航天产品虚拟装配工艺设计技术及其应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天产品结构复杂、零部件繁多,传统装配工艺设计需要建立大量物理模型以进行模装试验才能确定设计,并且纸质装配工艺文件难以清晰描述复杂装配工艺,使得产品装配周期长、成本高,无法满足企业敏捷制造的要求。虚拟装配技术为上述问题的解决提供了新的研究思路,本课题以企业应用为背景,展开面向航天产品敏捷总体装配的虚拟装配工艺设计及其应用基础研究,该项研究对于实现航天产品装配工艺的快速和低成本设计、提高企业的紧急动员生产能力,具有重要的现实意义和应用价值。
     论文完成的主要工作及取得的成果如下:
     1.设计了桌面式虚拟装配工艺设计系统的总体框架。
     首先分析了虚拟装配工艺设计系统的功能需求,在此基础上阐明了桌面式虚拟装配工艺设计系统的研究内容和特点,将系统结构分为交互层、功能层、支持层和数据层,建立了完整的系统层次体系结构,给出了系统的工作流程:数据预处理阶段、装配工艺设计阶段和工艺文件输出应用阶段。
     2.研究了面向航天产品的虚拟装配建模技术。
     分析了航天产品虚拟装配模型的需求,对装配场景模型进行了分类,将装配场景模型分为刚性零件模型、电缆零件模型和其他模型,并分别给出了实体表达及信息描述方法,提出了包括刚性零件和电缆零件的刚柔混合装配层次关联模型,并对模型的信息描述和数据结构表达进行了详述。分析了装配模型在虚拟环境中的建立内容和流程,提出了零件模型信息的转换与存储方法,最后给出了刚柔混合装配层次关联模型的建立流程。
     3.研究了虚拟装配的交互辅助技术。
     提出了虚拟环境下具有交互辅助功能的装配流程,提出了基于约束元素包围盒的装配意图捕捉算法及效率评估方法,根据约束元素的特征参数和配合类型,提出了基于位姿变换元素分解的约束精确定位求解算法,将位姿变换分解为点到线上、点到面上和直线平行3种位姿变换情况。并通过对零件自由度的求解和目标约束方向上的运动分量映射,提出了基于约束元素投影的装配运动导航方法,上述方法可有效减少约束的误识别和漏识别现象,并保证虚拟环境下零件的装配运动精度。研究了装配约束关系的动态解除方法和紧固件装配工具的操作及可达空间验证方法。研究了基于质点弹簧系统的电缆零件装配方法及仿真流程,分析了电缆束质点弹簧系统的动力学特性,使用Verlet积分法对质点弹簧动力学微分方程进行求解,并提出了弹簧动态变形约束算法和电缆束的网格变形更新算法来增强仿真的真实性。
     4.研究了面向虚拟装配工艺的顺序规划和路径规划方法。
     基于粒子群遗传算法,结合虚拟装配系统良好的交互性,提出一种人机协同的航天产品装配顺序优化方法。使用优先约束关联矩阵来描述零件间的优先约束关系和关联关系,并研究了粒子群遗传算法的基因组、染色体以及粒子的编码表达方法。综合考虑装配连续性、装配资源的变动和仪器设备的影响,提出了有工程意义的适应度函数的表达式,根据优先约束关联模型生成随机的可行初始装配序列,并利用粒子群算法重构遗传算法的交叉算子对装配顺序进行优化。用一个实例表明该方法较常规遗传算法有较好的收敛性和稳定性。研究了面向虚拟装配工艺的装配路径生成方法。提出了装配物料清单和装配动画的生成以及工艺文件数据的提取策略。
     5.开发并实现了桌面式虚拟装配工艺设计原型系统。
     原型系统由装配建模、虚拟装配仿真、装配顺序规划、装配工艺文档设计与示教四个模块组成,详述了各模块划分及模块间的数据流向,并介绍了原型系统的开发架构和开发环境。以航天产品某部件的装配模型为例,对其在原型系统中的虚拟装配工艺规划工作流程进行了详细说明,通过介绍各个模块的主要功能界面,验证了各个模块的功能,得到了初步应用。
Traditional assembly process planning for aerospace products requires plenty of physical mock-up trials to verify designs because of their complicated structures and large number of components. Meanwhile papery process files are difficult to express complex assembly process clearly. As is stated above, the problem leads to long assembly cycle and high cost, so traditional assembly process planning can’t satisfy the agile manufacturing requirement of enterprise. Virtual assembly technology is a new approach to solve the problem. This research task has a background of enterprise application to research the virtual assembly process planning technology and its application for aerospace products, which has important practical significance and values for realizing the rapid assembly process planning and improving enterprise’s emergency mobilization productive capacity.
     The main work is illustrated in the following aspects:
     First, the desktop virtual assembly process planning system is designed. Virtual assembly systems are classified and functional requirements of virtual assembly process planning system are analyzed. Based on them the research contents and characters of the system are expressed. The system’s hierarchical architecture is established which is divided into four layers: interaction layer, function layer, core services layer and database layer. And the workflow includes data preprocessing phase, assembly process planning phase and process files output phase.
