基于单根SnO_2纳米线肖特基势垒的气体传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体传感器是一种能检测不同种类与不同浓度气体,并将这些参量转化成电信号输出的装置,广泛应用于环境调查、国家安全、食品加工、医疗诊断等产业中。随着科技的发展,人们对气敏传感器的灵敏度、工作温度等各项性能指标提出了更高的要求,这就需要不断进步的纳米科技对气敏传感器性能加以改善,提高气体检测灵敏度,降低工作温度。在市场上的几种类型的传感器中,由于氧化物半导体传感器具有灵敏度高、使用寿命长、对多种气体敏感和成本低等优点,得到了广泛的应用,金属氧化物半导体例如二氧化锡(SnO_2),氧化锌(ZnO)和三氧化钨(WO_3)是最常用的固体传感器材料。气敏传感器的性能与敏感材料暴露在外的表面积有直接关系,纳米线有比较高的比表面积,存在非常丰富的表面态,有比较高的氧化活性,相比其块体材料来说有较高的灵敏度,和较低的工作温度,同时纳米线气体传感器还有利于减小尺寸进而降低能耗,所以纳米线是设计下一代传感器的理想候选结构材料。基于肖特基势垒的纳米传感器在气敏传感器中展现出优异的气敏性能,用肖特基接触代替欧姆接触是提高气体灵敏度的重要方法,基于单根纳米材料肖特基势垒气敏传感器逐步得到研究人员的重视。
     本论文系统研究了基于肖特基势垒的单根SnO_2纳米线气体传感器的气敏特性,通过气敏性质的测试发现在室温下对100ppm H_2S灵敏度高达1238,并且具有良好的重复稳定性。利用溶胶-凝胶与热蒸发相结合的方法制备了SnO_2纳米线,并对所得样品进行了结构和形貌表征,得出我们合成的纳米线具有单晶金红石结构。用电场组装技术制备了单根SnO_2纳器件,通过测试器件I-V曲线,得出纳米线两端与金电极均形成了肖特基接触,构成了背靠背肖特基势垒结构。我们还对可能的气敏机理进行了分析,在这种背靠背肖特基势垒结构中,器件的电流受反向肖特基势垒控制,势垒高度受氧的吸附脱附调控,电流随着势垒高度变化呈现指数变化规律,这是我们的器件在室温下有超高的气体检测灵敏度的主要原因;SnO_2纳米线有比较多的表面氧空位缺陷,吸附在氧空位处的氧O_2-会转化为O-,而O-比O_2-有更高的反应活性,这是我们的器件在室温下具有超高气体灵敏度的另一个原因。具体研究内容如下:
     第1章对一维纳米材料气敏传感器研究进展进行了介绍。重点介绍基于单根纳米线肖特基势垒型的气敏传感器以及室温气敏传感器,并以此为基础明确了本论文研究选题,目的和主要研究内容。
     第2章介绍了通过溶胶凝胶与热蒸发法高温合成SnO_2纳米线的具体方法和详细的实验过程。通过控制生长条件,成功合成了SnO_2纳米线。并对纳米线进行了一系列的表征,主要包括X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM),高分辨透射电子显微镜(HR-TEM)对样品的表面形貌、结构及成份进行表征和研究。通过电场在位组装的方法成功制备了单根SnO_2纳米线原型气敏传感器。并且分析研究了退火对单根SnO_2纳米线的输运性质影响。
     第3章系统研究了单根SnO_2纳米线肖特基势垒气体传感器的气敏特性,通过测试传感器对H_2S的在不同温度下、以及多周期的气敏特性,系统研究了传感器对硫化氢的气敏特性。得出在室温下对100ppm H_2S的灵敏度高达了1238,并且具有良好重复稳定性,通过分析实验结果,讨论了可能的气敏机理。
Gas sensor is a kind of device that can detect gas with different types and different concentration,and transform these parameters into electrical signal. It is widely used in environmental investigation,national security, food processing, medical diagnosis and various other industrial applications. With thedevelopment of science and technology, higher requirements are put forward for various performanceindicators of gas sensors, which need the developing nanotechnology to improve performance, such asimproving the sensitivity of measurement of gas and reducing working temperature. Among the severalvarieties of gas sensors available in the market, oxide semiconductor sensors are the most popular owing totheir high sensitivity, long service life, and lower-cost. Semiconducting metal oxides such as tin oxide(SnO_2), zinc oxide (ZnO), and tungsten oxide (WO_3) are routinely employed as active materials in thesesensors. The performance of gas sensors has a direct relation to exposed superficial area of sensitivematerial. Nanowire has relatively high specific surface area, various surface states, higher oxidative activity,so it has high sensitivity, and lower working temperature than block material. Besides, Nanowires gassensor can decrease the size and reduce energy consumption, so nanowire is the ideal candidate structuralmaterials for the designing of next generation of sensor. Nanosenser based on Schottky barrier showsexcellent performance in gas sensors, it is an important method to improve gas sensitivity using Schottkycontact instead of ohmic contact. Schottky barrier gas sensors based on single nanometer materialsgradually get the researchers' attention.
