UWB跳时调制、电磁兼容及定位应用的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现全球范围无缝覆盖的,可以同时进行语音、文本、图像、视频的高速多媒体通信,通信网络应该是包含多种通信技术的有线无线相结合的综合网络。在这样的背景下,由于超宽带(UWB)技术具有极大的带宽,极低的功率,可实现现有频率资源复用等显著特点,已经成为目前无线通信领域的热点之一。
     超宽带具有高传输速率、高可靠传输、高时间空间分辨率、低功率、低成本、小型化等优势,适合在短距离无线通信、高精度测距定位及工程探测等领域应用。目前超宽带研究热点与难点集中在信号波形设计、天线设计、传输信道模型研究、低成本低功耗集成电路研究、组网技术研究、高效调制技术研究、电磁兼容研究及快速同步技术研究等方面。
     本论文以UWB的两大本质特征——大带宽,低功率为主线,挖掘UWB在可靠通信容量及精确测距定位上的潜力,并同时研究与其他无线通信系统的共存性问题。
     论文内容包括:
     1.用等重码构建了一种新的称为多脉冲位置调制(MPPM)的UWB跳时调制方案,并对其在加性高斯白噪声(AWGN)下的信道容量、误码率、链路预算、功率效率、带宽效率及接收机复杂度等几个方面进行了分析。理论分析与数值比较结果表明,满足一定条件时,L进制的多脉冲位置调制(MPPM)可以比L进制的脉冲位置调制(PPM)具有更低的接收机复杂度,在数据容量、误码率及链路预算等指标上获得比L进制PPM及L进制的脉冲幅度调制(PAM)更好的性能,可以成为UWB短距离高速通信应用的一个很好的备选调制方案。
     2.用扩展等重码构建了一种称为双极性多脉冲位置调制(AMPPM)的新UWB跳时调制方案,并对接收机复杂度、误码率、信道容量、数据率、带宽效率,功率效率及发射功率限制下的最大可靠通信距离进行了分析。理论分析与数值结果都表明,当调制参数正确选择时,AMPPM可以在相同的条件下获得比PPM、PAM、双正交脉冲位置调制(BPPM)及新提出的MPPM更好的通信性能,也可成为UWB高速通信应用的一个很好备选调制方案。
     3.建立了三维积分模型分析并仿真了室内多个UWB设备对无线通信终端的合成干扰效果,分析了全视距及视距非视距混合两种情况,并且选择了GSM900,GSM1800,小灵通及TD-SCDMA四种系统手持机作为受干扰研究对象,分析是在FCC及ETSI两种UWB发射功率控制模板规范下进行的。通过理论分析与仿真结果得出了以下结论:1)所评估的无线通信系统抗UWB干扰能力按照GSM900>GSM1800>TD-SCDMA>小灵通的顺序递减。2)ETSI规范对无线系统的保护强于FCC.当受干扰系统链路预算干扰保护在[13]dB范围内时,FCC UWB功率限制模板只能对GSM900有效保护,对其他三种系统只能达到临界干扰状态,而ETSI的标准对四种系统都能提供可接受的保护程度。本文提出的三维积分UWB干扰模型可以有效地评估立体分布的多UWB设备对窄带无线系统的干扰,为现代化办公楼UWB设备布置及UWB功率控制方面的研究提供了理论参考依据。
     4.提出了一种新的基于特殊序列(APA序列)的UWB测距算法.通过理论分析与仿真,可以证明,与传统序列相比,APA测距序列能在相同的条件下(相同的信道,相同的信噪比,相同的测距序列长度)获得更高的测距精度,而且如果增加APA序列的长度还可以进一步降低测距误差,但需要以更多的能量和时间为代价。
     5.设计了一种基于UWB测距的车辆平面定位系统,在理想情况下该系统最少可以使用2个参考节点,降低了系统成本。在非理想情况下,提出了通过增加参考节点进行方程解平均、增加测距次数进行多次测距平均和利用天线阵进行到达角测量来实现测距平面修正的三种改进算法。
For realizing the service target of seamless coverage in a global range and providing high-data rate multimedia communication, the communication network should be an integrated network including several communication technologies which at lest consists of wireless and cable. Such being the case, ultra-wide band (UWB) has become a favourite technology for wireless communication due to its good characteristics such as ultra wide bandwidth, low power, frequency reusing and so on.
     UWB owns many advantages such as high transmission data-rate, high reliable transmission, high time and spatial resolution, low power, low cost, miniaturization and so on, which make UWB very suitable for short-range wireless communication, high precision ranging and positioning or detection application. The study topics for UWB include signal waveform design, antenna design, channel model research, IC design, network buildup, new modulation technology, EMC and so on.
     The work of this paper aims at developing UWB at the aspects of communication capacity, high accuracy ranging, and the co-existence ability between UWB and other narrow band wireless systems. All the work is based on the essential UWB characteristics of wide bandwidth and low power requirement.
     The contents of this paper include:
     1.A new time-hopping UWB modulation method called multi-pulse position modulation (MPPM) constructed by constant weight code (CWC) is proposed. And the performance of MPPM is analyzed in several aspects such as channel capacity, probability of symbol error, link budget margin, power efficiency, bandwidth efficiency and receiver complexity. Theory analysis and numerical results show that L-ary MPPM can perform better than L-ary pulse position modulation (PPM) and L-ary pulse amplitude modulation (PAM) do under some conditions. The proposed MPPM can be a good candidate for UWB short-range and high data-rate wireless communication application.
