不可逆热力学理论在多孔介质渗流问题中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不可逆特性是多孔介质渗流问题的本质特征。本文针对多孔介质渗流过程中的不可逆行为,尝试将不可逆热力学的研究思路和方法引入多孔介质渗流问题的研究中,取得了一些积极的成果。
     由于多孔介质本身的复杂性,多孔介质渗流问题的分析理论往往需要在多孔介质连续介质方法的基础上进行。本文基于流体粘滞流动过程的熵产表达,研究提出了多孔介质连续介质方法下多孔介质渗流过程的熵产表达形式,并在平直管模型中验证了两者的统一性。多孔介质体系往往具有复杂的宏观几何结构,本文提出了多孔介质宏观几何分类的思想,使得在具有复杂宏观几何结构的系统中可以建立简化的分析方法。另外,宏观几何分类方法亦有助于针对特定问题建立相应的输运模型,这对多孔介质渗流问题更广泛、深入的应用具有重要意义。
     本文分析了多孔介质渗流过程的耗散规律,提出了不可逆特性是多孔介质渗流问题的本质特征。提出并推导了多孔介质渗流问题最小能量耗散原理,以该原理作为多孔介质渗流问题的变分原理的理论基础,具有很好的适应性和可操作性。文中在综合分析了多孔介质渗流问题各类边界条件和源(汇)条件的基础上,提出将渗流问题的水力条件划分为三类边界条件和三类源(汇)条件;基于最小能量耗散原理推导了渗流问题中各类水力条件的变分表达,丰富并发展了渗流问题变分原理。
     研究了最小能量耗散原理在不同宏观几何分类多孔介质体系中的应用;列举若干应用问题,展示了最小能量耗散原理的较好的应用价值。为了进一步展示多孔介质宏观几何分类方法及最小能量耗散原理的应用,文中还尝试采用具有一维性质的管道介质与具有三维性质的块体介质组合体系进行了土体管涌破坏发展过程的模拟。
     在多孔介质对流扩散问题的熵产规律的研究中,分析了最小熵产原理在这一问题中的不适应性的原因。在二组元稀薄浓度问题中,通过构造扩散过程的强制对流项并结合伴随算子的有关理论推导了二组元稀薄浓度问题的伴随变分原理及其有限元方法,同时讨论了扩散问题的各类动力条件及其变分表达式。本文的工作体现了不可逆热力学理论和方法在多孔介质多过程不可逆输运问题中应用的价值,为同类问题的研究提供了新的思路和方法。基于多孔介质宏观几何分类方法和二组元稀薄浓度问题系统分析理论,提出了建立多孔介质输运模型的思路。
The irreversibility is the essential characteristic of porous media seepage problems. In allusion to the irreversible behavior of porous media seepage process, the research thought and method of irreversible thermodynamics are attempted to introduce in the research on porous media seepage system, and some positive conclusions have been achieved.
    Due to the complexity of porous media, the analytical theory about porous media seepage must be based on the method of porous media continuum hypothesis. On the basis of the entropy expression of viscous flow, the entropy expression of porous media seepage under porous media continuum hypothesis is studied and put forward, and their unification is verified in pipe model.
    Porous media systems usually have complex macroscopical geometric structure. The idea of macroscopical geometric classification of porous media is brought forward in this paper, which enables the simplified analytical method to be established in the system with complex macroscopical geometric structure. In addition, this method also helps to establish corresponding transportation model aiming at specific problems, which has much importance to wider and deeper application of porous media seepage theory.
    In the paper, the dissipation behavior of porous media seepage process is analyzed, and it is presented that irreversibility is the essential characteristic of porous media seepage process. The minimum energy dissipation principle of seepage problem is put forward and deduced, which is so adaptive and maneuverable that is used as the theoretical basis for the viariational principle of porous media seepage. After the integrated study of various boundary hydraulic conditions and field hydraulic conditions, a new method that the hydraulic conditions of seepage can be classified as three boundary conditions and three field conditions is presented. The variational expressions of various hydraulic conditions in seepage problems are deduced based on minimum energy dissipation principle, and the variational principles of seepage problems are enriched and developed.
    The application of minimum energy dissipation principle in different
    
    
    
    microscopical porous media systems is studied, some application problems are listed, and the preferable application value of minimum energy dissipation is laid out. In order to exhibit the application of the method of porous media macroscopical geometric classification and minimum energy dissipation, the combination system between one-dimension pipeline media and three-dimension block media is tried to simulate the destroying and developing process of soil piping erosion.