     Second, the virtual assembly modeling technology for aerospace products is studied. The demands of aerospace products assembly models are analyzed. The model representation and information description are researched according to the classification of models in the virtual assembly scene, which consists of rigid parts, cable harness parts and other parts. The dendritic liaison model of mixed assembly of rigid and flexible parts is introduced based on the hierarchical model and graph model. The content and workflow of assembly modeling in the virtual environment are proposed. And methods of model data transformation and storage are presented.
     Third, the interactive aid technology for virtual assembly manipulation is researched. The flow of virtual assembly manipulation with interaction aid is presented. A novel assembly intention capturing algorithm based on constraint element bounding box and its efficiency evaluation is proposed. And the precise positioning solving algorithm of constraint based on pose transform of elements decomposition is presented, in which pose transform is classified into three cases as follows: placing a point onto a line, placing a point onto a plane and paralleling a line to a line. Parts assembly motion navigation is realized by solving parts degree of freedom and mapping the motion component to the target constraint direction. The interactive aid technology can easily eliminate error and escaped constraint realization and can improve the validity and efficiency of assembly intention capturing. The assembly constraint dynamic remove method and fastener assembly tools’manipulation and its effective space estimation technique are also studied in virtual environment. The virtual assembly technology of cable harness parts is researched based on mass-spring system whose dynamic characteristics in cable harness model are analyzed. The dynamic differential equations are solved by Verlet integration method. Aiming to improve the reality of simulation, the spring dynamic deforming constraint algorithm and cable harness mesh deformation update algorithm are proposed.
     Four, assembly path and sequence planning for virtual assembly process are studied. With favorable interaction of virtual assembly system a man-machine cooperation method to solve the assembly sequence planning for aerospace products is presented based on particle swarm optimization and genetic algorithm (PSO-GA). The assembly precedence constraint relationship model is studied which is described by assembly precedence relations and liaisons matrix. The code representation of genomes, chromosomes and particles is also studied. Then the fitness function with engineering significance is presented by comprehensive consideration of assembly continuity, assembly resource and influence of instrument and equipment. The geometric feasible assembly sequences are initialized and optimized based on PSO-GA in which the GA’s crossover operator is reconstructed by PSO. An application case is discussed to demonstrate good convergence and stability of the proposed algorithm. Meanwhile, the assembly path generation and storage are presented. Assembly BOM and animation generations and process data extraction strategy are proposed for assembly process files.
     Finally, a prototype of desktop virtual assembly process planning system is developed and realized. The system is divided to four modules: Assembly modeling, virtual assembly simulation, assembly sequence planning and assembly process files design and guiding. The data flows among these modules are described, and the development frame and environment are introduced. A complete virtual assembly process planning workflow case of an aerospace products component is studied to verify each module’s function by introducing functional interfaces in the flow. And the system has been applied preliminarily for the aerospace products.
引文
[1] Mo J Z, Cai J G. DFA-oriented assembly relation modeling[J]. International Journal of Computer Integrated Manufacturing, 1999, 12(3): 238~250.
    [2] Thomas U, Barrenscheen M, Wahl F M. Efficient assembly sequence planning using stereographical projections of C~Space obstacles[C]. Proceedings of the 5th IEEE: International Symposium on Assembly and Task Planning, Bescancon, France, 2003, (7): 96~102.
    [3]舒启林,郝永平,王德俊.基于产品可装配性评价的CAD-DFA集成系统的研究与实现[J].东北大学学报. 2002, 23(4): 387~390.
    [4] Hobby M. Complex system vs mas production industries: A new innovation research agenda[C]. EPSRC Technology Management Initiative. US: CoPS Publication, 1996: 205~230.
    [5]吴澄.现代集成制造系统导论——概念、方法、技术和应用[M].北京:清华大学出版社, 2002, 6: 1~37.
    [6]张申生,曹健,王英林,等.敏捷制造的理论、技术与实践[M].上海:上海交通大学出版社, 2000, 12: 1~140.
    [7]严隽琪,范秀敏,马登哲,等.虚拟制造的理论、技术基础与实践[M].上海:上海交通大学出版社, 2003, 8: 1~167.
    [8]许志玲.如何进行精益生产[M].北京:北京大学出版社, 2005, 1: 1~118.
    [9]秦现生.并行工程的理论与方法[M].西安:西北工业大学出版社, 2008, 5: 1~84.
    [10] Womack J P, Jones D T, Roos D. The machine that changed the world[M]. USA: Macmillan, 1990: 20~34.
    [11]夏平均.基于虚拟现实的卫星装配工艺设计方法及其应用, [博士学位论文].哈尔滨:哈尔滨工业大学, 2007.
    [12] Baldwin D F, Abell T E, Fazio D, et al. An integrated computer aid for generating and evaluating assembly sequences for mechanical products[J]. IEEE Transactions on Robotics and Automation. 1991, 7(1): 78~94.
    [13] Tonshoff H K, Menzel E, Park H S. A knowledge-based system for automated assembly planning[J]. Annals of the CIRP. 1992, 41(1): 19~24.
    [14] Homen M L S, Sanderson A C. A correct and complete algorithm for the generation of mechanical assembly sequences[J]. IEEE Transactions on Robotics and Automation. 1991,7(2): 228~240.
