8mm波导同轴转换和波导功率传输及检波技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毫米波频谱介于微波与红外波段之间,与微波相比,毫米波制导系统具有较高的制导精度和抗干扰性能;与红外相比,具有全天候工作能力。毫米波器件还具有体积小、重量轻的特点,能满足现代武器系统中应用电子设备的小型化、轻量化的要求。8mm波导同轴电缆转换和波导功率传输及检波技术是毫米波制导技术中重要的一环。
     本论文论述了8mm波导同轴电缆转换和波导功率传输及检波组件的组成结构,以及各分系统的工作原理及其设计方法和试验实施。波导同轴电缆转换组件解决了小驻波、低损耗和电缆的柔软性问题,波导功率传输及检波组件解决了耦合度,调谐技术和检波电压的温度稳定性问题。主要包含以下4个方面的内容:
     分析电磁波在同轴线和金属波导中的场分布和传输特性,是确定传输功率、插入损耗和尺寸选择的理论基础;给出反射系数和插入损耗的定义及测试原理,检波电压的测试原理,根据测试原理设计电参数测试和试验方法。
     同轴TEM模式和波导TE10模式相互间转换原理是8mm波导同轴电缆转换组件设计的理论基础,应用了λ/4同轴型谐振腔理论;在Ansoft HFSS仿真软件中进行了各种结构尺寸的仿真,得到最佳关键参量数据并用于指导实际制造;研制出的同轴电缆转换组件在设计频带内,插入损耗实测结果为0.7dB。
     对8mm波导功率传输及检波组件的机理进行了分析,详细研究了各种因素对组件性能的影响,在HFSS中建立耦合度模型进行仿真计算,并用ADS仿真软件计算滤波器性能,根据计算结果优化设计耦合机构,谐振腔体、检波器、滤波器参数等,研制出性能稳定的传输组件。
     研究各种因素对检波信号的影响,包括调谐技术,对于调谐用的螺钉形状、直径、深度和材料进行了仿真,得到了最佳调谐尺寸;分析检波波形失真和噪声对检波电压的影响;推导出温度与检波电压的关系式,针对不同温度稳定性方案进行了优选,得到温度特性稳定的产品,试验结果表明检波电压幅值的温度变化率在10%以内。
The spectrum of millimeter wave is between microwave and infrared wave band. Compared with microwave and infrared, millimeter wave guidance system has high precision, capability of anti-jamming and all day working character. Also millimeter apparatus could be made for a smaller cubage and weight, satisfied for the miniaturization and lighten of applicated electronical device in modern weapon systems. The technology of waveguide to coaxial-cable conversion, power transmission and detection is an important tache of millimeter wave guidance.
     In this dissertation, each of the 8 millimeter waveguide to coaxial-cable conversion, power transmission and detector discreteness component building blocks is presented. The theory, design and experiment of each subsystem are discussed. Solved small VSWR, low insert loss and cable pliancy problems in waveguide to coaxial-cable conversion discreteness, coupling value, tune technology and detect voltage temperature stability problems in power transmission and detector discreteness. The main context focuses on 4 aspects:
     Analyzing the field distributing and transmission character of electromagnetic wave in coaxial-cable and metal waveguide is basic theory to confirm transmit power, insert loss and dimension choosing. Giving out the definition and testing theory of reflectance and insert loss, the testing theory of detect voltage. Design testing and experiment methods according to the theory.
     The conversion theory between coaxial TEM mode to waveguide TE10 mode is basic design theory of 8 millimeter waveguide to coaxial-cable conversion discreteness. Applying theory ofλ/4 coaxial resonance cavity. Simulating all kinds of configurable dimension, the optimal data of key parameter could guide real manufacture. In design frequency, the real testing result of insert loss is 0.7dB.
     Analyzing theory of 8 millimeter waveguide power transmission and detector discreteness, particular research all kinds of factor effecting capability of the discreteness. Building coupling model in HFSS to simulate and calculate. Calculating filter capability by using ADS. Optimal design the parameter of coupling configuration, resonance cavity, detector and filter according to simulating result. Developing discreteness of stable capability.
     Researching influence of detect signal caused by all kinds of factors, including tune technology. Simulating the shape, diameter, deepness and material of the screw using for tune. Draw an optimal tune dimension. Analyzing the influence of detect voltage by wave shape distortion and noise. The relationship of temperature and detect voltage is presented. Optimization is carried within several temperature stability designs. The experiment result shows the temperature change ratio of detect voltage is under 10 percent.
