废弃茶叶对重金属的吸附性能及重金属毒性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国工业的迅速发展,大量未经达标处理的重金属废水排入水体,造成了严重的重金属污染问题。重金属污染的综合治理及重金属的毒性评价成为当前环境治理中的重中之重。
     本文采用废弃的普洱茶作为一种新型吸附材料,以重金属Cr~(6+)、Cu~(2+)、Zn~(2+)、Pb~(2+)为研究对象,利用静态吸附实验,从影响因素、吸附等温线、吸附动力学、材料表面表征分析等方面对废弃茶叶对Cr~(6+)、Cu~(2+)、Zn~(2+)、Pb~(2+)的吸附性能进行了研究。并进一步考察了Cr~(6+)、Cu~(2+)、Zn~(2+)、Pb~(2+)在废弃茶叶表面的竞争吸附行为。最后,以大型蚤为试验生物,通过Cr~(6+)、Cu~(2+)、Zn~(2+)、Pb~(2+)对大型蚤的急性毒性试验,对这四种重金属的毒性程度进行了评价。
     实验结果表明,pH对吸附效果影响最大,对Cr~(6+)吸附的最佳pH为2.0,对Cu~(2+)、Pb~(2+)、Zn~(2+)吸附的最佳pH为5.0~6.0。吸附反应速率非常快,5~10min就可达到平衡吸附量的80~90%。对Cr~(6+)的吸附为吸热反应,对Cu~(2+)、Zn~(2+)、Pb~(2+)的吸附为放热反应。废弃茶叶对Cr~(6+)、Cu~(2+)、Zn~(2+)的吸附能够较好的符合Langmuir方程,而对Pb~(2+)的吸附则较好的符合Freundlich方程。拟二级动力学模型能够很好的描述Cr~(6+)、Cu~(2+)、Zn~(2+)、Pb~(2+)在废弃茶叶上吸附动力学。对废弃茶叶表面Zeta电位分析表明,废弃茶叶的pHZPC=3.8±0.1。FTIR光谱分析表明,茶叶表面存在着羧基、氨基等丰富的官能团,保证了废弃茶叶对重金属离子良好的吸附效果。废弃茶叶表面的SEM图表明,废弃茶叶的表面有着丰富的孔隙结构。吸附的Cr~(6+)和Pb~(2+)在表面形成了一层致密状的物质,而吸附的Cu~(2+)和Zn~(2+)只在表面形成一些颗粒状物质,从而验证了废弃茶叶对Cr~(6+)和Pb~(2+)有较高的吸附量,而对Cu~(2+)和Zn~(2+)的吸附量则相对较低。
     竞争吸附实验表明,Pb~(2+)、Cu~(2+)、Zn~(2+)之间均呈现明显的拮抗吸附作用。其竞争能力排序为Pb~(2+)>Cu~(2+)>Zn~(2+),符合按重金属离子的电负性排列顺序。
     Cr~(6+)、Cu~(2+)、Zn~(2+)、Pb~(2+)对大型蚤的急性毒性试验表明,四种重金属离子对大型蚤的毒性大小顺序为:Cu~(2+)>Cr~(6+)>Pb~(2+)>Zn~(2+)。Cu~(2+)属于剧毒物质,Cr~(6+)属于高毒性物质,Pb~(2+)和Zn~(2+)属于中毒物质。Cr~(6+)、Cu~(2+)、Zn~(2+)、Pb~(2+)四种重金属离子的安全质量浓度分别为0.041mg/L、0.0033mg/L、0.66mg/L、0.21mg/L。
     实验证明,利用废弃茶叶吸附技术能够有效去除废水中的重金属,在小规模重金属废水的应急处理方面有着很好的应用前景。
In recent years, amount of heavy metal wastewater which didn’t reach the discharging standard has been discharged with the rapid development of industry and caused serious heavy metal pollution. So, controlling heavy metal contamination and toxicity assessment of heavy metals have been a top priority in the environmental management.