     In this thesis, the gas sensing properties of single SnO_2nanowire based on the Schottky barrierwas discuss. Through the test of gas sensing properties of H2S, it demonstrated ultra-high sensitivity ofH2S at room temperature. The sensitivity of H2S with a concentration of100ppm comes up to1238, andhave a good repeated stability. SnO_2nanowires are prepared by the method of sol-gel and thermalevaporation. The structure and morphology are characterized, and we get that the nanowires we obtainedhave a structure of single crystal rutile. Electric field assembly technique was used to prepared single SnO_2nanodevice. Through testing the I-V properties, we get that both ends of nanowire are formed the schottky contact with the gold electrodes, constituting back-to-back Schottky barrier structure. We also analysisedthe possible air sensitive mechanism. In this back-to-back Schottky barrier structure, the current of devicewas controlled by reverse schottky barrier, the height of barrier was regulated by adsorption and desorptionof oxygen, current changed exponentially with the changed of barrier height, which is the main reason whyour device have high gas detection sensitivity at room temperature. SnO_2nanowires have more surfaceoxygen space defects. The O_2~-adsorbed on oxygen vacancy translate into O-, O-have higher reactivitythan O_2~-, which is the second reason to explain our device have high gas detection sensitivity at roomtemperature.
     In Chapter1we introduced the research progress of one-dimensional nanomaterials gas sensor.Focusing on the gas sensor based on single nanowires Schottky barrier, as well as gas sensors at roomtemperature. Based on these we selected the topic and purpose of this thesis, and the main contents.
     In Chapter2we describe the specific methods and the detailed experimental procedure of SnO_2nanowires by the method of sol-gel and thermal evaporation. The SnO_2nanowires was successfullysynthesized by controlling the growth conditions. The structure and surface morphology of SnO_2nanowireswere characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmissionelectron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). Single SnO_2nanowire gas sensors were successfully prepared via the electric field assembly method.
     In Chapter3we studied the gas sensing properties of single SnO_2nanowires through the testingof sensing properties for H2S at different temperature. The sensitivity of H2S with a concentration of100ppm comes up to1238. The mechanism of gas sensor was discussed by analyzing the transport mechanismof the Schottky barrier. And a series of assisted experimental was done to prove it. The gas sensormechanism of single nanowires with begeneration of high sensitivity and high selectivity room temperaturenanometer sensor based on single nanowires was also discussed.
引文
[1] Yamazoe N,. New Approaches for Improving Semiconductor Gas Sensors[J]. Sensor Actuat.B-chem.1991,5(1-4):7-19.
    [2] Morrison SR. Mechanism of Semiconductor Gas Sensor Operation[J]. Sensors and Actuators.1987,11(3):283-287.
    [3] Tamaki J. High sensitivity semiconductor gas sensors[J]. Sensor Letters.2005,3(2):89-98.
    [4]王战锋丁郭岳.催化燃烧式LNG传感器自校准技术的研究[J].传感器与微系统.2009,28(8):3.
    [5]宋晓辉,海中天.接触燃烧式气敏传感器的研制[J].计量技术.2007,(8):3.
    [6]蒋磊,刘芳华.催化燃烧型甲烷传感器恒温检测桥路的研究[J].工矿自动化.2006,(6):3.
    [7]丁黎明,赵景波.催化燃烧型甲烷传感器的研究[J].微计算机信息.2007,23(1):2.