     2.A novel time-hopping UWB modulation scheme called ambipolarmulti-pulse position modulation (AMPPM) is proposed. The AMPPM signal is constructed by extending constant weight code (ECWC) and analyzed based on the existing biorthogonal pulse position modulation (BPPM) and MPPM. The error probability, receiver complexity, channel capacity, data-rate, bandwidth efficiency, power efficiency and maximum reliable transmission distance of AMPPM are derived over an additive white Gaussian noise (AWGN) channel. Theory analysis and simulation results show that AMPPM can get a better performance character than PPM, PAM, BPPM and MPPM do under the same condition. AMPPM could also be a good candidate for UWB high-data rate wireless application.
     3.Since the narrowband wireless systems could be disturbed by UWB devices, a 3D integral model is introduced to analyze the impact of UWB cumulative interference on the narrowband wireless systems, and the proposed model is divided into two situations which are LOS and LOS-NLOS mixture. The proposed analysis model can evaluate the UWB interference effect on victim receivers efficiently and deliver numerical evaluation results of both the anti-UWB interference ability of different wireless systems and the protection ability of different UWB emission masks. The analysis method and model can be a useful theoretical reference for the study on UWB devices layout in modern buildings and the UWB emission power control.
     4.A new UWB ranging algorithm based on a kind of special sequencecalled almost perfect autocorrelation (APA) sequence is introduced, and some theory and simulation results are given under AWGN channel and IEEE recommended UWB channel model respectively. The comparison results of ranging accuracy between the ranging systems with and without APA sequence show that the APA sequence can get higher ranging accuracy than the common sequence under the same condition, and increasing the length of the APA sequences can lead to better ranging precision but need more time and energy loss. So the APA sequence is a good candidate for UWB ranging system and the length of APA ranging sequence should be selected according to the particular application.
     5.Based on the UWB ranging technology, a plane vehicle positioning system is designed for the intelligent transport system which only needs two reference nodes in an ideal environment. And for improving the positioning accuracy of the proposed system under a non-ideal condition, another three algorithms based on solution-averaging, distance-averaging and angle of arrival (AOA) ranging plane amending are also introduced. The theory analysis and simulation results show that the proposed positioning system can perform vehicle positioning task and get a high positioning precision assisted by the modified algorithms.
引文
[1] 张在琛,毕光国。超宽带关键技术分析及发展策略的思考。电气电子教学学报,26(3),2004年6月:6-10。
    [2] “下一代通信技术和计算机技术对广播电视发展的影响”项目组。下一代通信技术对广播电视业务发展的影响(上)。广播与电视技术,2007年第3期, 2007:30-33。
    [3] 刁心玺,李纪。下一代移动通信无线接入网目标系统及演进路线探讨。电信科学,2007年第1期,2007:1-6。
    [4] 赵慧玲,徐向辉,黄寒凌。FMC的需求和框架-从NGN的角度看FMC。电信科学,2006年第8期,2006:5-10。
    [5] 万屹,李扬。B3G全球研究进展。电信科学,2006年第6期,2006:21-23。
    [6] 宋俊德。2005年无线移动互联网领域的几个热点问题。北京邮电大学学报,28(2),2005年4月:1-3。
    [7] 刘韵洁。下一代网络的发展趋势——融合与发展。电信科学,2005年第2期,2005:1-6。
    [8] 韩旭东,张春业,曹建海。下一代移动通信关键技术在高速无线局域网中的应用。电子技术应用,2004年第3期,2004:49-51。
    [9] 技术预测与国家关键技术选择研究组,程家瑜,王革,等。未来10年我国可能实现产业跨越式发展的重大核心技术。中国科技论坛,2004年第2期,2004年3月:9-12。
    [10] Seungwan Ryu, Sei Kwon Park, Donsung Oh, et al. Research activities on next-generation mobile communications and services in Korea. IEEE Communication Magazine, 43(9), 2005: 122-131.
    [11] Seungwan Ryu, Donsung Oh, Gyungchul Sihn, et al. Perspective of the next generation mobile communications and services. In the proceedings of 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, 2004:643-647.
    [12] Seungwan Ryu, Donsung Oh, Gyungchul Sihn, et al. The next generation mobile services and a proposed network architecture. In the proceedings of IEEE 60th Vehicular Technology Conference, 2004: 3306-3309.
    [13] Pingzhi Fan. Multiple Access Technologies for Next Generation Mobile Communications. In the proceedings of 2006 6th International Conference on ITS Telecommunications, ChengDu, 2006:10-11.
    [14] Joo Seong Park, Hyo Jun Lee, Mintaig Kim. Technical Standardization Status and the Advanced Strategies of the Next Generation Mobile Communications. In the proceedings of the 8th International Conference on Advanced Communication Technology, 2006: 884-887.
    [15] Berezdivin R, Breinig R, Topp R. Next-generation wireless communications concepts and technologies. IEEE Communication Magazine, 40(2), March 2002:108-116.
    [16] van Zelst A, Schenk T C W. Implementation of a MIMO OFDM-based wireless LAN system. IEEE Transaction on Signal Processing, 52(2), Feb 2004: 483-494.
    [17] Detti A, Eramo V, Listanti M. Performance evaluation of a new technique for IP support in a WDM optical network: optical composite burst switching (OCBS). Journal of Lightwave Technology, 20(2), Feb 2002:154-165.
    [18] Kamiyama N. Cost evaluation of all-optical architectures for backbone networks. In the proceedings of the 11th international Telecommunications Network Strategy and Planning Symposium, 2004:57-62.