     The paper which took waste Puer tea as a new type of adsorption material and Cr~(6+), Cu~(2+), Zn~(2+), Pb~(2+) as research subject researched the adsorbability of waste Puer tea. Through static adsorption experiment, following several aspects have been studied, including affecting factors, adsorption isotherms, adsorption kinetics and surface characteristics. Futhermore, competive adsorption among Cr~(6+), Cu~(2+), Zn~(2+), Pb~(2+) on the surface of waste Puer tea has been investigated. At last, the paper took Daphnia magna as experimental organism and acute toxicity of Cr~(6+), Cu~(2+), Zn~(2+), Pb~(2+) on Daphnia magna has been observed for toxicity assessment.
     Results showed that pH was the most important factor on heavy metal adsorption and the optimum pH for Cr~(6+) and Cu~(2+), Zn~(2+), Pb~(2+) were 2.0 and 5.0~6.0, respectively. The adsorption rate was so fast that the adsorption amount could be up to 80%~90% of the equilibrium adsorption capacity in 5~10min. The adsorption of Cr~(6+) onto waste tea is endothermal reaction, but the adsorption of Cu~(2+), Zn~(2+), Pb~(2+) onto waste tea was exothermic reaction. Isotherm experiments revealed that the adsorption of Cr~(6+), Cu~(2+), and Zn~(2+) was fitted very well to the Langmuir isotherm model. But for Pb~(2+), the adsorption data better followed the Freundlich isotherm model. Based on the coef?cient of determination R2, the adsorption kinetics of Cr~(6+), Cu~(2+), Zn~(2+), Pb~(2+) better followed Richie’s pseudo-second order rate equation. Through the determination of Zeta-potential of waste tea, the pHZPC of waste tea was 3.8±0.1. The FTIR spectra of waste tea indicated the existence of carboxyl and amino groups etc on the surface of waste tea, which was the reason of good adsorption capability for heavy metals. The surface structure of waste tea was investigated by means of SEM, showing that well-developed pore structure existed on the surface of waste tea. Densely packed matters could be found on the surface of waste tea through SEM when Cr~(6+) and Pb~(2+) adsorbed, but only granular materials could be discovered when Cu~(2+) and Zn~(2+) adsorbed. The results demonstrated high adsorption capacity for Cr~(6+) and Pb~(2+) and low adsorption capacity for Cu~(2+) and Zn~(2+).
     Through the competitive adsorption experiment on the surface of waste tea, obvious Pb~(2+)-Cu~(2+) antagonism, Pb~(2+)-Zn~(2+) antagonism and Cu~(2+)-Zn~(2+) antagonism could be observed in the competition system.The adsorption order was Pb~(2+)>Cu~(2+)>Zn~(2+), which was fitted to the order arranged according to electronegativity.
     The acute toxicity test of Cr~(6+), Cu~(2+), Zn~(2+), Pb~(2+) on Daphnia magna suggested that the acute toxicity order was Cu~(2+)>Cr~(6+)>Pb~(2+)>Zn~(2+). Cu~(2+) was a kind of extremely toxic substance and Cr~(6+) belonged to highly toxic substance. The toxicity grade of Pb~(2+) and Zn~(2+) belonged to medium toxicity. The research also showed that the safe concentration of Cr~(6+), Cu~(2+), Zn~(2+), Pb~(2+) were 0.041 mg/L, 0.0033 mg/L, 0.66 mg/L, 0.21 mg/L, respectively.
     Based on above research, we can see that the waste tea adsorption technique can remove heavy metal ions in industry wastewater effectively. The new adsorption technology will show a broad application prospect in the emergency treatment of little-scale heavy metal wastewater.
引文
[1]胡翔,陈建峰,李春喜.电镀废水处理技术研究现状及展望[J].新技术新工艺, 2008(12): 5-10.