    [8]张强,管自生.电阻式半导体气体传感器[J].仪表技术与传感器.2006,(7):4.
    [9]杨留方,赵鹤云,唐启祥et al.组合结构半导体气体传感器的研究进展[J].传感器技术.2004,23(6):4.
    [10]杨留方,赵鹤云,唐启祥et al. p+p型半导体气体传感器原理[J].仪表技术与传感器.2004,(6):3.
    [11]徐甲强,韩建军,孙雨安et al.半导体气体传感器敏感机理的研究进展[J].传感器与微系统.2006,25(11):4.
    [12]任术波,唐祯安,蒋国平et al.用于半导体气体传感器的程控标定系统[J].传感器技术.2002,21(8):3.
    [13]杜玉帅,蒋志立.半导体气体传感器敏感薄膜结构的改进与分析[J].魅力中国.2011,(2).
    [14]周仲柏,冯良东,柳文军.脉冲电势调制型电化学气体传感器[J].电化学.2000,6(3):5.
    [15]张小水,古瑞琴,李志刚et al.定电位电解型电化学气体传感器稳定性研究[J].陶瓷学报.2008,29(3):4.
    [16]孙宇峰,黄行九,刘伟et al.电化学CO气体传感器及其敏感特性[J].传感器技术.2004,23(7):4.
    [17]史晓军.电化学气体传感器在烟气监测中的应用[J].中国仪器仪表.2009,(6):3.
    [18]蒋学悟,刘海韬,魏海明.电化学气体传感器测量干扰排除的探讨. In:2010中国土木工程学会城市燃气分会应用专业委员会年会论文集;2010.
    [19]方静.烟气分析仪中电化学气体传感器的使用与维护[J].工业计量.2006,16(1):2.
    [20]王琢,曹家年,张可可et al.光学式低浓度甲烷气体传感器的研究[J].光子学报.2011,40(2).
    [21]王霞,金伟其,王汝琳.红外气体传感器多光路光学系统设计[J].光学技术.2002,28(2):3.
    [22]王书涛,车仁生,王玉田et al.基于光声光谱法的光纤气体传感器研究[J].中国激光.2004,31(8):4.
    [23]李亚萍,张广军,李庆波.空间双光路红外CO2气体传感器及其测量模型[J].光学精密工程.2009,17(1):6.
    [24] Tanaka F, Kawai T. Electrical and optical properties of poly(3-alkoxythiophene) and theirapplication for gas sensor[J]. Synthetic. Met.1999,102(1/3):2.
    [25]张倩,李善茂,高敏et al.新型含磷毒剂敏感材料制备及吸附性能研究[J].传感器与微系统.2006,25(2):3.
    [26]严晓磊,谢光忠,杜晓松et al.聚苯胺/氧化铟复合薄膜QCM气体传感器[J].传感技术学报.2008,21(12):5.
    [27]吕家云,张健,蒋全胜et al.用QCM研究HMDS处理纳米ZnO的湿度测试对比[J].仪表技术与传感器.2009,(8):4.
    [28]胡佳,杜晓松,谢光忠et al.测定DMMP的PMPS-QCM传感器的研究[J].传感技术学报.2008,21(1):4.
    [29]周嘉,黎坡,黄宜平et al.压电谐振式微悬臂梁气体传感器[J].压电与声光.2003,25(5):5.
    [30]李双美,李关民.基于微悬臂梁的谐振式气体传感器[J].辽宁大学学报(自然科学版).2009,36(3):4.
    [31]景大雷,王飞,赵学增et al.压电微悬臂梁气体传感器静态弯曲模型的研究[J].传感技术学报.2011,24(5).
    [32]高伟,董瑛,尤政.微悬臂梁谐振式气体传感器研究进展[J].传感器与微系统.2008,27(11):4.
    [33]董瑛,高伟,郑义et al.用于挥发性有机化合物探测的微悬臂梁传感器[J].纳米技术与精密工程.2010,8(2):7.
    [34] Ying D, Wei1G, Yi Z et al. Electrothermal Driving Microcantilever Resonator as a Platform forChemical Gas Sensing[J].清华大学学报(英文版).2010,(5).
    [35]孟凡利.基于一维纳米材料的气体传感器及其应用研究;2009.