    In the study of entropy expression of porous media convection-diffusion process, the reason why minimum entropy production principle is uncomformable is analyzed. In the two-substance attenuate consistency problem, by means of constituting the compulsive convection function of diffusion process, as well as integrating adjoint function, the adjoint variational principle and its finite element method of two-substance attenuate consistency are deduced, and all kinds of dynamic conditions and their variational expressions are discussed. The application value of irreversible thermodynamics in multi-process irreversible transportation problem in the process of porous media seepage is embodied in this paper, and provides new idea and method for the research of kin problems. Based on the method of porous media macroscopic geometric classification and the analytical theory of two-substance attenuate consistency problem, the idea of establishing transportation model of porous media is put forward.
引文
Antonio A. Alonso, B. Erik Ydstie, Stabilization of distributed systems using irreversible thermodynamics, Automatica, 37(2001) 1739-1755
    Antonio F. Miguel, Contribution to flow characterisation through porous media, Int. J. Heat and Mass Transfer, 43(2000)2267-2272
    Anthony K.H., Hamilton's action principle and thermodynamics of irreversible processes — a unifying procedure for reversible and irreversible processes, J. Non-Newtonian Fluid Mech. 96(2001 )291-339
    Baehr H.D.著,杨东华等译,工程热力学理论基础及工程应用,科学出版社,1983
    Bear J., Y. Bachmat, A generalized theory on hydrodynamic dispersion in porous media, I.A.S.H. Symp. Artificial Recharge and Management of Aquifers, Haifa, Israel, IASH, EN., 72, 7-16, 1967
    Bear J., Y. Bachmat, Hydrodynamic dispersion in non-uniform flow through porous media, taking into account density and viscosity differences , Hydraulic Lab., Technion, Haifa, Israel, 308PP, PN., 4/66, 1966
    Bear J.著,李竞生,陈崇希译,多孔介质流体动力学,中国建筑工业出版社:1983
    Bisio G, Cartesegna M., Rubatto G, Thermodynamic analysis of fluids with the possible presence of chemical reactions, Energy Conversion & Management, 43(2002) 1619-1637
    Caplan S. R., Essig A., Bioenergetics and Linear Nonequilibrium Thermodynamics — The Steady State, Harvard University Press, 1983
    Castrenze Polizzotto, Guido Borino, A thermodynamics-based formulation of gradient-dependent plasticity, Eur. J. Mech. A/Solids 17(1998)741-761
    ConnorJ.J.,Brrebbia C.A.著,吴望一译,流体流动的有限元法,科学出版社,1981.1
    Costa Mattos H.S., A thermodynamically consistent constitutive theory for fluids, J. Non-linear Mechanics, Vol.33, No. 1, pp. 97-110, 1998
    Degroot S.R.,Mazur P.著,陆全康译,非平衡态热力学,上海科学技术出版社,1981
    Demirel Y., Sandler S.I., Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport, Int. J. Heat and Mass transfer, 44(2001)2439-2451
    Edelen D. E. B., The Thermodynamics of Evolving Chemical Systems and the Approach to Equilibrium, Advances in Chemical Physics, 33 (1975), Wiley
    Edwin H. Battley, The development of direct and indirect methods for the study of the thermodynamics of microbial growth, Thermochimica Acta 309(1998) 17-37
    Elliott H. Lieb, Jakob Yngvason, The physics and mathematics of the second law of
    
    thermodynamics, Physics Reports, 310(1999) 1-96
    Finlayson, Bruch A., The method of weighted residuals and variational principles, Academic Press, Inc., 1972
    Forland T., Ostvold T., The salt bridge in concentration cells. Trans. R. Inst. Technol., Stockholm, 1972, No:294
    Forland, K.S., Forland, T., Kjelstrup S., Irreversible thermodynamics theory and applications, John Wily & Sons, 1988.