    [2]谢芳.浅谈目前电镀废水处理的几种方法[J].中国高新技术企业, 2009(11): 103-104.
    [3]于萍,任月明,张密林.处理重金属废水技术的研究进展[J].环境科学与管理, 2006, 31(005): 103-105.
    [4]刁立文.利用大型蚤监测评价工业废水研究[J].沈阳工业大学学报, 2003, 25(001): 84-86.
    [5]梅光泉.重金属废水的危害及治理[J].微量元素与健康研究, 2004, 21(004): 54-56.
    [6]李浩,王宇,余宇翔.中小型电镀厂镀锌废水处理的工艺实践[J].广东化工, 2009(6): 142-143.
    [7]朱雪梅,王一哲.有色冶炼的重金属污染[J].中国有色金属, 2009(019): 62-63.
    [8]唐锦涛.选矿废水的危害及防治[J].工程设计与研究(长沙), 1992(001): 41-45.
    [9]李晓星,俞从正,马兴元.制革废水处理的研究进展[J].中国皮革, 2003(19).
    [10]王绍文.重金属废水的危害及防治[J].金属世界, 1997, 5: 12-13.
    [11]王小艳.浅议含重金属废水处理技术[J].有色冶金设计与研究, 2008(6): 41-42.
    [12]徐根良,肖大松,肖敏.重金属废水处理技术综述[J].水处理技术, 1991, 17(2): 77-86.
    [13]吴明军.含膦含铜电镀废水的处理研究[D].浙江工业大学, 2010.
    [14]金娜,印万忠.铅的危害及国内外除铅的研究现状[J].有色矿冶, 2006(S1): 114-115.
    [15]方艳,闵小波,唐宁,等.含锌废水处理技术的研究进展[J].工业安全与环保, 2006(7): 5-8.
    [16]杨向阳.电镀重金属废水治理技术综述[J].科技创新导报, 2009(14): 128.
    [17]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工, 2005(4): 36-39.
    [18]吴德礼,朱申红.新型吸附剂的发展与应用[J].矿产综合利用, 2002(1): 36-40.
    [19]韩严和,全燮,薛大明,等.活性炭改性研究进展[J].环境污染治理技术与设备, 2003(1): 33-37.
    [20]周军,金奇庭.电解法处理废水的研究进展[C]. 2002.
    [21]袁绍军,姜斌.电解法净化含重金属离子废水的试验研究[J].化学工业与工程, 2003, 20(001): 7-10.
    [22]李健,石凤林,尔丽珠,等.离子交换法治理重金属电镀废水及发展动态[J].电镀与精饰, 2003(6): 28-31.
    [23]谢辉玲,叶红齐,曾坚贤.膜分离技术在重金属废水处理中的应用[J].化学与生物工程, 2005(5): 41-43.
    [24]李云,张进忠,童华荣.重庆市某茶园土壤和茶叶中重金属的监测与污染评价[J].中国农学通报, 2007, 23(7): 519-524.
    [25]袁晔蓉.浅谈茶多酚的研究进展[J].中国药房, 2007(9): 700-701.
    [26]李娟,活泼,杨海燕.茶叶功效成分研究进展[J].浙江科技学院学报, 2005(4): 285-289.
    [27] Yuan X Z, Meng Y T, Zeng G M, et al. Evaluation of Tea-derived Biosurfactant on Removing Heavy Metal Ions from Dilute Wastewater by Ion Flotation[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008, 317(1-3): 256-261.
    [28] Ahluwalia S S, Goyal D. Removal of Heavy Metals by Waste Tea Leaves from Aqueous Solution[J]. Engineering in Life Sciences, 2005, 5(2): 158-162.
    [29] Tee T W, Khan A. Removal of Lead, Cadmium and Zinc by Waste Tea Leaves[J]. Environmental Technology Letters, 1988, 9(11): 1223-1232.