    [36] Kim YS, Ha SC, Kim K et al. Room-temperature semiconductor gas sensor based onnonstoichiometric tungsten oxide nanorod film[J]. Appl. Phys. Lett.2005,86(21).
    [37] Wal RLV, Berger GM, Kulis MJ et al. Synthesis Methods, Microscopy Characterization andDevice Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing[J]. Sensors.2009,9(10):7866-7902.
    [38] Liu XH, Zhang J, Guo XZ et al. Amino acid-assisted one-pot assembly of Au, Pt nanoparticlesonto one-dimensional ZnO microrods[J]. Nanoscale.2010,2(7):1178-1184.
    [39] Kanitkar P, Kaur M, Sen S et al. Growth and gas-sensing studies of metal oxide semiconductornanostructures[J]. International Journal of Nanotechnology.2010,7(9-12):883-906.
    [40] Comini E, Baratto C, Faglia G et al. Quasi-one dimensional metal oxide semiconductors:Preparation, characterization and application as chemical sensors[J]. Prog. Mater. Sci.2009,54(1):1-67.
    [41] Chen YJ, Zhu CL, Wang LJ et al. Synthesis and enhanced ethanol sensing characteristics ofalpha-Fe(2)O(3)/SnO(2) core-shell nanorods[J]. Nanotechnology.2009,20(4).
    [42] Li XP, Cho JH, Kurup P et al. Novel sensor array based on doped tin oxide nanowires for organicvapor detection[J]. Sensor Actuat. B-chem.2012,162(1):251-258.
    [43] Li XP, Wang Y, Lei Y et al. Highly sensitive H2S sensor based on template-synthesized CuOnanowires[J]. Rsc Advances.2012,2(6):2302-2307.
    [44] Offermans P, Crego-Calama M, Brongersma SH. Functionalized vertical InAs nanowire arrays forgas sensing[J]. Sensor Actuat. B-chem.2012,161(1):1144-1149.
    [45] Qin YX, Sun XB, Li X et al. Room temperature NO2-sensing properties of Ti-addednonstoichiometric tungsten oxide nanowires[J]. Sensor Actuat. B-chem.2012,162(1):244-250.
    [46] Tonezzer M, Hieu NV. Size-dependent response of single-nanowire gas sensors[J]. Sensor Actuat.B-chem.2012,163(1):146-152.
    [47] Li M, Qiao LJ, Chu WY et al. Water pre-adsorption effect on room temperature SnO(2) nanobeltethanol sensitivity in oxygen-deficient conditions[J]. Sensor Actuat. B-chem.2011,158(1):340-344.
    [48] Cheng Y, Chen KS, Meyer NL et al. Functionalized SnO(2) nanobelt field-effect transistor sensorsfor label-free detection of cardiac troponin[J]. Biosens. Bioelectron.2011,26(11):4538-4544.
    [49] Sysoev VV, Strelcov E, Sommer M et al. Single-Nanobelt Electronic Nose: Engineering and Testsof the Simplest Analytical Element[J]. Acs Nano.2010,4(8):4487-4494.
    [50] Soares AJ, Perry RJ. Modeling and Simulation of a Single Tin Dioxide Nanobelt FET for ChemicalSensors[J]. Ieee Sensors Journal.2010,10(2):235-242.
    [51] Ma HL, Fan DW, Niu XS. Preparation and NO(2)-gas sensing property of individualbeta-Ga(2)O(3) nanobelt[J]. Chinese Physics B.2010,19(7).
    [52] Yang JH, Liu GM, Lu J et al. Electrochemical route to the synthesis of ultrathin ZnOnanorod/nanobelt arrays on zinc substrate[J]. Appl. Phys. Lett.2007,90(10).
    [53] Sadek AZ, Choopun S, Wlodarski W et al. Characterization of ZnO nanobelt-based gas sensor forH2, NO2, and hydrocarbon sensing[J]. Ieee Sensors Journal.2007,7(5-6):919-924.
    [54] Andrei P, Fields LL, Zheng JP et al. Modeling and simulation of single nanobelt SnO2gas sensorswith FET structure[J]. Sensor Actuat. B-chem.2007,128(1):226-234.
    [55] Qian LH, Wang K, Li Y et al. CO sensor based on Au-decorated SnO2nanobelt[J]. Mater. Chem.Phys.2006,100(1):82-84.