    [19] Yen L. Satellite communications for the millennium. In the proceedings of IEEE Antennas and Propagation Society International Symposium, 2000:530-533.
    [20] Scholtz R A. Ultrawideband promises and problems. In the proceedings of IEEE Topical Conference on Wireless Communication Technology, 2003:185.
    [21] Win M Z, Scholtz R A. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications, 48(4), April 2000:679-689.
    [22] Win M Z, Scholtz R A. Impulse radio: how it works. IEEE Communications Letters, 2(2), Feb 1998:36-38.
    [23] Maria-Gabriella Di Benedetto, Branimir R Vojcic. Ultra Wide Band Wireless Communications: A Tutorial. Journal of Communications and Networks, 5(4), Dec 2003:290-302.
    [24] Aiello G R, Rogerson G D. Ultra-Wideband Wireless Systems. IEEE microwave magazine, 4(2), June 2003:36-47
    [25] Bennett C L, Ross G F. Time-domain electromagnetics and its applications. In the proceedings of the IEEE, 1978:299-318.
    [26] Ross G F. The evolution of UWB technology. In the proceedings of 2003 Radio and wireless Conference, 2003:1-4.
    [27] Taylor T D. Introduction to Ultra-Wideband Radar Systems. USA: CRC Press, 1995.
    [28] Barrett T W. History of Ultra Wideband (UWB) Radar & Communications: Pioneers and Innovators. In the proceedings of Progress in Electromagnetics Symposium, Cambridge, 2000.
    [29] Sobol H. Microwave Communications-An Historical Perspective. IEEE Transactions on Microwave Theory and Techniques, MIT-32(9), Sep 1984:1170-1181.
    [30] Maria-Gabriella Di Benedetto, Guerino Giancola. Understanding Ultra Wide Band Radio Fundamentals [M]. United States of America: Pearson Education, 2004.
    [31] FCC. ET Docket 98-153. 2002. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems. First Report and Order. US, FCC, 2002.
    [32] Morey R N. Geophysical survey system employing electromagnetic impulses. U.S. Patent No.3806795. Apr 1974.
    [33] Scholtz R A. Impulses radio. In the proceedings of IEEE PIMRC97, Finland, 1997.
    [34] Win M Z, Scholtz R A. Ultra-Wide Bandwidth signal propagation for indoor wireless communications. In the proceedings of IEEE international conference on communication, 1997: 56-60.
    [35] Cramer R J M, Win M Z., Scholtz R A. Impulse radio multipath characteristics and diversity reception. In the proceedings of IEEE International Conference on Communications (ICC 98), 1998:1650-1654.
    [36] Scholtz R A, Kumar P V, Corrada-Bravo C.J. Signal design for Ultra-wideband radio. In the Proceedings of the Sequences and their Application Conference (SETA2001), 2001.
    [37] IEEE Conference on Ultra Wideband Systems and Technologies, UWBST'02, available online at http://intl.ieeexplore.ieee.org(Xplore/DynWel.jsp.
    [38] IEEE Journal on Selected Area in Communications, JSAC'02 UWB, available at http://intl.ieeexplore.ieee.org/Xplore/DynWel.jsp.
    [39] G. Ross. A time domain determination of the driving point characteristics of the dipole, Antennas and Propagation Society International Symposium, Volume 4, 1966:205-212.
    [40] Scholtz R A. Multiple Access with Time-Hopping Impulse modulation. In the proceedings of the Military Communications Conference(MILCOM93), 1993: 445-450.
    [41] 岳光荣,葛利嘉。超宽带无线电抗干扰性能研究,电子与信息学报,24(11),2002年11月:1544-1550。
    [42] 周炯磐。信息理论基础。人民邮电出版社,1983。
    [43] 姜宇,曹军,杨国辉。基于超宽带的无线USB技术。电子技术应用,2006 年第2期,2006:1-4。
    [44] 耿鹏,邹传云,游路路。超宽带无线通信解决方案的分析与比较。电视技术,2006年第2期,2006:58-60。
    [45] 杨刚,亢洁,施仁。超宽带传输参考接收机的性能研究。通信学报,26(10),2005:122-127。
    [46] 王石记,张乃通。三进制互补集及其在UWB中的应用。通信学报,26(10),2005:129-132。
    [47] Myung-Sun Baek, So-Young Yeo, Mi-Jeong Kim, et al. MB-OFDM UWB system with multiple antennas for high capacity transmission in wireless personal area network. In the proceedings of 2005 International Conference on Consumer Electronics, 2005:85-86.
    [48] Zhonghua Liang, Shihua Zhu, Yongliang Guo, et al. Space-time narrowband interference suppression with receive diversity for DS-UWB systems. IEEE Transactions on Consumer Electronics, 52(4), Nov 2006:1207-1212.
    [49] Hussain M G M. Principles of space-time array processing for ultrawide-band impulse radar and radio communications. IEEE Transaction on Vehicular Technology, 51(3), 2002:393-403.
    [50] Idriss A, Schmidt A, Zeisberg S, et al. Performance of a Non-coherent Receiver for UWB Communication and Ranging Applications. In the proceedings of the 2nd Information and Communication Technologies Conference, 2006:2314-2319.
    [51] Godara B, Blamon G, Fabre A. UWB: A New Efficient Pulse Shape and its Corresponding Simple Transceiver. In the proceedings of the 2nd International Symposium on Wireless Communication Systems, 2005: 365-369.