    Glansdorff P. and Prigogine I, Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley-Interscience, New York, 1971
    Hayakwa K., Murakami S., Liu Y, An irreversible thermodynamics theory for elastic-plastic-damage materials, Eur. J. Mech, A/Solids,17, 1, 13-32, (1998)
    Ito Y, Hayashi H., Hayafuji N et al., Electrochimica Acta, 1985, 30:701
    Jaunzemis W., 1967, Continuum Mechanics, The Macmillan Co., New York
    Joachim Bluhm, Reint de Boer, Krzysztof Wilmanski, The thermodynamic structure of the two-component model of porous incompressible materials with true mass densities, Mechanics Research Communications, Vol. 22, No. 2, pp. 171-180, 1995
    John L. Howland, Matthew Needleman, Biological energy-coupling in terms of irreversible thermodynamics, Biological and Molecular Biology Education, 28(2000) 301-303
    John Ross, Katharine L. C. Hunt and Paul M. Hunt, Thermodynamics Far from Equilibrium: Reactions with Multiple Stationary States, J. Chem. Phys., 88(4) , 15 Feb., 1988
    Kirkwood J. G, Crawford Jr. B., Phys. Chem. 56(1952) , 56,1048
    Kontturi K., Ekman A., Rorssell P., Acta Chem. Scand. 1985, A39:273
    Kotyk A., Janacek K., Biomembranes, New York: Plenum Press, 1977
    Kumicak J., Hemptinne X., The dynamics of thermodynamics, physica D, 112(1998) 258-274
    Lamb, H., Hydrodynamics, Dover, New York, 6th ed., (1945)
    Lien H. P., Wittmann F.H., Mass transfer in inhomogeneous porous media under thermal gradients, Nuclear Engineering and Design, 179(1998) 179-189
    Lindeberg E., Division of Physical Chemistry: [Thesis]. NTH: University in Trondheim, 1981
    Malvern L.E., 1969, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Inc., Englewood Cliffs
    Maugin G.A., 1992, The Thermomechanics of Plasticity and Fracture, Cambridge University Press, Cambridge
    
    
    Miguela. Marino, Jamesn. Luthin, Seepage and groundwater, Elsevier scientific publishing company, 1982
    Muschik W., Papenfuss C., Ehrentraut H., A sketch of continuum thermodynamics, J. Non-Newtonian Fluid Mechanics, 96(2001) 255-290
    Neuman,S.P. and P.A. Witherspoon, Finite element method of analyzing steady seepage with a free surface, Water Resources Res. No. 3,6, 889-897(1970)
    Nicolis G, Prigogine I., Self-Organization in Nonequilibrium Systems, Wiley, New York, 1977
    Nutting, P.G., Physical analysis of oil sands, Bull. Amer. Ass. Petr. Geol., 14, 1337-1349, 1930
    Omini M., Thermoelasticity and thermodynamics of irreversible processes, Physica B, 270(1999) 131-139
    Onsager L., Phys. Rev. 37, 405 (1931)
    Onsager L., Phys. Rev. 38, 2265 (1931)
    Palm E., (1990) , Rayleigy convection, mass transport, and change in porosity in layers of sandstone, J. Geophys. Res., 95, 8675-79
    Park S.W., Schapery R.A., A viscoelastic constitutive model for particulate composites with growing damage, Int. J. Solids Structures, Vol. 34, No. 8, pp. 931-947, 1997