    [30] Cay S, Uyanik A, Ozasik A. Single and Binary Component Adsorption of Copper(II) and Cadmium(II) from Aqueous Solutions Using Tea-Industry Waste[J]. Separation and Purification Technology, 2004, 38(3): 273-280.
    [31] Amarasinghe B, Williams R A. Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater[J]. Chemical Engineering Journal, 2007, 132(1-3): 299-309.
    [32] Razmouski R, Sciban M. Biosorption of Cr(VI) and Cu(II) by Waste Tea Fungal Biomass[J]. Ecological Engineering, 2008, 34(2): 179-186.
    [33] Hossain M A, Kumita M, Michigami Y, et al. Kinetics of Cr(VI) Adsorption on Used Black Tea Leaves[J]. Journal of Chemical Engineering of Japan, 2005, 38(6): 402-408.
    [34] Hossain M A, Kumita M, Michigami Y, et al. Optimization of Parameters forCr(VI) Adsorption on Used Black Tea Leaves[J]. Adsorption-Journal of the International Adsorption Society, 2005, 11(5-6): 561-568.
    [35] Mondal M K. Removal of Pb(II) from Aqueous Solution by Adsorption Using Activated Tea Waste[J]. Korean Journal of Chemical Engineering, 2010, 27(1): 144-151.
    [36] Mondal M K. Removal of Pb(II) Ions from Aqueous Solution Using Activated Tea Waste: Adsorption on a Fixed-Bed Column[J]. Journal of Environmental Management, 2009, 90(11): 3266-3271.
    [37] Amarasinghe B, Williams R A. Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater[J]. Chemical Engineering Journal, 2007, 132(1-3): 299-309.
    [38] Wasewar K L, Atif M, Prasad B, et al. Batch Adsorption of Zinc on Tea Factory Waste[Z]. Amsterdam: 2009: 244, 66-71.
    [39] Malkoc E, Nuhoglu Y. Investigations of Nickel(II) Removal from Aqueous Solutions Using Tea Factory Waste[J]. J Hazard Mater, 2005, 127(1-3): 120-128.
    [40] Gupta S, Kumar D, Gaur J P. Kinetic and Isotherm Modeling of Lead(II) Sorption onto Some Waste Plant Materials[J]. Chemical Engineering Journal, 2009, 148(2-3): 226-233.
    [41] Malkoc E, Nuhoglu Y. Potential of Tea Factory Waste for Chromium(VI) Removal from Aqueous Solutions: Thermodynamic and Kinetic Studies[J]. Separation and Purification Technology, 2007, 54(3): 291-298.
    [42] Panneerselvam P, Morad N, Tan K A. Magnetic Nanoparticle (Fe3O4) Impregnated onto Tea Waste for the Removal of Nickel(II) from Aqueous Solution[J]. Journal of Hazardous Materials, 2011, 186(1): 160-168.
    [43] Malkoc E, Nuhoglu Y. Fixed Bed Studies for the Sorption of Chromium(VI) onto Tea Factory Waste[J]. Chemical Engineering Science, 2006, 61(13): 4363-4372.
    [44] Mozumder M, Khan M, Islam M A. Kinetics and Mechanism of Cr(VI) Adsorption onto Tea-Leaves Waste[J]. Asia-Pacific Journal of Chemical Engineering, 2008, 3(4): 452-458.
    [45]敖晓奎.速溶茶渣对废水中重金属离子的吸附行为和机理研究[D].湖南农业大学, 2008.
    [46] Serrano S, O'Day P A, Vlassopoulos D, et al. A Surface Complexation and Ion Exchange Model of Pb and Cd Competitive Sorption on Natural Soils[J]. Geochimica Et Cosmochimica Acta, 2009, 73(3): 543-558.
    [47] Zhu J, Pigna M, Cozzolino V, et al. Competitive Sorption of Copper(II), Chromium(VI) and Lead(II) on Ferrihydrite and Two Organomineral Complexes[J]. Geoderma, 2010, 159(3-4): 409-416.