    [52] McCorkle J. Ultra wide bandwidth (UWB): gigabit wireless communications for battery operated consumer applications. In the proceedings of 2005 Symposium on VLSI Circuits, 2005:6-9.
    [53] Zhang J, Kennedy R A, Abhayapala T D. New results on the capacity of M-ary PPM ultra-wideband systems. In the proceedings of IEEE International Conference on Communicaitons (ICC03), 2003: 2867-2871.
    [54] Santhi K R, Srivastava V K, SenthilKumaran G, et al. Goals of true broad band's wireless next wave (4G-5G). In the proceedings of IEEE 58th Vehicular Technology Conference (VTC2003), 2003: 2317-2321.
    [55] 张双狮,祝忠明,王绪本。超宽带搜救雷达发射信号及径向分辨率研究。 现代雷达,28(5),2006:12-15。
    [56] 张振宇,曾凡鑫,葛利嘉。一类适用于超宽带无线电的跳时序列族。系统工程与电子技术,25(12),2003:1447-1450。
    [57] 朱义君,常力。UWB的主要特点及在短距离无线通信中的应用前景。电子技术应用,2003年第10期,2003:6-8。
    [58] 樊祥宁。超宽带无线通信关键技术研究[学位论文]。南京,东南大学,2005。
    [59] Win M Z, Scholtz R A. On the robustness of ultra-wide bandwidth signals in dense multipath environments. IEEE Communications Letter, 2(2), 1998:51-53.
    [60] Win M Z, Scholtz R A. On the energy capture of ultrawide bandwidth signals in dense multipath environments. IEEE Communications Letter, 2(9), 1998:245-247.
    [61] McKinstry D R, Buehrer R M. Issues in the performance and covertness of UWB communications systems. In the proceedings of the 2002 45th Midwest Symposium on Circuits and Systems (MWSCAS-2003), 2002:601-604.
    [62] M Hamalainen, V Hovinen, R Tesi, et al. On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS. IEEE J. Select. Areas Commun.,20(9), Dec 2002:1712-1721.
    [63] Ginliano R, Mazzenga F. On the coexistence of power-controlled ultrawide-band systems with UMTS, GPS, DCS1800, and fixed wireless systems. IEEE Trans. Veh. Technol., 54(1), Jan 2005:62-81.
    [64] Chong C-C, Yong S K, Kim Y-H, et al. Samsung Electronics (SALT) CFP Presentation for IEEE 802.15.4a Alternative PHY: UWB Direct Chaotic Communication System, IEEE 802.15-05-0030-02-004a, Jan 2005. Available at ftp://ftp.802wirelessworld.com/15/05.
    [65] Chong C-C, Yong S K, Lee S-S. UWB direct chaotic communication technology. IEEE Antennas and Wireless Propagation Letters. vol. 4, 2005:316-319.
    [66] Yong S K, Chong C-C, Lee S-S. "UWB-DCSK communication systems for low rate WPAN applications. In the proceedings of IEEE 16th International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC2005), Berlin, GERMANY,2005:911-915.
    [67] Chong C-C, Yong S K. On the performance of non-coherent and differential-coherent UWB-DCC system. In the proceedings of 2006 IEEE Wireless Communications and Networking Conference (WCNC2006). Las Vegas, Apr 2006: 776-780.
    [68] Namgoong W. A channelized digital ultrawideband receiver. IEEE Transaction on Wireless Communication, 2(3), May 2003:502-510.
    [69] O'Donnell I D, Brodersen R W. An ultra-wideband transceiver architecture for low power, low rate, wireless systems. IEEE Transaction on Vehicular Technology, 54(5), Sep 2005:1623-1631.
    [70] Chong Chia-Chin, Watanabe F, Inamura H. Potential of UWB Technology for the Next Generation Wireless Communications. In the Proceedings of 2006 IEEE 9th International Symposium on Spread Spectrum Techniques and Applications. 2006:422-429.
    [71] Intel White Paper. Ultra-wideband (UWB) Technology: Enabling high-speed wireless personal area networks. 2004. Available at http://www.intel.com/technology/comms/uwb.
    [72] MultiBand OFDM Alliance Special Interest Group. (MBOA-SIG) White Paper. Ultrawideband: High-speed, short-range technology with far-reaching effects. Sep 2004. Available at http://www.alereon.com/technology/white-papers
    [73] Freescale Semiconductor, Inc. White Paper. USB without wires: Understanding different approaches using ultra-wideband technology. February 2006. Available at www.freescale.com/uwb.
    [74] Standard ECMA-368. High Rate Ultra Wideband PHY and MAC Standard, Std. Available at http://www.ecmainternational.org/publications/standards/Ecma-368. htm.
    [75] IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a), Std. Available at http://www.ieee802.org/15/pub/TG3a.html
    [76] Gezici S, Tian Z, Giannakis G B, et al. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine, 22(4), July 2005:70-84.
    [77] Dardari D, Win M Z. Threshold-based time-of-arrival estimators in UWB dense multipath channels. In the proceedings of 2006 IEEE International Conference on Communications, Istanbul, TURKEY, 2006:4723-4728.
    [78] Jourdan D B, Dardari D, Win M Z. Position error bound for UWB localization in dense cluttered environments. In the proceedings of 2006 IEEE International Conference on Communications, Istanbul, TURKEY, 2006:3705-3710.
    [79] Dardari D, Chong C-C, Win M Z. Analysis of threshold based TOA estimator in UWB channels. In the Proceedings of European Signal Processing Conference (EUSIPCO), Florence, ITALY, 2006.