    Paterson R., Cameron R.G., Burke I.S., Interpretation of membrane phenomena using irreversible thermodynamics, Selegny E ed. Charged Gels and Membranes, New York, Reidel, 1976
    Perera R., Carnicero A., Alarcon E., Gomez S., A fatigue damage model for seismic response of RC structures, Computers & Structures, 78(2000) 293-302
    Perer S. Huyakorn, George F. Pinder, Computaional methods in subsurface flow, Academic press, Inc. (London) Ltd. 1984
    Powers D. et al, (1985) , Theory of natural convection in snow, J. Geohpys. Res., 90,10641-49
    Prigogine I., Bull. Acad. Roy. Belg. Cl. Sci., 31, 600 (1945)
    Prigogine I., From Being To Becoming, W. H Freeman and Comp, San Francisco, 1980
    Prigogine I., Introduction to Thermodynamics of Irreversible Processes, 3rd ed., Interscience Pub., New York, 1967
    Prigogine I., Science, 201,777(1978)
    Rios PR., Gottstein G, Shvindlerman L.S., Application of the Thermodynamic Theory of irreversible processes to normal grain growth, Scripta Materialia, 44(2001) 893-897
    Robert E. Ulanowicz, Life after Newton: an ecological metaphysic, BioSystems,
    
    50(1999) 127-142
    Robert L. Perry, Thermodynamics for engineering technology, Breton Publishers, 1984
    Rottenberg H., Gutman M., Biochem, 1977, 16, 3220
    Ryan MP, (1990), Magma transport and storage, Wiley
    Scheidegger A.E.著,王鸿勋等译,多孔介质中的渗流物理,石油工业出版社,1982
    Sean P. Rigby, Lynn F. Gladden, The prediction of transport properties of porous media using fractal models and NMR experimental techniques, Chemical Engineering Science 54 (1999)3503-3512
    Tao L., Humphrey J.D., Rajagopal KR., A mixture theory for heat-induced alterations in hydration and mechanical properties in soft tissues, Int. J. Engineering Science, 39 (2001) 1535-155
    Umberto Lucia, Maximum principle and open systems including two-phase flows, Rev. Gen. Therm (1998)37,813-817
    Valanis K.C., Foundmental Consequences of New Intrinsic Theory, Aroh. Mech., 1980, 171-191
    Valanis K.C., Partial inregrability as the basis for the existence of entropy in irreversible systems, ZAMM, 63, 1983,70-80
    Yang C. T., Dynamic adjustment of rivers, River Sedimentation, 1986
    Yang C. Y., Theory of minimum energy and energy dissipation rate, Encyclopedia of Fluid Mechanics, Gulf Publishing Company, 1986
    Yin Jianhua, FE Modeling of Seepage in Embankment Soils with Piping Zone Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6) 679-686
    Wisniewski S,等著,陈军健等译,不平衡过程热力学,高等教育出版社,1988
    库比切克,马雷克著,刘式达,刘式适译,分岔理论和耗散结构的计算方法,科学出版社,1990
    白水平,甘肃省武威市绿洲生态环境综合评价及整治方略,地理科学,2000,20(3):251~258
    柴瑞军,仵彦卿,采用边界元法确定渗流自由面的一种改进方法,陕西水力发电,2000.3,16(1):11~13
    陈建生,李兴文,赵维炳,堤防管涌产生集中渗漏通道机理与探测方法研究,水利学报,2000,(9):48~54
    陈建生,张发明,张虎成,龙羊峡大坝同位素示踪方法探测渗流场研究,河海大学学报,1999,27(6):1~6