    [15] Zha X F, Lim S Y E, Fok S C. Integrated knowledge-based assembly sequence planning[J]. International Journal of Advanced Manufacturing Technology. 1998, 14(1): 50~64.
    [16]牛新文,丁汉,熊有伦.计算机辅助装配顺序规划研究综述[J].中国机械工程. 2001, 12(12): 1440~1443.
    [17] Swarminathan A, Barber K S. An experience-based assembly sequence planner for mechanical assemblies[J]. IEEE Transactions on Robotics and Automation. 1996, 12(2): 252~267.
    [18] Guan Q, Liu J H, Zhong Y F. A concurrent hierarchical evolution approach to assembly process planning[J]. International Journal of Production Research. 2002, 40(14): 3357~3374.
    [19] Dewar R G, Carpenter I D, Richter J M, et al. Assembly planning in a virtual environment[J]. Proceeding of Portland International Conference on Management and Technology, Portland: IEEE,1997: 664~667.
    [20] Jayaram S, Connacher H I, Lyons K W. Virtual assembly using virtual reality techniques[J]. Computer Aided Design, 1997, 29(8): 575~584.
    [21] Jung B, Hoffhenke M, Wachsmuth I. Virtual assembly with construction kits[C]. Proceedings of 1997 ASME Design Engineering Technical Conference, Sacramento, 1997: 14~17.
    [22]肖田元.虚拟制造[M].北京:清华大学出版社, 2004: 30~85.
    [23] Jayaram S, Jayaram U, Kim Y J et al. Industry case studies in the use of immersive virtual assembly[J]. Virtual Reality, 2007, 11: 217~228.
    [24] Chryssolouris G, Mavrikios D, Fragos D et al. A virtual reality-based experimentaion environment for the verification of human-related factors in assembly processes[J]. Robotics and Computer Intergrated Manufacturing, 2000, 16(4): 267~276.
    [25] Bullinger H J, Richter M. Virtual Assembly Planning, Human Factors and Ergonomics Manufacturing[J], 2000, 10(3): 331~341.
    [26]刘振宇.面向过程与历史的虚拟环境中产品装配建模理论、方法及应用研究, [博士学位论文].杭州:浙江大学, 2001
    [27]郑太雄.虚拟装配理论与方法研究, [博士学位论文].重庆:重庆大学, 2003.
    [28]夏平均,姚英学,刘江省,等.虚拟装配工艺规划及示教系统的研究[J].南京理工大学学报. 2005, 29(5): 570~574.
    [29]郑轶,宁汝新,刘检华,等.虚拟装配关键技术及其发展[J].系统仿真学报, 2006, 18(3): 649~654.
    [30] Blach R, Landauer J. A highly flexible virtual reality system[J]. Future Generation Computer System, 1998, 14: 167~178.
    [31]姚珺,宁汝新,王新永.基于虚拟现实的装配工艺规划研究[J].机械工程学报, 2002, 38(8): 130~134.
    [32]万毕乐,宁汝新,刘检华,等.虚拟环境下的线缆装配建模技术研究[J].系统仿真学报, 2006, 18(S1): 267~2741.
    [33]徐伟玲.航天电子产品整机的装联布线[J].航天返回与遥感, 2003, 24(4): 54~56.
    [34]陈向东,张旺军,潘艳华.航天器的数字化总装设计研究[J].航天器工程, 2008, 17(6): 64~67.
    [35]宁汝新,郑轶.虚拟装配技术的研究进展及发展趋势分析[J].中国机械工程, 2005, 16(15): 1398~1404.
    [36] William C. Burkett. Product data markup language: a new paradigm for product data exchange and integration[J]. Computer Aided Design, 2001, (33): 489~500.
    [37] Shyamsundar N, Rajit G. Internet-based collaborative product design with assembly features and virtual design spaces[J]. Computer Aided Design, 2001, (33):637~651.
    [38] Fan J, Dong J X. Intelligent virtual assembly planning with integrated assembly model [C]. Proceeding of 2003 IEEE International Conference on Systems, Man and Cybernetics. Hangzhou, 2003, 5: 4803~4808.
    [39] Connacher H I, Jayaram S. Virtual assembly design environment [C]. Proceedings of the Computers in Engineering Conference and the Engineering Database Symposium, 1995: 875~885.
    [40] Jayaram S, Jayaram U, Wang Y, et al. VADE: A virtual assembly design environment [J]. IEEE Computer Graphics and Applications, 1999, 19(6): 44~50.
    [41] Wang Y, Jayaram U, Jayaram S. Physically based modeling in virtual assembly [C]. Proceeding of DETC’01 of ASME, New York, ASME, 2001: 295~305.
    [42] Wang Y, Jayaram U, Jayaram S, et al. Methods and Algorithms for Constraint-based Virtual Assembly [J]. Virtual Reality, 2003 (6) : 229~243.
    [43] Kim Y J, Jayaram U, Jayaram S, et al. CAD model assembly hierarchy reorganization for application in virtual assembly-a hybrid approach using the CAD system and a visualization tool [C]. Proceeding of DETC’03 ASME, Chicago, Illinois, 2003, 1: 1173~1181.