    [80] Romme J, Kull B. UWB opportunities for smart home applications. In the Proceedings of IEEE International Symposium on Consumer Electronics, Erfurt, GERMANY, 2002.
    [81] Roy A, Bhaumik D, Bhattacharya A, et al.Location aware resource management in smart homes. In the Proceedings of IEEE International Conference on Pervasive Computing and Communications, Dallas-Fort Worth, TX, 2003:481-488.
    [82] Collier W C, Weiland R J. Smart cars, smart highways. IEEE Spectrum, 31(4),Apr 1994:27-33.
    [83] 赵彧,黄春琳,粟毅,等。超宽带穿墙探测雷达的反向投影成像算法。雷达科学与技术,5(1),2007:49-54。
    [84] 程晓佩。用于生命探测的超宽带雷达。电子工程信息,2006年第5期,37-40。
    [85] 金添,周智敏,常文革,等。UWB SAR低信杂比环境下时频表示成像方法研究。电子与信息学报,28(6),2006:973-976。
    [86] 黎海涛,徐继麟。超宽带线性调频雷达目标回波模型,电波科学学报,14(4),1999年12月:330-444。
    [87] 张洪欣,吕英华,贺鹏飞,等。一种基于脉冲压缩的UWB成形脉冲设计方法。北京邮电大学学报,30(1),2007年2月:312-135。
    [88] 梁朝辉,周正。脉冲波形对超宽带通信系统性能的影响。电路与系统学报,11(6),2006年12月:138-142。
    [89] 张洪欣,吕英华,贺鹏飞,等。利用小波函数生成UWB正交成形脉冲序列的方法。北京邮电大学学报,29(4),2006年8月:61-64。
    [90] 张洪欣,吕英华,贺鹏飞,王野秋。消除与WLAN同频干扰的UWB正交成形脉冲序列设计。武汉大学学报(理学版),2005,51(S2):61-63。
    [91] Pozar D M. Closed-form approximations for link loss in a UWB radio system using small antennas. IEEE Transaction on Antennas Propagation, 51(9), Sep 2003:2346-2352.
    [92] Behdad N, Sarabandi K. A compact antenna for ultrawide-band applications. IEEE Transaction on Antennas Propagation,53(7),Jul 2005:2185-2192.
    [93] Cassioli D, Win M Z, Molisch A F. The ultra-wide bandwidth indoor channel: from statistical model to simulations. IEEE Journal on Selected Area in Communications 20(6), Aug 2002:1247-1257.
    [94] Win M Z, Scholtz R A. Characterization of ultra-wide bandwidth wireless indoor communications channel: A communication theoretic view. IEEE Journal on Selected Area in Communications, 20(9), Dec 2002:1613-1627.
    [95] Chong C-C, Yong S K. A generic statistical based UWB channel model for high-rise apartments. IEEE Transaction on Antennas Propagation,53(8), Aug 2005:2389-2399.
    [96] Chong C-C, Kim Y-E, Lee S-S. Statistical characterization of the UWB propagation channel in various types of high-rise apartments. In the proceedings of IEEE Wireless Communication s and Networking Conference, 2005: 944-945.
    [97] Wentzloff D D, Blazquez R, Lee F S, et al. System design considerations for ultra-wideband communication. IEEE Communication Magazine, 43(8), Aug 2005:114-121.
    [98] IEEE 802.15 WPAN Mesh Networking Task Group 5 (TG5), Std. Available at http://www.ieee802.org/15/pub/TG5.html
    [99] Cuomo F, Martello C, Baiocchi A, et al. Radio resource sharing for ad hoc networking with UWB. IEEE Journal on Selected Area in Communications,20(9),Dec 2002:1722-1732.
    [100] Radunovic' B, and Boudec J-Y L. Optimal power control, scheduling, and routing in UWB networks. IEEE Journal on Selected Area in Communications, 22(7), Sep 2004:1252-1270.
    [101] Fawal A E, Boudec J-Y L, Merz R, et al. Trade-off analysis of PHY-aware MAC in low-rate low-power UWB networks. IEEE Communication Magazine, 43(12), Dec 2005:147-155.
    [102] Shen X, Zhuang W, Jiang H, et al. Medium access control in ultra-wideband wireless networks. IEEE Transaction on Vehicular Technology,54(5),Sep 2005: 1663-1677.
    [103] Chen H, Guo Z, Yao R Y, et al. Performance analysis of delayed acknowledgment scheme in UWB-based high-rate WPAN. IEEE Transaction on Vehicular Technology, 55(2), Mar 2006:606-621.
    [104] WANG Ye-qiu, LU Ying-hua, Zhang Hong-xin, et al. UWB multi-pulse position modulation for high data-rate wireless application. The journal of China universities of posts and telecommunications, 13(4), 2007:19-23.
    [105] WANG Ye-qiu, LU Ying-hua, XU Yong, et al. UWB high Data-rate wireless communication system base on multi-pulse position modulation. In the Proceedings of WICOM2006, 2006.
    [106] 贺鹏飞,吕英华,张洪欣,等。基于Chirp-BOK调制的超宽带无线通信系统研究。南京邮电大学学报(自然科学版),26(2),2006年4月:21-25。
    [107] HE Peng-fei, Lu Ying-hua, ZHANG Hong-xin, et al. SAW chirp Fourier transform for MB-OFDM UWB receiver. The journal of China universities of posts and telecommunications, 13(3): Sep 2006:1-4.