    [48] Oh S, Kwak M Y, Shin W S. Competitive Sorption of Lead and Cadmium onto Sediments[J]. Chemical Engineering Journal, 2009, 152(2-3): 376-388.
    [49] Chotpantarat S, Ong S K, Sutthirat C, et al. Competitive Sorption and Transport of Pb(II), Ni(II), Mn(II), and Zn(II) in Lateritic Soil Columns[J]. Journal of Hazardous Materials, 2011, 190(1-3): 391-396.
    [50] Futalan C M, Kan C, Dalida M L, et al. Comparative and Competitive Adsorption of Copper, Lead, and Nickel Using Chitosan Immobilized on Bentonite[J]. Carbohydrate Polymers, 2011, 83(2): 528-536.
    [51] Li Y, Ding J, Luan Z, et al. Competitive Adsorption of Pb(II), Cu(II) and Cd(II) Ions from Aqueous Solutions by Multiwalled Carbon Nanotubes[J]. Carbon, 2003, 41(14): 2787-2792.
    [52] Serrano S, Garrido F, Campbell C G, et al. Competitive Sorption of Cadmium and Lead in Acid Soils of Central Spain[J]. Geoderma, 2005, 124(1-2): 91-104.
    [53] Vega F A, Covelo E F, Andrade M L. Hysteresis in the Individual and Competitive Sorption of Cadmium, Copper, and Lead by Various Soil Horizons[J]. Journal of Colloid and Interface Science, 2009, 331(2): 312-317.
    [54] Cerqueira B, Covelo E F, Andrade L, et al. The Influence of Soil Properties on the Individual and Competitive Sorption and Desorption of Cu and Cd[J]. Geoderma, 2011, 162(1-2): 20-26.
    [55]胡克伟,贾冬艳,颜丽,等.膨润土对重金属离子的竞争性吸附研究[J].土壤通报, 2011(2): 467-470.
    [56] Mesquita M E, Vieira E Silva J M. Preliminary Study of pH Effect in the Application of Langmuir and Freundlich Isotherms to Cu-Zn Competitive Adsorption[J]. Geoderma, 2002, 106(3-4): 219-234.
    [57] Qin F, Wen B, Shan X, et al. Mechanisms of Competitive Adsorption of Pb, Cu, and Cd on Peat[J]. Environmental Pollution, 2006, 144(2): 669-680.
    [58]张金池,姜姜,朱丽琚,等.黏土矿物中重金属离子的吸附规律及竞争吸附[J].生态学报, 2007, 27(9): 201-225.
    [59]叶伟红,刘维屏.大型蚤毒理试验应用与研究进展[J].环境污染治理技术与设备, 2004(4): 4-7.
    [60]李淑娆,李伟.大型蚤急性毒性试验在工业污染源监测中的应用研究[J].环境保护科学, 2001(5): 28-29.
    [61] Fargasova A. Toxicity of Metals on Daphnia Magna and Tubifex Tubifex[J]. Ecotoxicology and Environmental Safety, 1994, 27(2): 210-213.
    [62] Seco J I, Fernandez-Pereira C, Vale J. A Study of the Leachate Toxicity of Metal-Containing Solid Wastes Using Daphnia Magna[J]. Ecotoxicology and Environmental Safety, 2003, 56(3): 339-350.
    [63] Diamantino T C, Guilhermino L, Almeida E, et al. Toxicity of Sodium Molybdate and Sodium Dichromate to Daphnia Magna Straus Evaluated in Acute, Chronic, and Acetylcholinesterase Inhibition Tests[J]. Ecotoxicology and Environmental Safety, 2000, 45(3): 253-259.