    [56] Cheng Y, Xiong P, Fields L et al. Intrinsic characteristics of semiconducting oxide nanobeltfield-effect transistors[J]. Appl. Phys. Lett.2006,89(9).
    [57] Wen XG, Fang YP, Pang Q et al. ZnO nanobelt arrays grown directly from and on zinc substrates:Synthesis, characterization, and applications[J]. J. Phys. Chem. B.2005,109(32):15303-15308.
    [58] Wang ZL. Functional oxide nanobelts: Materials, properties and potential applications innanosystems and biotechnology[J]. Annu. Rev. Phys. Chem.2004,55:159-196.
    [59] Gao T, Wang TH. Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensorapplications[J]. Appl. Phys. A-mater.2005,80(7):1451-1454.
    [60] Penza M, Rossi R, Alvisi M et al. Pt-modified carbon nanotube networked layers for enhanced gasmicrosensors[J]. Thin Solid Films.2011,520(3):959-965.
    [61] Wongchoosuk C, Wisitsoraat A, Tuantranont A et al. Portable electronic nose based on carbonnanotube-SnO(2) gas sensors and its application for detection of methanol contamination inwhiskeys[J]. Sensor Actuat. B-chem.2010,147(2):392-399.
    [62] Tooski SB. Functionalized single wall carbon nanotube sensor in a perturbed microwave resonantcavity based toxin/pollutant gas pressure sensor[J]. J. Appl. Phys.2010,107(3).
    [63] Suehiro J, Imakiire H, Hidaka S et al. Schottky-type response of carbon nanotube NO2gas sensorfabricated onto aluminum electrodes by dielectrophoresis[J]. Sensor Actuat. B-chem.2006,114(2):943-949.
    [64] Li YB, Huang ZW, Rong SQ. A vanadium oxide nanotube-based nitric oxide gas sensor[J]. SensorMater.2006,18(5):241-249.
    [65] Zhang Y, Liu JH, Li X et al. Study of improving identification accuracy of carbon nanotube filmcathode gas sensor[J]. Sensor Actuat. A-phys.2005,125(1):15-24.
    [66] Seiyama T, Kato A, Fujiishi K et al. A New Detector for Gaseous Components UsingSemiconductive Thin Films[J]. Anal. Chem.1962,34(11):1502-&.
    [67] Liu ZQ, Zhang DH, Han S et al. Laser ablation synthesis and electron transport studies of tin oxidenanowires[J]. Adv. Mater.2003,15(20):1754-+.
    [68] Comini E, Faglia G, Sberveglieri G et al. Stable and highly sensitive gas sensors based onsemiconducting oxide nanobelts[J]. Appl. Phys. Lett.2002,81(10):1869-1871.
    [69] Hernandez-Ramirez F, Tarancon A, Casals O et al. High response and stability in CO and humiditymeasures using a single SnO2nanowire[J]. Sensor Actuat. B-chem.2007,121(1):3-17.
    [70] Choi YJ, Hwang IS, Park JG et al. Novel fabrication of an SnO2nanowire gas sensor with highsensitivity[J]. Nanotechnology.2008,19(9):-.
    [71] Hernandez-Ramirez F, Prades JD, Tarancon A et al. Portable microsensors based on individualSnO2nanowires[J]. Nanotechnology.2007,18(49):-.
    [72] Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F et al. Ultralow power consumption gas sensorsbased on self-heated individual nanowires[J]. Appl. Phys. Lett.2008,93(12).
    [73] Strelcov E, Dmitriev S, Button B et al. Evidence of the self-heating effect on surface reactivity andgas sensing of metal oxide nanowire chemiresistors[J]. Nanotechnology.2008,19(35):-.
    [74] Kolmakov A, Klenov DO, Lilach Y et al. Enhanced gas sensing by individual SnO2nanowires andnanobelts functionalized with Pd catalyst particles[J]. Nano Lett.2005,5(4):667-673.
    [75] Park JY, Choi SW, Kim SS. Junction-Tuned SnO(2) Nanowires and Their Sensing Properties[J]. J.Phys. Chem. C.2011,115(26):12774-12781.
