴钦孝,刘国彬.山杨林的水文生态效应研究[J].植物生态学报,2002,26(4):497-500.
    [103]赵鸿雁,吴饮孝,刘国彬.黄土高原人工油松林水文生态效应[J].生态学报,2003,23(2):376-379.
    [104]曾杰,郭景唐.太岳山油松人工林生态系统降雨的第一次分配[J].北京林业大学学报,1997,19:21-27.
    [105]张国盛,王林和,李玉灵,等.毛乌素沙地臭柏根系分布及根量[J].中国沙漠,1999,19(4): 378-383.
    [106]张国盛,,吴国玺,王林和,秦艳,等.毛鸟素沙地臭柏(Sabina vulgaris)和油蒿(Artemisia ordosica)群落的细根分布特征[J].生态学报,2009,29(1):18-27.
    [107]张莉,吴斌,丁国栋,等.毛鸟素沙地沙柳与柠条根系分布特征对比[J].干旱区资源与环境,2010,24(3):158-161.
    [108]张世军,张希明,王雪梅,等.古尔班通古特沙漠边缘春秋季沙丘水分状况初步研究[J].干旱区资源与环境,2005,19(3):131-136.
    [109]张一平,王馨,王玉杰,等.西双版纳热带季节雨林与橡胶林林冠水文效应比较研究[J].生态学报,2003,12(12):2653-2665.
    [110]张显强,张来,何跃军,等.喀斯特石漠结皮细尖鳞叶藓的吸水机制及耐旱适应性[J].生态学报.2010,30(12):3108-3116.
    [111]赵岩,周文渊,孙保平,等.毛鸟素沙地三种荒漠灌木根系分布特征与土壤水分研究[J].水土保持研究,2010,17(4):129-133.
    [112]周光益,曾庆波,黄全,等.热带山地雨林林冠对降雨的影响分析[J].植物生态学报,1995,19:201-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700