    [108] Zhang Hao, T A Gulliver. Biorthogonal pulse position modulation for time-hopping multiple access UWB communications. IEEE Transactions on Wireless Communication, 4(3), 2005:1154-1162.
    [109] WANG Ye-qiu, LU Ying-hua, ZHANG Hong-xin, et al. Analysis of UWB cumulative interference effect on GSM systems. The journal of China universities of posts and telecommunications, 13(Sup.): Nov 2006:108-111.
    [110] Wang ye-qiu, Lu ying-hua, Zhang Hong-xin, et al. Evaluation of UWB Interference to the 3rd Generation Communication Systems. In the Proceedings of Asia-Pacific Conference on Environmental Electromagnetics, Dalian,2006:161-164.
    [111] Landi D, Fischer C. The effects of UWB interference on GSM systems. 2004 International Zurich seminar on communications, 8037357, Zurich: IEEE, 2004:86-89.
    [112] Mittelbach M, Miiller C, Ferger D, et al. Study of coexistence between UWB and narrowband cellular systems. In the proceedings of IEEE Joint UWBST&IWUWBS, Kyoto, 2004: 40-44.
    [113] XU Yong, LU Ying-hua, WANG Ye-qiu. Estimating the interference of the UWBFM to FM receiver. The journal of China universities of posts and telecommunications, 13(Sup.): Nov 2006:112-116
    [114] Xu Yong, Luying-Hua, Hepeng-fei, et al. Estimating the Interference of UWB Pulse Signal to GPS Receiver. In the Proceedings of 2006 6th International Conference on ITS Telecommunications. Chengdu,2006:286-289
    [115] Homier E A, Scholtz R A. Rapid acquisition of ultra-wideband signals in the dense multipath channel. In the proceedings of IEEE Conference on UltraWideband Systems and Technologies, Baltimore, MD, 2002:105-109.
    [116] Suwansantisuk W, Win M Z, Shepp L A. On the performance of wide-bandwidth signal acquisition in dense multipath channels. IEEE Transaction on Vehicular Technology,54(5),Sep 2005:1584-1594.
    [117] Yang L, Giannakis G B. Timing ultra-wideband signals with dirty templates. IEEE Transaction on Communications, 53(11),Nov 2005:1952-1963.
    [118] Tian Z, Giannakis G B. A GLRT approach to data-aided timing acquisition in UWB radios-Part Ⅰ: algorithms. IEEE Transaction on Wireless Communication, 4(6),Nov 2005:2956-2967.
    [119] Tian Z, Giannakis G B. A GLRT approach to data-aided timing acquisition in UWB radios-Part Ⅱ: training sequence design. IEEE Transaction on Wireless Communication, 4(6),Nov 2005:2994-3004.
    [120] Tian Z, Lottici V. Low-complexity ML timing acquisition for UWB communications in dense multipath channels. IEEE Transaction on Wireless Communication, 4(6),Nov 2005:3031-3038.
    [121] ITU-R TG1/8: Compatibility between ultra-wideband (UWB) devices and radio communications services, Std. Available at http://www.itu.int/ITU-R/study-groups/rsgt/rtg1-8/index.asp
    [122] "WiMedia Alliance." Available at http://www.wimedia.org
    [123] "UWB Forum." Available at http://www.uwbforum.org
    [124] ETSI ERM TG31A: Ultra Wide Band for Short Range Devices, Std. Available at http://portal.etsi.org/erm/ERMtg31AToR.asp.
    [125] ETSI ERM TG31B: Ultra Wide Band Automotive Radar, Std. Available at http://portal.etsi.org/erm/ERMtg31B ToR.asp.
    [126] European Conference of Postal and Telecommunications Administrations (CEPT), Std. Available at http://www.cept.org/.
    [127] Japan UWB Regulation, Std. Available at http://www.soumu.go.jp/s-news/2006/0603273.html.
    [128] Korea UWB Public Hearing Session, Std.. Available at http://mic.news.go.kr.
    [129] IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a (TG4a), Std. Available at http://www.ieee802.org/15/pub/TG4a.html
    [130] Xu Weiyu, R Yao, Guo Zihua, et al. A power efficient M-ary orthogonal pulse polarity modulation for TH-UWB system using modified OVSF codes.In the Proceedings of Global Telecommunications Conference, 2003(GLOBECOM '03). IEEE press, 2003:436-440.
    [131] Matthew L Welborn. System Considerations for Ultra-Wideband Wireless Networks. In the proceedings of 2001 IEEE Radio and Wireless Conference (RAWCON 2001), 2001:5-8.
    [132] Assanovich B, Moon Ho Lee. Modification of pulse position modulation for high data UWB systems and multi-user communication. In the proceedings of 15th International Conference on Microwaves, Radar and Wireless Communications (MIKON-2004),2004:1024-1027 Vol.3.
    [1] Xu Weiyu, R Yao, Guo Zihua, et al. A power efficient M-ary orthogonal pulse polarity modulation for TH-UWB system using modified OVSF codes. In the Proceedings of 2003 Global Telecommunications Conference (GLOBECOM'03), 2003:436-440.
    [2] Jayaweera S K. Signal design for noncoherent PPM modulation with applications to UWB communications. IEEE Communications Letters, 9(5), May 2005: 411-413.
    [3] Yang Liuqing. Timing PPM-UWB signals in ad hoc multiaccess. IEEE Journal on Selected Areas in Communications, 24(4), Apr 2006: 794-800.
    [4] Bo Hu, Beaulieu N C, Accurate evaluation of multiple-access performance in TH-PPM and TH-BPSK UWB systems. IEEE Transaction on Communications, 52(10), Oct 2004: 1758-1766.