    [76] Kiasari NM, Servati P. Dielectrophoresis-Assembled ZnO Nanowire Oxygen Sensors[J]. Ieee.Electr. Device. L.2011,32(7):982-984.
    [77] Fan SW, Srivastava AK, Dravid VP et al. UV-activated room-temperature gas sensing mechanismof polycrystalline ZnO[J]. Appl. Phys. Lett.2009,95(14):-.
    [78] Gong J, Li Y, Chai X et al. UV-Light-Activated ZnO Fibers for Organic Gas Sensing at RoomTemperature[J]. The Journal of Physical Chemistry C.2009,114(2):1293-1298.
    [79] Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F et al. Equivalence between thermal and roomtemperature UV light-modulated responses of gas sensors based on individual SnO2nanowires[J].Sensor Actuat. B-chem.2009,140(2):337-341.
    [80] Kong XH, Li YD,. High sensitivity of CuO modified SnO2nanoribbons to H2S at roomtemperature[J]. Sensor Actuat. B-chem.2005,105(2):449-453.
    [81] Fields LL, Zheng JP, Cheng Y et al. Room-temperature low-power hydrogen sensor based on asingle tin dioxide nanobelt[J]. Appl. Phys. Lett.2006,88(26).
    [82] Wei T-Y, Yeh P-H, Lu S-Y et al. Gigantic Enhancement in Sensitivity Using Schottky ContactedNanowire Nanosensor[J]. J. Am. Chem. Soc.2009,131(48):17690-17695.
    [83] Mubeen S, Moskovits M. Gate-Tunable Surface Processes on a Single-Nanowire Field-EffectTransistor[J]. Adv. Mater.2011,23(20):2306-+.
    [84] Chen JJ, Wang K, Hartman L et al. H2S Detection by Vertically Aligned CuO Nanowire ArraySensors[J]. J. Phys. Chem. C.2008,112(41):16017-16021.
    [85] Hwang IS, Choi JK, Kim SJ et al. Enhanced H2S sensing characteristics of SnO2nanowiresfunctionalized with CuO[J]. Sensor Actuat. B-chem.2009,142(1):105-110.
    [86] Mai L, Xu L, Gao Q et al. Single β-AgVO3Nanowire H2S Sensor[J]. Nano Lett.2010,10(7):2604-2608.
    [87] Yao K, Caruntu D, Zeng ZM et al. Parts per Billion-Level H2S Detection at Room TemperatureBased on Self-Assembled In2O3Nanoparticles[J]. J. Phys. Chem. C.2009,113(33):14812-14817.
    [88] Wang Z, Hu YM, Wang W et al. Fast and highly-sensitive hydrogen sensing of Nb2O5nanowiresat room temperature[J]. Int. J. Hydrogen. Energ.2012,37(5):4526-4532.
    [89] Khan R, Ra HW, Kim JT et al. Nanojunction effects in multiple ZnO nanowire gas sensor[J].Sensor Actuat. B-chem.2010,150(1):389-393.
    [1] Wang B, Zhu LF, Yang YH et al. Fabrication of a SnO2nanowire gas sensor and sensorperformance for hydrogen[J]. Journal of Physical Chemistry C.2008,112(17):6643-6647.
    [2] Gubbala S, Chakrapani V, Kumar V et al. Band-edge engineered hybrid structures fordye-sensitized solar cells based on SnO2nanowires[J]. Advanced Functional Materials.2008,18(16):2411-2418.
    [3] Choudhary RJ, Ogale SB, Shinde SR et al. Pulsed-electron-beam deposition of transparentconducting SnO2films and study of their properties[J]. Applied Physics Letters.2004,84(9):1483-1485.
    [4] Gavagnin R, Biasetto L, Pinna F et al. Nitrate removal in drinking waters: the effect of tin oxidesin the catalytic hydrogenation of nitrate by Pd/SnO2catalysts[J]. Applied CatalysisB-Environmental.2002,38(2):91-99.
    [5] Wang Y, Zeng HC, Lee JY. Highly reversible lithium storage in porous SnO2nanotubes withcoaxially grown carbon nanotube overlayers[J]. Advanced Materials.2006,18(5):645-+.
    [6] Vayssieres L, Graetzel M. Highly ordered SnO2nanorod arrays from controlled aqueous growth[J].Angewandte Chemie-International Edition.2004,43(28):3666-3670.