    [64] Khangarot B S, Das S. Acute Toxicity of Metals and Reference Toxicants to a Freshwater Ostracod, Cypris Subglobosa Sowerby, 1840 and Correlation to EC50 Values of Other Test Models[J]. Journal of Hazardous Materials, 2009, 172(2-3): 641-649.
    [65] Hatano A, Shoji R. A New Model for Predicting Time Course Toxicity of Heavy Metals Based on Biotic Ligand Model (Blm)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2010, 151(1): 25-32.
    [66] Verslycke T, Vangheluwe M, Heijerick D, et al. The Toxicity of Metal Mixtures to the Estuarine Mysid Neomysis Integer (Crustacea: Mysidacea) Under Changing Salinity[J]. Aquatic Toxicology, 2003, 64(3): 307-315.
    [67]查金苗,王子健.利用日本青鳉早期发育阶段暴露评估排水的急,慢性毒性和内分泌干扰效应[J].环境科学学报, 2005, 25(012): 1682-1686.
    [68]王莹,郝家胜,陈娜,等.铅,镉和锌3种重金属离子对水螅的联合毒性研究[J].生命科学研究, 2006, 10(001): 91-94.
    [69]张融,范文宏,唐戈,等.水体中重金属镉和锌对大型蚤联合毒性效应的初步研究[J].生态毒理学报, 2008, 3(003): 286-290.
    [70]胡海祥.重金属废水治理技术概况及发展方向[J].中国资源综合利用, 2008(2): 22-25.
    [71] G. B.水质,物质对蚤类(大型蚤)急性毒性测定方法[S]. 1992.
    [72] Paniego A R. Reporting Physisorption Data for Gas-Solid Systems with Special Reference to the Determination of Surface-Area and Porosity[J]. Anales De Quimica Serie a-Quimica Fisica Y Quimica Tecnica, 1989, 85(3): 386-399.
    [73] Juang R S, Wu F C, Tseng R L. Mechanism of Adsorption of Dyes and Phenols from Water Using Activated Carbons Prepared from Plum Kernels[J]. Journal ofColloid and Interface Science, 2000, 227(2): 437-444.
    [74]国家环保局.水和废水监测分析方法:第四版[M].北京:中国环境科学出版社, 2002.
    [75]朱蕾,苏艳.傅里叶红外光谱分析在环境试验中的应用[J].环境技术, 2002, 20(003): 5-9.
    [76] Garczarek F, Gerwert K. Functional Waters in Intraprotein Proton Transfer Monitored by Ftir Difference Spectroscopy[J]. Nature-London-, 2006, 439(7072): 109.
    [77]何旭元,陈远斗,蔡湘雯,等.基于空白Kbr压片的红外光谱制样方法[J].湖南文理学院学报(自然科学版), 2006, 18(2).
    [78]严学成,孔宪杨.扫描电镜下的茶叶器官微观构造[J]. 2005.
    [79]敖晓奎.速溶茶渣对废水中重金属离子的吸附行为和机理研究[D].湖南农业大学, 2008.
    [80] Ngah W S, Hanafiah M. Biosorption of Copper Ions from Dilute Aqueous Solutions on Base Treatedrubber (Hevea Brasiliensis) Leaves Powder: Kinetics, Isotherm, and Biosorption Mechanisms[J]. Journal of Environmental Sciences, 2008, 20(10): 1168-1176.
    [81] Charlson M E, Pompei P, Ales K L, et al. Removal of Cr(VI) Ions by Spent Tea and Coffee Dusts: Reduction to Cr(II) and Biosorption[J]. Journal of Chronic Diseases, 1987, 40(5): 373-383.
    [82] Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum.[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
    [83] Freundlich H. Ueber Die Adsorption in Loesungen Z. Physic[J]. Chem, 1907, 57: 385.
    [84] Aharoni C, Ungarish M. Kinetics of Activated Chemisorption. Part 2.-Theoretical Models[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1977, 73: 456-464.