    [44]刘振宇,谭建荣,张树有.面向虚拟装配的产品层次信息表达研究[J].计算机辅助设计与图形学学报, 2001, 3(13): 223~228.
    [45]刘振宇,谭建荣.基于物理模型的虚拟装配技术研究[J].中国图象图形学报, 2003, 8(7): 823~828.
    [46] Antonishek B, Egts D D, Obeysekare U R. Virtual assembly using two-handed interaction techniques on the virtual workbench[C]. In Proceedings of 1998 ASME Design Engineering Technical Conference, Atlanta, GA, 1998: CIE-5540.
    [47] Wang Q H, Li J R. A desktop VR prototype for industrial training applications[J]. Virtual Reality, 2004, 7: 187~197.
    [48] Banerjee A, Banerjee P. A behaviour scene graph for rule enforcement in iinteractive virtual assembly sequence planning[J]. Computer in Industry, 2003, 42: 147~157.
    [49]刘检华,姚珺,宁汝新.面向虚拟装配的产品装配模型研究[J].系统仿真学报, 2003, 15(S): 461~463.
    [50]刘检华,宁汝新. CAD系统与虚拟装配系统间的信息集成技术研究[J].计算机集成制造系统, 2004, 10(12): 60~64.
    [51]万毕乐,刘检华,宁汝新,等.面向虚拟装配的CAD模型转换接口的研究与实现[J].系统仿真学报, 2006, 18(2): 391~394.
    [52]朱文华,范秀敏,马登哲.从CAD系统到集成虚拟装配环境的数据转换研究[J].计算机集成制造系统, 2005, 11(8): 1115~1119.
    [53]武殿梁,杨润党,马登哲,等.虚拟装配环境中的装配模型表达技术研究[J].计算机集成制造系统, 2004, 10(11): 1364~1369.
    [54]万华根,高曙明,彭群生. VDVAS:一个集成的虚拟设计与虚拟装配系统[J].中国图象图形学报, 2002, 7(1): 27~35.
    [55] Henrioud J M, Bourjault A. Computer-aided mechanical assembly planning[M]. Kluwer Academic Pub, 1991, 191~216.
    [56] Cho D Y, Cho H S. Inference on robotic assembly precedence constraints using a part contact level graph [J]. Robotic, 1993, 11(2): 173~183.
    [57] Homen L S, Sanderson A C. Representation of mechanical assembly sequences[J]. IEEE Transaction on Robotics and Automation, 1991, 7(2): 211~227.
    [58]付宜利,田立中,董正卫,等.装配关系的有向图表达方法研究[J].计算机集成制造系统, 2003, 9(2): 149~153.
    [59]宋丽萍,武殿梁,范秀敏,等.面向虚拟装配的复杂产品装配建模技术[J].上海交通大学学报, 2007, 41(1): 27~30.
    [60] Ericson C. Real-time collision detection[M]. San Francisco: Morgan Kaufmann, 2005.
    [61] Gottschalk S, Collision queries using oriented bounding boxes, [Ph.D. thesis], Chapel Hill, Department of Computer Science, University of North Carolina, 2000.
    [62] Bergen V D G. Efficient collision detection of complex deformable models using AABB trees[J]. Journal of Graphics Tools, 1999, 4(2): 1~13.
    [63] Klosowski J T, Held M, Mitchell J S B, et al. Efficient collision detection using bounding volume hierarchies of k-DOPS[J]. IEEE Transactions on Visualization and Computer Graphics, State Univ.of New York.1998, NY: 21~36.
    [64] Held M, Klosowski J T, Mitchell J S B. Evaluation of collision detection methods for virtual reality fly-throughs[C]. Proceedings of the Seventh Canadian Conference on Computational Geometry, Quebec: Springer, 1995: 205~210.
    [65]邓文平,熊岳山,李思昆.八叉树层次包围盒碰撞检测算法的快速实现[J].系统仿真学报, 2003, 15(S):158~160.
    [66] Naylor B, Amatodes J A, Thibault W. Merging BSP trees yields polyhedral set operations[C]. Proceeding of SIGGRAPH’90, New York: ACM Press, 1990: 115~124.
    [67]张建民,吴彦鹏,张连斗等.基于组件及多感知机制的快速碰撞检测方法[J].中国机械工程, 2004, 15(3): 255~258.
    [68]刘检华,姚珺,宁汝新,等.基于虚拟装配的碰撞检测算法研究与实现[J].系统仿真学报, 2004, 16(8): 1775~1778.
    [69]彭高亮,刘文剑,金天国.支持组合夹具虚拟组装的快速碰撞检测方法[J].系统仿真学报, 2007, 19(13): 2779~2783.
    [70]谢健,闫静,焦光明,等.面向虚拟装配的碰撞检测技术研究[J].中国制造业信息化, 2008, 37(21): 29~32.
    [71]王天柱.变形物体碰撞检测技术研究, [博士学位论文].吉林:吉林大学, 2006
    [72]夏平均,姚英学.虚拟装配的研究综述与分析(II)[J].哈尔滨工业大学学报, 2008, 40(6): 942~947.