引文
[1] 余宏明,张志坚. 毫米波雷达及其对抗. 舰船电子工程,2007,Vol.27, No.2: 168~172
    [2] 耿春萍,张丽霞. 毫米波制导技术的应用和发展. 飞行器测控学报,2004,Vol.23, No.2: 18~23
    [3] 李世忠,李相平. 毫米波导引头的技术特点及发展趋势. 制导与引信,2007, Vol.28, No.1: 11~15
    [4] 马明. 毫米波导引头的技术特点. 上海航天, 1999,No.5: 47~50
    [5] Cloutier J R, Evers J H, Feeley J J. A ssessment of air-to-air missile guidance and control technology [J ]. IEEE Control System Magazine. 1989, 9 (6) : 27~34
    [6] Gutman S. On Optimal Guidance for Homing Missile. Guide Control. 1979, 12(4): 382~407
    [7] Adler F P. Missile Guidance by Three Dimensional proportional Navigation. Journal of Applied physics. 1956, 27(5): 219~228
    [8] 周晓群. 精确制导武器技术与发展趋势. 舰船电子对抗,2001,No.5:12~17
    [9] 黄辉,张同超,王晓金. Ku 波段波导同轴检波器设计. 光纤与电缆应用技术,2007, No.6: 12~15,下接 28 页
    [10] Jin Au Kong 著,吴季译. 电磁波理论. 北京:电子工业出版社,2003, 1~3
    [11] HFSS8.0 中文培训教程,2002
    [12] HFSS9.2_full_book, 2004
    [13] ads_student_guide, 2002
    [14] 周焱,苏东林. 周期性结构在毫米波波导同轴转换中应用. 北京航空航天大学学报. 2006, Vol.32, No.4: 412~416
    [15] 伍捍东. 品种齐全的 AC 型波导同轴及微带转换器件. 机电部 206 研究所,1994
    [16] 汪祥兴. 射频电缆设计手册. 上海,电子工业部第二十三研究所,1996
    [17] 编委会组编,王春江主编. 电线电缆手册 1,2 版. 北京,机械工业出版社,2001
    [18] 编写组编. 电线电缆手册 2. 北京,机械工业出版社,1980
    [19] 韩中洗主编. 电缆工艺原理. 哈尔滨,哈尔滨工业出版社,1990
    [20] 周希朗. 电磁场理论与微波技术基础. 南京,东南大学出版社,2004, 152~154
    [21] 廖承恩,陈达章. 微波技术基础上册. 北京,国防工业出版社,1981, 135~137
    [22] 波导和同轴元件标准集. 电子工业部第二十三研究所
    [23] 张志谦. 射频同轴连接器电压驻波比测量. 机电元件,1991, Vol.11, No.8: 1~3
    [24] 张志谦. 射频同轴连接器插入损耗测量. 机电元件,1990, Vol.10, No.3: 31~33
    [25] 张志谦. 射频同轴连接器电压驻波比扫频测量消除误差方法研究. 机电元件,1989, Vol.9, No.3: 1~5
    [26] 鲍玉书. 高精度波导接头反射的测量. 邮电部第四研究所,1995, 18~21
    [27] P. Foldes, N. Gothard. Synthesis of low-reflection waveguide joint system. IRE. Tram. 1961, Vol MTT-9, No.2: pp169~175
    [28] G. A. Deschamps. Determination of the reflection coefficients and insert loss of a waveguide junction [J]. Appl, phys. 1953, Vol.24, pp1046~1050
    [29] Haiyin wang, Ke-Li Wu, and John Litva. A Modal Analysis of TEM mode in Circular-Rectangular Coaxial Waveguides. IEEE Transactions On Microwave Theory and Techniques. 1999, Vol.47, No.3: 356~359
    [30] 杨宋兵. 新型电感性波导-同轴转换组件初析. 上海,中国电子集团公司第二十三研究所建所 40 周年论文集,2003, 94~97
    [31] 张国荣,唐正龙. 矩形波导同轴转换隔离器设计. 磁性材料及器件,1992, Vol.23, No.1: 1~3
    [32] A. G. Williamson. Design of Coaxial rectangular-waveguide transition. Int. J. Electronics, 1985, Vol.58, No.3: 425~429
    [33] Williamson A G. Analysis and modeling of “two-gap” coaxial line rectangular waveguide junctions[J]. IEEE Transactions On Microwave Theory and Techniques. 1983, Vol.31, No.3: 295~302
    [34] Williamson A G. Cross-coupled coaxial line rectangular waveguide junctions[J]. IEEE Transactions On Microwave Theory and Techniques. 1985, Vol.33, No.3: 277~280