    [85] Bl A Zquez G, Martin-Lara M A, Tenorio G, et al. Batch Biosorption of Lead (II) from Aqueous Solutions by Olive Tree Pruning Waste: Equilibrium; Kinetics and Thermodynamic Study[J]. Chemical Engineering Journal, 2010.
    [86] Ho Y S, Mckay G. Pseudo-Second Order Model for Sorption Processes[J]. Process Biochemistry, 1999, 34(5): 451-465.
    [87] Onal Y. Kinetics of Adsorption of Dyes from Aqueous Solution Using Activated Carbon Prepared from Waste Apricot[J]. Journal of Hazardous Materials, 2006,137(3): 1719-1728.
    [88] Sparks D L. Soil Physical Chemistry[M]. Crc, 1999.
    [89] Uddin M T, Islam M A, Mahmud S, et al. Adsorptive Removal of Methylene Blue by Tea Waste[J]. Journal of Hazardous Materials, 2009, 164(1): 53-60.
    [90] Twardowski J, Anzenbacher P. Raman and Ir Spectroscopy in Biology and Biochemistry[M]. Prentice Hall, 1994.
    [91] Lin-Vien D, Colthup N B, Fateley W G, et al. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules[M]. Academic Press San Diego, 1991.
    [92] Kapoor A, Viraraghavan T. Heavy Metal Biosorption Sites in Aspergillus Niger[J]. Bioresource Technology, 1997, 61(3): 221-227.
    [93] Yun Y S, Park D, Park J M, et al. Biosorption of Trivalent Chromium on the Brown Seaweed Biomass[J]. Environmental Science & Technology, 2001, 35(21): 4353-4358.
    [94] Drake L R, Lin S, Rayson G D, et al. Chemical Modification and Metal Binding Studies of Datura Innoxia[J]. Environmental Science & Technology, 1995, 30(1): 110-114.
    [95] Malkoc E, Nuhoglu Y. Fixed Bed Studies for the Sorption of Chromium (VI) onto Tea Factory Waste[J]. Chemical Engineering Science, 2006, 61(13): 4363-4372.
    [96]林青,徐绍辉.土壤中重金属离子竞争吸附的研究进展[J].土壤, 2008(5): 706-711.
    [97] Sverjensky D A, Sahai N. Theoretical Prediction of Single-Site Surface-Protonation Equilibrium Constants for Oxides and Silicates in Water[J]. Geochimica Et Cosmochimica Acta, 1996, 60(20): 3773-3797.
    [98] Mcbride M B. EnVIronmental Chemistry of Soils.[M]. Oxford University Press, 1994.
    [99] G. B.中华人民共和国国家标准污水综合排放标准[S]. 1996.
    [100]贾广宁.重金属污染的危害与防治[J].有色矿冶, 2004, 20(001): 39-42.
    [101]葛俊森,梁渠.水中重金属危害现状及处理方法[J].广州化工, 2007, 35(005): 69-70.
    [102]姚华珍,胡建华,刘维屏.新颖除草剂peng-3对大型蚤的急性毒性研究[J].安徽农业科学, 2009(3): 1117-1118.
    [103]徐丽丽.重金属铜对鳉鱼的急性毒性试验[J].中国高新技术企业, 2007(004):104-105.
    [104]易秀.铜对生物有机体的毒性及抗性机理[J].农业环境保护, 1997(4).
    [105]杨丽华,方展强,郑文彪.重金属对鲫鱼的急性毒性及安全浓度评价[J].华南师范大学学报(自然科学版), 2003(2): 101-106.
    [106]王瑞龙,马广智,方展强,等.锌对唐鱼的急性毒性及安全浓度评价[J].水产科学, 2006.
    [107]陈娜,郝家胜,王莹,等.铜,铅,镉,锌,汞和银离子复合污染对水螅的急性毒性效应[J].生物学杂志, 2007, 24(3): 32-35.
    [108] G. B.国家渔业水域水质标准[S]. 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700