    [73] Richard G D, Carpenter I D, Richter J M. Assembly planning in a virtual environment[C]. Proceeding of Portland International Conference on Management and Technology, Portland: IEEE, 1997: 664~667.
    [74] Chryssolouris G, Mavrikios D, Fragos D, et al. A virtual reality-based experimentation environment for the verification of human-related factors in assembly processes [J]. Robotics and Computer-Integrated Manufacturing, 2000, 16(4): 267~276.
    [75] Yang R D, Fan X M, Wu D L, et al. Virtual assembly technologies based on constraint and DOF analysis [J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(4): 447~456.
    [76] Liu Z Y, Tan J R. Constrained behavior manipulation for interactive assembly in a virtual environment [J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(7): 797~810.
    [77]刘振宇,谭建荣,张树有.基于语义识别的虚拟装配运动引导研究[J].软件学报, 2002,13 (3): 382~389.
    [78]刘检华,宁汝新,姚珺,等.面向虚拟装配的零部件精确定位技术研究[J].计算机集成制造系统, 2005, 15(4): 993~997.
    [79]彭高亮,刘新华,王伟达.基于虚拟现实的组合夹具组装系统研究[J].计算机集成制造系统, 2008, 14(5): 984~990.
    [80] Ritchie J M, Simmons J E L. Methodology for eliciting product and process expert knowledge in immersive virtual environments[C]. Portland International Conference on Management of Engineering and Technology, Portland State University, Portland Oregon: 1999: 1037~1044.
    [81] Ng F M, Ritchie J M, Simmons J E L. The design and planning of cable harness assemblies[J]. Journal of Engineering Manufacture (Part B), 2001, 215: 881~890.
    [82] Holt P O B, Ritchie J M, Day P N. Immersive virtual reality in cable and pipe routing: Design metaphors and cognitive ergonomics[J]. Journal of Computing and Information Science in Engineering, 2004, 4:161~170.
    [83] Robinson G, Ritchie J M, Day P N, et al. System design and user evaluation of Co-Star: An immersive stereoscopic system for cable harness design[J]. Computer Aided Design, 2007, 39: 245~257.
    [84] Loock A, Sch?mer E. A virtual environment for interactive assembly simulation: From rigid bodies to deformable cables[C]. 5th World Multiconference on Systemics, Cybernetics and Informatics (SCI'01), Virtual Engineering and Emergent Computing, 2001: 325~332.
    [85] Hergenrother E, Dahne P. Real-time virtual cables based on kinematic simulation[C]. Proceedings of the WSCG 2000. Plzen-Bory: Springer, 2000: 10~17.
    [86]高纪开达,刘检华,宁汝新,等.虚拟环境下线缆建模及装配规划技术的研究[J],系统仿真学报, 2005,17(4): 933~935.
    [87]刘检华,万毕乐,宁汝新.虚拟环境下基于离散控制点的线缆装配规划技术[J].机械工程学报, 2006, 42(8): 125~130.
    [88]万毕乐,宁汝新,刘检华,等.虚拟环境下的线缆装配建模技术研究[J],系统仿真学报, 2006, 18(S1): 267~271.
    [89]魏发远,王峰军,陈新发.含有柔性电缆的复杂系统装配仿真[J].工程设计学报, 2007, 14(1), 25~30
    [90]魏发远,陈新发,王峰军.电缆虚拟布线及其逆运动学仿真[J].计算机辅助设计与图形学学报, 2006, 18(10): 1623~1627.
    [91] Yuan X B, Yang S X. Virtual assembly with biologically inspired intelligence[J]. IEEE Transactions on Systems, Man, and Cybermetics-Part C: Application and Reviews, 2003, 33(2): 159~167.
    [92] Yin Z P, Ding H, Xiong Y L. A virtual prototyping approach to generation and evaluation of mechanical assembly sequences. Proc Instn Mech Engrs Part B, 2004, 218: 87~102.
    [93]刘检华,姚珺,宁汝新.虚拟装配工艺规划实现技术研究[J].机械工程学报, 2004, 40(6): 138~143.
    [94]王孝义.数字化预装配环境下装配序列快速规划技术研究, [博士学位论文].南京:南京理工大学, 2006.
    [95]夏平均,姚英学,刘江省,等.基于虚拟现实和仿生算法的装配序列优化[J].机械工程学报, 2007, 43(4): 44~52.
    [96] Bullinger H J, Richter M. Virtual assembly planning[J]. Human Factors and Ergonomics Manufacturing, 2000, 10(3): 331~341.
    [97] Jung B, Hoffhenke M, Wachsmuth I. Virtual assembly with construction kits[C]. Proceedings of 1997 ASME Design Engineering Technical Conference, Sacramento, September, 1997: 14~17.
    [98] Kopp S, Wachsmuth I. Model-based animation of co-verbal gesture[C]. Proceeding of Computer Animation, Geneva, Switzerland, 2002: 252~257.
    [99] Satyandra K G, Christiaan J J P, Rajarishi S, et al. Intelligent assembly modeling and simulation[J]. Assembly Automation, 2001, 21(3): 215~235.
    [100] Choi A C K, Chan D S K, Yuen A M F. Application of virtual assembly tools for improving product design[J]. The International Journal of Advanced Manufacturing Technology, 2002, 19(5): 377~383.