    [7] Kolmakov A, Zhang YX, Cheng GS et al. Detection of CO and O2using tin oxide nanowiresensors[J]. Advanced Materials.2003,15(12):997-+.
    [8] Ni ZF, Ying PZ, Luo Y et al. Synthesis and characterization of SnO(2) nanobelts by carbothermalreduction of SnO(2) powder[J]. Journal of Inorganic Materials.2007,22(4):609-612.
    [9] Wang B, Yang YH, Yang GW. Growth mechanisms of SnO2/Sn nanocables[J]. Nanotechnology.2006,17(18):4682-4688.
    [10] Lu JG, Chang PC, Fan ZY. Quasi-one-dimensional metal oxide materials-Synthesis, propertiesand applications[J]. Materials Science&Engineering R-Reports.2006,52(1-3):49-91.
    [11] Dai ZR, Pan ZW, Wang ZL et al. Novel nanostructures of functional oxides synthesized by thermalevaporation[J]. Advanced Functional Materials.2003,13(1):9-24.
    [12] Luo SH, Wan Q, Liu WL et al. Vacuum electron field emission from SnO2nanowhiskerssynthesized by thermal evaporation[J]. Nanotechnology.2004,15(11):1424-1427.
    [13] Park MS, Wang GX, Kang YM et al. Preparation and electrochemical properties of SnO2nanowires for application in lithium-ion batteries[J]. Angewandte Chemie-International Edition.2007,46(5):750-753.
    [14] Sun JQ, Wang JS, Wu XC et al. Novel method for high-yield synthesis of rutile SnO(2) nanorodsby oriented aggregation[J]. Crystal Growth&Design.2006,6(7):1584-1587.
    [15] Mathur S, Barth S. Molecule‐Based Chemical Vapor Growth of Aligned SnO2Nanowires andBranched SnO2/V2O5Heterostructures[J]. Small.2007,3(12):2070-2075.
    [16] Liu ZQ, Zhang DH, Han S et al. Laser ablation synthesis and electron transport studies of tin oxidenanowires[J]. Advanced Materials.2003,15(20):1754-+.
    [17] Wu GS, Zhang LD, Cheng BC et al. Synthesis of Eu2O3nanotube arrays through a facile sol-geltemplate approach[J]. Journal of the American Chemical Society.2004,126(19):5976-5977.
    [18] Mathur S, Barth S, Shen H et al. Size-dependent photoconductance in SnO2nanowires[J]. Small.2005,1(7):713-717.
    [19] Thanasanvorakun S, Mangkorntong P, Choopun S et al. Characterization of SnO2nanowiressynthesized from SnO by carbothermal reduction process[J]. Ceramics International.2008,34(4):1127-1130.
    [20] Lee RS, Kim HJ, Fischer JE et al. Conductivity enhancement in single-walled carbon nanotubebundles doped with K and Br[J]. Nature.1997,388(6639):255-257.
    [21] Bockrath M, Cobden DH, McEuen PL et al. Single-electron transport in ropes of carbonnanotubes[J]. Science.1997,275(5308):1922-1925.
    [22] Chen Z, Yang YL, Wu ZY et al. Electric-field-enhanced assembly of single-walled carbonnanotubes on a solid surface[J]. Journal of Physical Chemistry B.2005,109(12):5473-5477.
    [23] Harnack O, Pacholski C, Weller H et al. Rectifying behavior of electrically aligned ZnOnanorods[J]. Nano Letters.2003,3(8):1097-1101.
    [24] Lao CS, Liu J, Gao PX et al. ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresisalignment across Au electrodes[J]. Nano Letters.2006,6(2):263-266.
    [25] Liu YL, Chung JH, Liu WK et al. Dielectrophoretic assembly of nanowires[J]. Journal of PhysicalChemistry B.2006,110(29):14098-14106.
    [26] Quan T, Liming L, Guangyong L. Selective manipulation of ZnO nanowires by controlleddielectrophoretic force. In: Nanotechnology (IEEE-NANO),201111th IEEE Conference on;201115-18Aug.2011;2011. p.1106-1109.
    [27] Vijayaraghavan A, Blatt S, Weissenberger D et al. Ultra-large-scale directed assembly ofsingle-walled carbon nanotube devices[J]. Nano Letters.2007,7(6):1556-1560.