    [35] Lin Wei-Gan. Coupling between a rectangular waveguide and a circular waveguide or a cylindrical cavity through a small hole. ACTA Physical Sinica. 1959, Vol.15, No.7: 368~376
    [36] S. Burkhart. Coaxial E-field probe for high-power microwave measurrment. IEEE Trans. , 1985, MTT-33(3): 262~265
    [37] Liu Jinliang, Zhong Huihuang, Tan Qimei. Coaxial E-field probe coupling for high-power microwave measurrment. Journal of Microwaves. 1997, Vol.13, No.1: 83~87
    [38] 刘洪扬. 毫米波同轴连接器理论计算. 上海,射频连接器设计及论文汇编,2005, 302~310
    [39] 陈肇扬,王新恩. K 型连接器的研制. 上海,射频连接器设计及论文汇编,2005, 314~318
    [40] 林安义. 毫米波同轴连接器的结构设计. 上海,射频连接器设计及论文汇编,2005, 331~340
    [41] 谢鹏浩,谭志良,张荣奇,耿义良. 金属腔体的小孔电磁耦合效应仿真分析. 装备环境工程. 2007, Vol.4, No.6: 26~29
    [42] Xie Yong jun, Liang Chang hong. The variational solution of resonate frequency of theprobe-coupled rectangular cavity. Journal of Xidian University. 1996, Vol.23, No.2: 263~265
    [43] Zhang zhiping. Broadband Microwave Detector. Shanghai Spaceflight. 1995, No.2: 17~21
    [44] P A , Szente, S, Adam, R B Riley. Low-barrier schottky diode detectors [J]. Microwave Journal. 1976, (2): 42
    [45] Bohacek, P, Dubecky, F, Sekacova, M. Simulation of the reverse I-V characteristics of the schottky barrier radiation detector structures prepared on semi-insulating GaAs. Semiconductor Science and Technology. Vol22, No 7, PP 763~768
    [46] Pellon L E. A double nyquist digital product detector for quadrature sampling [ J ]. IEEE Trans on SP. 1992, 40(7)
    [47] Martin KW. Complex signal processing is not complex [ J ]. IEEE Trans on CAS, I. 2004, 51 (9) : 1823~1836
    [48] 清华大学微带电路编写组. 微带电路. 北京,人民邮电出版社,17~23, 100~120
    [49] 现代微波滤波器的结构与设计,11~34
    [50] 徐达旺,李志亮.二极管式微波功率检波器的温度补偿技术.电子测量技术,2006, Vol.29, No.6: 172~174
    [51] Chang, C. C., D. L. Lynch, M. D. Sohigian, G. F. Anderson, T. Schaffner, and G. I. Roberts. A Zero-Bias GaAs Millimeter Wave Integrated Detector Circuit. IEEE MTT-S Int. Microwave Symp. Dig. 1982, pp. 206~208
    [52] Agilent Technologies. The Zero Bias Schottky Diode Detector at Temperature Extremes-Problems and solutions. Agilent Technologies Application Note No.1090, www. semiconductor. agilent. com
    [53] 刘丹,尹应增. 微波二极管检波特性分析. 西安电子科技大学学报,2003, Vol.30, No.6: 810~818
    [54] Vernon, F. H., M. F. Millea, M. F. Bottjer, A. H. Siliver, R. J. Pedersen, and M. McColl. The super-Schottky Diode. IEEE Trans. Microwave Theory Tech. 1977, Vol.MTT-25, No.4, pp. 286~294
    [55] Harrison, R. G., X. Le Polozec. Non-Squarelaw Behavior of Diode Detectors Analyzed by the Ritz-Galerkin Method. IEEE Trans. Microwave Theory Tech. 1994, Vol.42, No.5, pp. 840~846

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700