    [101] Li J R, Khoo L P, Tor S B. Desktop virtual reality for maintenance training: An object oriented prototype system(V-REALISM)[J]. Computers in Industry, 2003, 52: 109~125.
    [102] Liverani A, Amati G, Caligiana G. A CAD-augmented reality integrated environment for assembly sequence check and interactive validation[J]. Concurrent Engineering: Research and App lication, 2005, 12(3): 67~77.
    [103]曾理,张林煊,肖田元.一个虚拟装配支持系统的实现[J].系统仿真学报. 2002, 9(9): 1149~1153.
    [104]隋爱娜,吴威,赵沁平.虚拟装配与虚拟原型机的理论与技术分析[J].系统仿真学报. 2000, 12(4): 368~388.
    [105]夏平均,郎跃东,程鹏,等.面向大型复杂产品的虚拟装配技术研究[J].机械科学与技术, 2008, 27(8): 1000~1004.
    [106] Grandl R. Virtual process week in the experimental vehicle build at BMW AG[J]. Robotics and Computer-Integrated Manufacturing, 2001, 17(1-2): 65~71.
    [107] http://www.boeing.com/commercial/777family/compute/index.html
    [108] Li S Q, Peng T, Wang J F. Mixed reality-based interactive technology for aircraft cabin assembly[J]. Chinese Journal of Mechanical Engineering, 2009, 22(3): 403~409.
    [109] Schwald B, Laval B. An augmented reality system for training and assistance to maintenance in the industrial context[J]. Journal of WSCG, 2003, 11(1): 425~432.
    [110]韦乃琨.面向复杂产品的分布式协同虚拟装配关键技术研究, [硕士学位论文].上海:上海交通大学, 2008, 2: 1~42.
    [111] George R, Mary C, Maarten D. Immersion in desktop virtual reality[C]. Symposium on User Interface Software and Technology, Proceedings of the 10th annual ACM symposium on User interface software and technology, Banff, Alberta, Canada, 1997: 11~19.
    [112] Ohyama S, Nishiike S, Watanabe H, et al. Autonomic responses during motion sickness induced by virtual reality[J]. Auris Nasus Larynx, 2007, 34(3): 303~306.
    [113] Kang Y M, Cho H G. Complex deformable objects in virtual reality[C]. Proceedings of the ACM symposium on Virtual reality software and technology. Hong Kong, China, Pages: 49~56.
    [114] Zhong Y M, Yuan X B, Ma W Y. Virtual reality based solid modeling[C]. Proceeding of the 5th World Congress on Intelligent Control and Automation, June 15~19, 2004, Hangzhou, P.R. China, Pages: 3214~3218.
    [115]王政,谭建荣,刘振宇.由三角网格模型重构多层次几何信息方法研究[J].中国机械工程, 2004, 15(23): 2111~2115.
    [116]王念东,刘毅,李文正,等.面向装配工序交叉的虚拟装配工艺信息模型[J].计算机辅助设计与图形学学报, 2009, 21(9): 1352~1358.
    [117] Nocent O, Remion Y. Continuous deformation enery for dynamic material splines subject to finite displacements[C]. In Proceeding of the Eurographic workshop on Computer animation and simulation, ACM, Springer-Verlag New York, Inc, 2001:88~97.
    [118] Lenoir J, Meseure P, Grisoni L, Chaillou C. A suture model for surgical simulation[C]. 2nd International Symposium on Medical Simulation(ISMS'04), 2004: 105~113.
    [119] Leon J C, Gandiaga U, Dupont D. Modelling flexible parts for virtual reality assembly simulations which interact with their environment[C]. International Conference on Shape Modeling & Applications Genova, IEEE, 2001: 335~345.
    [120] Lee K, Gossard D C. A hierarchical data structure for representing assemblies[J]. Computer Aided Design, 1985, 17(1): 15~19.
    [121]杨锟,刘继红.面向虚拟装配的装配建模技术[J].机械科学与技术, 2001, 20(2): 305~308.
    [122]刘振宇,谭建荣.面向过程的虚拟环境中产品装配建模研究[J].机械工程学报, 2004, 40(3): 93~99.
    [123] http://www.inetres.com/gp/military/infantry/antiarmor/Javelin.html.
    [124] BMA/Sense8 Inc. WorldToolKit Reference Manual, Release 10[M]. San Rafael, 2003: 157~286.
    [125] Antonishek B, Egts D D, Obeysekare U R. Virtual assembly using two-handed interaction techniques on the virtual workbench[C]. Proceedings of 1998 ASME Design Engineering Technical Conferences, Atlanta, GA, 1998.
    [126]周鸿伟,王维平,汪浩.虚拟样机开发中基于STEP的产品模型技术研究[J].系统仿真学报, 2002, 14(6): 686~689.
    [127] Wan H G, Gao S M, Peng Q S. An approach to solid modeling in a semi-immensive virtual environment[J]. Computer & Graphics. 2000, 24: 191~202.
    [128]王念东,刘毅,李文正.面向虚拟装配的VR与CAD系统信息集成技术[J].机械科学与技术, 2009, 28(1): 25~30.