    [1] Wan Q., Li Q. H., Chen Y. J., etc. Fabrication and ethanol sensing characteristics of zno nanowiregas sensors [J]. Applied Physics Letters,2004,84(18):3654-3656.
    [2] Ahn M. W., Park K. S., Heo J. H., etc. Gas sensing properties of defect-controlled zno-nanowiregas sensor [J]. Applied Physics Letters,2008,93(26).
    [3] Choi Y. J., Hwang I. S., Park J. G., etc. Novel fabrication of an sno2nanowire gas sensor with highsensitivity [J]. Nanotechnology,2008,19(9):-.
    [4] Ahn M. W., Park K. S., Heo J. H., etc. On-chip fabrication of zno-nanowire gas sensor with highgas sensitivity [J]. Sensors and Actuators B-Chemical,2009,138(1):168-173.
    [5] Liao L., Mai H. X., Yuan Q., etc. Single ceo2nanowire gas sensor supported with pt nanocrystals:Gas sensitivity, surface bond states, and chemical mechanism [J]. Journal of Physical Chemistry C,2008,112(24):9061-9065.
    [6] Ho G. W. Gas sensor with nanostructured oxide semiconductor materials [J]. Science of AdvancedMaterials,2011,3(2):150-168.
    [7] Ramgir Niranjan S., Yang Yang, Zacharias Margit. Nanowire-based sensors [J]. Small,2010,6(16):1705-1722.
    [8] Comini E., Baratto C., Faglia G., etc. Quasi-one dimensional metal oxide semiconductors:Preparation, characterization and application as chemical sensors [J]. Progress in Materials Science,2009,54(1):1-67.
    [9] Huang X. J., Choi Y. K. Chemical sensors based on nanostructured materials [J]. Sensors andActuators B-Chemical,2007,122(2):659-671.
    [10] Cheng Ke, Cheng Gang, Wang Shujie, etc. Surface states dominative au schottky contact onvertical aligned zno nanorod arrays synthesized by low-temperature growth [J]. New Journal ofPhysics,2007,9:214.
    [11] Wang S. J., Lu W. J., Cheng G., etc. Electronic transport property of single-crystalline hexagonaltungsten trioxide nanowires [J]. Applied Physics Letters,2009,94(26):263106.
    [12] Cheng Gang, Wu Xinghui, Liu Bing, etc. Zno nanowire schottky barrier ultraviolet photodetectorwith high sensitivity and fast recovery speed [J]. Applied Physics Letters,2011,99(20):203105.
    [13] Wei Te-Yu, Yeh Ping-Hung, Lu Shih-Yuan, etc. Gigantic enhancement in sensitivity using schottkycontacted nanowire nanosensor [J]. Journal of the American Chemical Society,2009,131(48):17690-17695.
    [14] Lao C. S., Liu J., Gao P. X., etc. Zno nanobelt/nanowire schottky diodes formed bydielectrophoresis alignment across au electrodes [J]. Nano Letters,2006,6(2):263-266.
    [15] Wang S. J., Cheng G., Cheng K., etc. The current image of single sno(2) nanobelt nanodevicestudied by conductive atomic force microscopy [J]. Nanoscale Research Letters,2011,6:541.
    [16] Sze S. M., Ng Kwok K. Metal-semiconductor contacts. in Physics of semiconductor devices.2006,John Wiley&Sons, Inc. p.134-196.
    [17] Lee S. Y., Lee S. K. Current transport mechanism in a metal-gan nanowire schottky diode [J].Nanotechnology,2007,18(49).
    [18] Seiyama T., Kato A., Fujiishi K., etc. A new detector for gaseous components usingsemiconductive thin films [J]. Analytical Chemistry,1962,34(11):1502-&.
    [19] Egdell R. G. The surface chemistry of tin(iv) oxide: Defects, doping and conductivity. in Science ofceramic interfaces ii, Nowotny J., Editor.1994. p.527-569.
    [20] Lin Y. H., Hsueh Y. C., Lee P. S., etc. Fabrication of tin dioxide nanowires with ultrahigh gassensitivity by atomic layer deposition of platinum [J]. Journal of Materials Chemistry,2011,21(28):10552-10558

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700