    [5] Luo X, Giannakis G B. Achievable Rates of Transmitted-Reference Ultra-Wideband Radio With PPM. IEEE Transactions on Communications, 54(9), Sep 2006: 1536-1541.
    [6] Kokkalis N V, Mathiopoulos P T, Karagiannidis G K, et al. Performance analysis of M-ary PPM TH-UWB systems in the presence of MUI and timing jitter. IEEE Journal on Selected Areas in Communications, 24(4), Apr 2006: 822-828.
    [7] Wang Li-Chun, Liu Wei-Cheng, Shieh Kuan-Jiin. On the performance of using multiple transmit and receive antennas in pulse-based ultrawideband systems. IEEE Transactions on Wireless Commnications, 4(6), Nov 2005: 2738-2750.
    [8] Matthew L Welborn. System considerations for Ultra-Wideband wireless networks. In the Proceedings of IEEE Radio and Wireless Conference (RAWCON 2001).Waltham MA, 2001:5-8.
    [9] Maria-Gabriella Di Benedetto, Guerino Giancola. Understanding Ultra Wide Band Radio Fundamentals [M]. United States of America: Pearson Education, 2004.
    [10] B Assanovich, Lee Moon-ho. Modification of pulse position modulation for high data UWB systems and multi-user communication. In the Proceedings of the 15th International Conference on Microwaves, Radar and Wireless Communications (MIKON-2004), 2004: 1024-1027.
    [11] Zhang Hao, T A Gulliver. Biorthogonal pulse position modulation for time-hopping multiple access UWB communications. IEEE Transactions on Wireless Communication, 4(3), 2005:1154-1162.
    [12] 徐大专。(2m,2,m)非线性等重码不是最佳检错码。通信学报,17(4)1996:104-106。
    [13] 夏树涛,符方伟。再论二元非线性等重码的检错性能。电子学报,27(1),1999:131-132。
    [14] 王新梅。非线性等重码检错性能的进一步分析。通信学报,04期,1992:10-17。
    [15] 杨义先。王氏猜想的证明。科学通报,01期,1989:78-80。
    [16] 郭南,洪福明,李乐民。一种多进制直扩通信系统及其信息-分组映射的优化。电子学报,4期,1996:50-54。
    [17] 黄成芳。多脉冲脉位键控调制的编、译码。重庆邮电学院学报(自然科学版),03期,2000:7-9。
    [18] S Dolinar, D Divalar, J Hamkins, et al.Capacity of pulse position modulation (PPM) on Gaussian and Webb channels. In JPL TMO Progress Report, Apr.-Jun.2000:1-31.
    [19] Proakis John G. Digital communications. Fourth Edition[M]. Beijing, China: Publishing House of Electronics Industry, 2001:231-408.
    [20] Hyuncheol Park, Barry J R. Modulation analysis for wireless infrared communications. In the Proceedings of 1995 IEEE International Conference on Communication (ICC95), Seattle, USA, 1995: 1182-1186.
    [21] H Sheng, P Orilik, A M Haimovich, et al. On the spectral and power requirements for ultra wideband transmission. In: Proceedings of IEEE International Conference on Communications. IEEE, May 2003: 738-742.
    [1] Zhang Hao, T A Gulliver. Biorthogonal pulse position modulation for time-hopping multiple access UWB communications. IEEE Transactions on Wireless Communication, 4(3), May 2005:1154-1162.
    [2] Zhang H, Li W, Gulliver T A. Biorthogonal pulse position modulation for time-hopping UWB systems. In the Proceedings of the 3rd Communication Networks and Services Research Conference, 2005: 209-213.
    [3] Abou-Rjeily C, Daniele N, Belfiore J C. A2/spl times/2 antennas ultra-wideband system with biorthogonal pulse position modulation. IEEE Communications Letters, 10(5), May 2006:366-368.
    [4] Roberts M L,Temple M A,Raines R A, et al. Time Hopping Biorthogonal Pulse Position Modulation in Modified Saleh-Valenzuela UWB Fading Channels. In the Proceedings of IEEE 2006 International Conference on Ultra-Wideband, 2006: 67-72.
    [5] Wei Li, Gulliver A, Hao Zhang. Performance and capacity of ultra-wideband transmission with biorthogonal pulse position modulation over multipath fading channels. In the Preceedings of 2005 IEEE International Conference on Ultra-Wideband, 2005.
    [6] 郭南,洪福明,李乐民。一种多进制直扩通信系统及其信息-分组映射的优化。电子学报,4期,1996:50-54。
    [7] 黄成芳。多脉冲脉位键控调制的编、译码。重庆邮电学院学报(自然科学版),03期,2000:7-9。
    [8] S Dolinar, D Divalar, J Hamkins, et al.Capacity of pulse position modulation (PPM) on Gaussian and Webb channels. In JPL TMO Progress Report, Apr.-Jun.2000:1-31.
    [9] Proakis John G. Digital communications. Fourth Edition[M]. Beijing, China: Publishing House of Electronics Industry, 2001:231-408.
    [10] Maria-Gabriella Di Benedetto, Guerino Giancola. Understanding Ultra Wide Band Radio Fundamentals [M]. United States of America: Pearson Education, 2004.
    [11] Hyuncheol Park, Barry J R. Modulation analysis for wireless infrared communications. In the Proceedings of 1995 IEEE International Conference on Communication (ICC95), Seattle, USA, 1995:1182-1186.