    [129] Wang Q H, Li J R, Gong H Q. A CAD-linked virtual assembly environment[J]. International Journal of Product Research, 2006, 44(3): 467~486.
    [130] Gomes de SáA., Zachmann G. Virtual reality as a tool for verification of assembly and maintenance processes[J].Computers and Graphics, 1999, 23(3): 389~403.
    [131] Wang Y, Jayaram U, Jayaram S, et al. Methods and algorithms for constraint-based virtual assembly [J]. Virtual Reality, 2003(6): 229~243.
    [132] Turner J U, Subramaniam S, Gupta S. Constraint representation and reduction in assembly modeling and analysis [J]. IEEE Transactions on Robotics and Automation, 1992, 8(6): 741~750.
    [133] Wang A, Koc B, Nagi R. Complex assembly variant design in agile manufacturing, PartⅠ: system architecture and assembly modeling methodology [J]. IIE Transactions on Design and Manufacturing, 2005, 37 (1): 1~15.
    [134]刘振宇,谭建荣,张树有.虚拟环境中基于约束动态解除的产品拆卸技术研究[J].计算机辅助设计与图形学学报, 2003, 15(7): 812~817.
    [135] Desai A, Mital A. Evaluation of disassemblability to enable design for disassembly in mass production[J]. International Journal of Industrial Ergonomics, 2003, 32(4): 265~281.
    [136] Sodhi R, Sonnenberg M, Das S. Evaluating the unfastening effort in design for disassembly and service ability[J]. Journal of Engineering Design, 2004, 15(1):69~90.
    [137]曹鹏彬,刘继红,管强.基于装配约束动态管理的虚拟拆卸[J].计算机辅助设计与图形学学报, 2002, 14(10): 988~992.
    [138] (日)技能士の友编集部.操作工具常识及使用方法(徐之梦,等译)[M].北京:机械工业出版社, 2010: 70~116.
    [139]叶秀芬,乔冰,郭书祥,郭庆昌.虚拟手术仿真中人体软组织形变技术的研究[J].计算机应用, 2009, 29(2): 568~573.
    [140]沈照功,潘振宽.基于弹簧质点模型的布料仿真及碰撞处理方法[J].计算机仿真, 2006, 23(3): 284~287.
    [141] Chen F, Gu L X, Huang P F, etc. Soft tissue modeling using nonlinear mass spring and simplified medial representation[C], Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite International, Lyon, France, 2007: 5083~5086.
    [142]余昌盛,许力.基于弹簧质点模型的织物变形仿真技术[J].江南大学学报(自然科学版), 2005, 4(3): 261~265.
    [143]孙守迁,徐爱国,黄琦,等.基于角色几何碰撞体估计的实时服装仿真[J].软件学报, 2007, 18(11): 2921~2931.
    [144]袁志勇,尹乾,胡君,冯仕堃.基于改进质点-弹簧模型的图像变形仿真方法[J].华中科技大学学报(自然科学版), 2009, 37(1): 35~37.
    [145] Proxot X. Deformation constraint in a mass-spring model to describe rigid cloth behavior[C]. Proceedings of Graphics Interface, 1995: 147~154.
    [146] Desbrun M, Schroder P, Barr A. Interactive animation of structured deformable objects[C]. Proceedings of Graphics Interface, Kingston, Canada. 1999: 124~127.
    [147] Bridson R, Fedkiw R, Anderson J. Robust treatment of collisions, contact and friction for cloth animation[J]. ACM Transactions on Graphics, 2002, 21(3): 594~603.
    [148] http://zh.wikipedia.org/zh-cn/%E5%9B%9B%E5%85%83%E6%95%B8.
    [149] Teschner M, Kimmerle S, Heidelberger B, etc. Collision detection for deformable objects[J]. Computer Graphics Forum, 2005, 24(1): 61~81.
    [150]吕梦雅,李发明,唐勇,等.基于弹簧质点模型的快速逼真的布料模拟仿真[J].系统仿真学报, 2009, 21(16): 5236~5239.
    [151] Wingo S W, George B. Dynamic interaction between deformable surfaces and nonsmooth objects[J]. IEEETransactions on Visualization and Computer Graphics, 2005, 11(3): 329~340.
    [152] Boothroyd G,等著.面向制造与装配的产品设计(王知衍,译)[M].北京:机械工业出版社, 1999: 70~130.
    [153]卢小平.面向虚拟装配的装配顺序规划研究[J].系统仿真学报, 2003, 1(1): 44~47.
    [154]宋丽萍,范秀敏,马登哲.虚拟现实环境下交互式船舶装配序列规划研究[J].计算机集成制造系统, 2006, 12(6): 862~867.
    [155]周炜,刘继红.虚拟环境下人工拆卸的实现[J].华中理工大学学报, 2000, 28(2): 45~47.
    [156]夏平均,姚英学,李建广,等.三维数字化装配工艺系统的研究[J],哈尔滨工业大学学报, 2005, 37 (1): 36~39.
    [157]薛俊芳,邱长华,向东.在Pro/E中自动生成零件拆卸优先约束矩阵[J].工程图学学报, 2007, (3):24~29.