    [1] Foerster J R. Interference modeling of pulse-based UWB waveforms on narrowband systems. In the Proceedings of IEEE 55th Vehicular Technolgoy Conference, 2002: 1931-1935.
    [2] Morton Y T, French M P,Zhou Q, et al. Software approach to access UWB interference on GPS receivers. IEEE Aerospace and Electonic Systems Magazine, 20(1), Jan 2005: 28-33.
    [3] 张洪欣,吕英华,贺鹏飞,王野秋。消除与WLAN同频干扰的UWB正交成形脉冲序列设计。武汉大学学报(理学版),2005,51(S2):61-63。
    [4] XU Yong, LU Ying-hua, WANG Ye-qiu. Estimating the interference of the UWBFM to FM receiver. The journal of China universities of posts and telecommunications, 13(Sup.): Nov 2006:112-116
    [5] Xu Yong, Luying-Hua, Hepeng-fei, et al. Estimating the Interference of UWB Pulse Signal to GPS Receiver. In the Proceedings of 2006 6th International Conference on ITS Telecommunications. Chengdu, 2006:286-289
    [6] Hamalainen M, Hovinen V, Tesi R, et al. On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS. IEEE Journal on Selected Areas in Communications, 20(9), Dec 2002: 1712-1721.
    [7] Giorgetti A, Chiani M, Win M Z. The effect of narrowband interference on wideband wireless communication systems. IEEE Transactions on Communications, 53(12), Dec 2005: 2139-2149.
    [8] Keskitalo L, Page J, Palin A. Ultra wide band (UWB) compatibility with IMT-2000: time for a transform or noisy neighbours?. In the Proceedings of 4th International Conference on 3G Mobile Communication Technologies, 2003: 304-308.
    [9] Giuliano R, Mazzenga F. On the coexistence of power-controlled ultrawide-band systems with UMTS, GPS, DCS1800, and fixed wireless systems. IEEE Transactions on Vehicular Technology. 54(1), Jan 2005: 62-81.
    [10] Quijano B, Alvarez A, Lobeira M, et al. Experimental study on the influence of IR-UWB networks on cellular receivers. In the Preceedings of 2005 IEEE International Conference on Ultra-wideband, 2005: 701-706.
    [11] 张凤山,周正。UWB设备对移动通信系统的合成干扰分析。无线电工程,35(10),2005:10-12。
    [12] Landi D, Fischer C. The effects of UWB interference on GSM systems[R].2004 International Zurich seminar on communications, 8037357, Zurich: IEEE, 2004:86-89.
    [13] Mittelbach M, Miiller C, Ferger D, et al. Study of coexistence between UWB and narrowband cellular systems. IEEE Joint UWBST&IWUWBS, Kyoto, 2004:40-44.
    [14] 李争,徐建敏,杨莘元。UWB设备和移动通信系统的共存研究.弹箭与制导学报,26(3),2006:218-221。
    [15] Quijano B, Valera G, Alvarez A, et al. UWB aggregate interference on a cellular victim receiver from a statistical perspective. IEEE IWUWBS, Finland, 2003.
    [1] 陈慧芳,严惠民,姚晓强。被动测距系统汽车目标提取算法研究。浙江大学学报(工学版),39卷(04期)2005年:526-529。
    [2] 侯志强,王祖林。车载天线定向系统设计。电子测量技术,29(4),2006:17-18。
    [3] 罗恒,朱杰,王琪。利用超声波方式精密测距方案设计。电子测量技术,2003年第2期,2003:1-2。
    [4] May M, Kreisher E, Nasuti T, et al. Evaluation of GPS receiver ranging accuracy. In the proceedings of IEEE PLANS'90, 1990: 314-321.
    [5] Sheng Zhou, Pollard J K. Position measurement using Bluetooth. IEEE Transaction on Consumer Electronics, 52(2), May 2006:555-558.
    [6] Maria-Gabriella Di Benedetto, Guerino Giancola. Understanding Ultra Wide Band Radio Fundamentals [M]. United States of America: Pearson Education, 2004.
    [7] Fleming R A, C E Kushner. Spread Spectrum Localizers [P]. U. S. Patent, No. 6002708, 1997.
    [8] Cardinali R, De Nardis L, Di Benedetto M -G., et al. UWB ranging accuracy in high- and low-data-rate applications. IEEE Transactions on Microwave Theory and Techniques, 54(4), June 2006: 1865-1875.
    [9] Cardinali R, De Nardis L, Lombardo P, et al. UWB ranging accuracy for applications within IEEE 802.15.3a. 2005 2nd International Workshop on Ultra Wide Band for Sensor Networks, 2005: 65-69.
    [10] Jacques Wolfmann. Almost perfect autocorrelation sequences. IEEE Transactions on Information Theory, 38(4), 1992:1412-1418.
    [11] De Nardis L, Giancola G., Di Benedetto M-G. Performance analysis of uncoordinated medium access control in low data rate UWB networks. In the Proceeding of the 2nd International Conference on Broadband Networks, 2005:206-212.
    [12] Ian Oppermann, Matti Hamalainen, Jari Iinatti. UWB: Theory and Applications [M]. United States of America: John Wiley & Sons, Ltd., 2004.
    [13] 邓平,李莉,范平志。一种TDOA/AOA混合定位算法及其性能分析。电波科学学报,17(6),2002:633-636。
    [14] 张洁颖,孙懋珩,王侠。基于RSSI和LQI的动态距离估计算法。电子测量技术,30(2),2007:142-145。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700