    [158]付宜利,田立中,谢龙等.基于有向割集分解的装配序列生成算法[J].机械工程学报, 2003, 39(6): 58~62.
    [159] Banerjee A, Banerjee P. A behavioral scene graph for rule enforcement in interactive virtual assembly sequence planning[J]. Computers in Industry, 2000, 42: 147~157.
    [160]韩水华,卢正鼎,陈传波.基于几何推理的装配序列自动规划研究[J].计算机辅助设计与图形学学报, 2000, 12(7): 528~532.
    [161]苏强,林志航.计算机辅助几何可行装配顺序推理及其优化分析[J].中国机械工程, 2001, 12(4): 411~415.
    [162] Fazio D T L, Whitney D E. Simplified generation of all mechanical assembly sequences[J]. IEEE Journal of Robotics and Automation, 1995, 3 (6): 640~658.
    [163] Zhao J, Masood S. An intelligent computer-aided assembly process planning system[J]. The International Journal of Advanced Manufacturing Technology, 1999, 15(5): 332~337.
    [164] Marian R M, Luong L H S, Abhary K. A genetic algorithm for the optimisation of assembly sequences[J]. Computers & Industrial Engineering, 2006, 50: 503~527.
    [165] Chen R S, Lu K Y, Yu S C. A hybrid genetic algorithm approach on multi-objective of assembly planning problem [J]. Engineering Applications of Artificial Intelligence, 2002, 15: 447~457.
    [166]李原,张开富,王挺,等.基于遗传算法的飞机装配序列规划优化方法[J].计算机集成制造系统, 2006, 12(2): 188~191.
    [167] Wang Y, Liu J H. Chaotic particle swarm optimization for assembly sequence planning[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(2): 212~222.
    [168]王辉,向东,段广洪.基于蚁群算法的产品拆卸序列规划研究[J].计算机集成制造系统, 2006, 12(9): 1431~1437.
    [169]周开俊,李东波,潘洋宇.基于遗传退火算法的复杂产品装配序列规划方法[J].机械科学与技术, 2006, 25(3): 277~280.
    [170] Lazzerini B, Marcelloni F. A genetic algorithm for generating optimal assembly plans[J]. Artificial Intelligence in Engineering, 2000, 14: 319~329.
    [171] Smith S S F, Smith G C, Liao X Y. Automatic stable assembly sequence generation and evaluation[J]. Journal of Manufacturing Systems, 2001, 20(4): 225~235.
    [172] Marian R M, Luong L H S, Abhary K. Assembly sequence planning and optimisation using genetic algorithms. Part I: automatic generation of feasible assembly sequences[J]. Applied Soft Computing, 2003, (2/3F): 223~253.
    [173]王小平.遗传算法理论、应用及软件实现[M].西安:西安交通大学出版社, 2002.
    [174] Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc. IEEE int'l conf. on neural networks. IEEE service center, Piscataway, NJ, 1995, 4: 1942~1948.
    [175] Shi X H, Liang Y C, Lee H P, Lu C, etc. An improved GA and a novel PSO-GA-based hybrid algorithm[J].Information Processing Letters, 2005, 93: 255~261.
    [176] Gaafar L K, Masoud S A, Nassef A O. A particle swarm-based genetic algorithm for scheduling in an agile environment[J]. Computers & Industrial Engineering, 2008, 55: 707~720.
    [177] Gottipolu R B, Ghosh K. A simplified and efficient representation for evaluation and selection of assembly sequences[J]. Computers in Industry, 2003, 50(3): 251~264.
    [178]王孝义,张友良,张帆.装配序列评价研究[J].中国机械工程, 2005, 16(13): 1165~1169.
    [179] Wang H, Xiang D, Duan G H, etc. Assembly planning based on semantic modeling approach[J]. Computers in Industry, 2007, 58: 227~239.
    [180] Smith S S F. Using multiple genetic operators to reduce premature convergence in genetic assembly planning[J]. Computers in Industry, 2004, 54: 35~49.
    [181] Kim Y K, Hyun C J, Kim Y. Sequencing in mixed model assembly lines: A genetic algorithm approach[J]. Computers & Operations Research, 1996, 23(12): 1131~1145.
    [182]苏明.基于Pro/E的三维辅助装配工艺规划(3D-CAAPP)系统研究, [硕士学位论文].南京:南京航空航天大学, 2007, 3: 14~34.
    [183] Pererez T L, Wesley M A. An algorithm for planning collision-free paths among polyhedral obstacles[J]. Communications of the ACM. 1979, 22(10): 560~570.
    [184] James H O, Huang H T. Automated path planning for integrated assembly design[J]. Computer Aided Design. 1994, 26(9): 658~666.
    [185]郑轶,宁汝新,刘检华,等.交互式虚拟装配路径规划及优选方法研究[J].中国机械工程, 2006, 17(11): 1153~1156.
    [186]郭钢,程静波,刘飞.产品生命周期中的单/多层BOM表示与应用[J].计算机集成制造系统, 2004, 10(1): 59~64.
    [187]黄学文,范玉顺. BOM多视图和视图之间映射模型的研究[J].机械工程学报, 2005, 41(4): 97~102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700