    陈庆中,张弥,冯星梅,应力场、渗流场和流场偶合系统定边值定初值问题的变分原理,岩石力学与工程学报,1999.10,18(5):550~553
    丁预展,离散论方法学,中国建筑上业出版社,1988
    
    
    杜延龄,许国安,渗流分析的有限单元和电阻网络法,水利出版社,1992
    范镜泓,高芝晖,非线性连续介质力学基础,重庆大学出版社,1987
    高家瑞,动量、热量、质量传输原理,重庆大学出版社,1987
    顾慰慈,渗流计算原理及应用,中国建材工业出版社,2000.8
    郭尚平等,(1986),渗流力学的新发展,力学进展,16(4),441~454
    郭尚平,于大森,吴万婵,(1982),脏器渗流多孔介质的物理特征,力学学报,14(1):26~33
    过曾元,热流体力学,清华大学出版社,1992
    何可人,杨东华,吴介之,流动问题中的最小能量耗散定理的推广和最小熵产生原理的局限,工程热物理学报,1988.2,9(1):10~12
    姜英杰,含源多孔介质中的高维渗流问题,河南大学学报,1991.6,21(2):73~78
    孔祥言,高等滲流力学,中国科技大学出版社,1999
    李如生编著,非平衡态热力学和耗散结构,清华大学出版社,1986
    李守德,张晓海,刘志祥,基坑工程管涌发生过程模拟与分析,工程勘察,2003,(2)
    刘长俊编著,热力学微分关系式,辽宁科学技术出版社,1994
    刘广胜,渗流对深基坑工程影响的研究,河海大学博士学位论文,2000
    刘建刚,陈建生,焦月宏,砂砾石堤基渗漏涌砂模型,大坝观测与土工测试,2001,25(3):41~43
    刘杰,土的渗透稳定与渗流控制,水利电力出版社,1992
    刘希云,赵闰祥,流体力学中的有限元与边界元方法上海交通大学出版社,1993
    罗文锋,李后强等,泥石流研究中的渗流模型及分形方法,中国地质灾害与防治学报,1997.2,8(2):8~12
    罗志昌,流体网络理论,机械工业出版社,1988
    毛昶熙,电模拟试验与渗流研究,水利出版社,1981
    毛昶熙,段祥宝,李祖贻等,渗流数值计算与程序应用,河海大学出版社,1999
    毛昶熙,陈平,李祖贻,李定方,裂隙岩体渗流计算方法研究,岩土工程学报,1991.11,13(6):1~9
    莫海鸿,林德璋,裂隙介质网络水流模型的拓扑研究,岩石力学与工程学报,1997.4,16(1997),97~103
    倪国熙,常用的矩阵理论和方法,上海科学技术出版社,1984
    钱家欢,殷宗泽,土工原理与计算(第二版),中国水利水电出版社,1996
    钱宁等,河床演变学,科学出版社,1989
    钱伟长,变分法及有限元(上册),科学出版社,1980
    钱伟长,广义变分原理,知识出版社,1985
    
    
    强天驰,寇晓东,周维垣,三位有限元网格加密方法及其工程应用,水利学报,2000.7,38~43
    沙金煊,不完整井渗流的近似计算,岩土工程学报,1985.9,7(5):36~48
    施天谟[美]著,陈越南等译,计算传热学,科学出版社,1987
    苏长荪等,高等工程热力学,高等教育出版社,1987
    唐业清,李启民,崔江余,基坑工程事故分析与处理,中国建筑工业出版社,1999
    陶同康等,关于“堤坝非稳定渗流试验研究与计算”一文的讨论及终结讨论,岩土工程学报,1982.5,4(2):138~143
    王恩志,王洪涛,孙役,双重裂隙系统渗流模型研究,岩石力学与工程学报,1998.8,17(4):400~406
    王水林,葛修润,渗流问题的数字网络方法,岩土力学,1999,20(3):20~23
    王晓冬,李光和,陈钦雷,两种新的不稳定渗流点源函数,石油大学学报,2001.4,25(2):31~33
    王媛,裂隙岩体滲流及其与应力的全耦合分析,河海大学博士学位论文,1995
    王媛,速宝玉,徐志英,三维裂隙岩体渗流耦合模型及其有限元模拟,水文地质工程地质1995,22(3):1~5
    王媛,速宝玉,等效连续裂隙岩体渗流与应力全耦合分析,河海大学学报,1998,26(2):26~30
    王媛,徐志英,速宝玉,复杂裂隙岩体渗流与应力弹塑性全偶合分析,岩石力学与工程学报,2000.3,19(2):177~181
    吴介之,在热力学的后方,自然杂志,6,12,(1983),p.898
    仵彦卿,岩体结构类型与水力学模型,岩石力学与工程学,2000.11,19(6):687~691
    仵彦卿等,岩体水力学导论,西南交通大学出版社,1995
    夏国泽,不可压缩边界层理论,华中理工大学出版社,1992
    肖裕行,王泳嘉,王思敬,卢世宗,裂隙岩体水力离散介质网络的建立,岩石力学与工程学报,1998.8,17(4):412~418
    肖裕行,王泳嘉,卢世宗,陈殿强,王思敬,裂隙岩体水力等效连续介质存在性的评价,岩石力学与工程学报,1999.2,18(1):75~80
    严煦世,赵洪宾,给水管网理论和计算,中国建筑工业出版社,1986
    杨栋,赵阳升,段康廉,郑少河,广义双重介质岩体水力学模型及有限元模拟,岩石力学与工程学报,2000.3,19(2):182~185
    杨东华,不可逆过程热力学原理及工程应用,科学出版社,1989
    杨本洛,经典热力学中若干基本概念的探讨,科学出版社,1996
    苑连菊,李振栓,武胜忠等,工程渗流力学及应用,中国建材工业出版社,2001
    曾丹苓,工程非平衡热动力学,科学出版社,1991
    
    
    张君禄,陈胜宏,瞬态场有限元计算中的时步自适应研究,武汉水利电力大学学报,1996.2,29(1):79~84
    章梓雄,董曾南,粘性流体力学,清华大学出版社,1998
    中国力学学会办公室,中国科学院力学研究所LNM开放实验室,现代流体力学进展Ⅱ,科学出版社,1993
    周念清,基于GIS的徐州市地下水资源管理研究,南京大学博士论文,2001
    周筑宝,卢楚芬,按能量原理建立强度理论的新探索与展望,长沙铁道学院学报,1996.12,14(4):1~9
    周筑宝,卢楚芬,最小耗能原理及其验证和应用前景展望,长沙铁道学院学报,1997.12,15(4):57~64
    周筑宝,卢楚芬,最小耗能原理在结构分析中的应用,长沙铁道学院学报,1998.3,16(1):43~50
    周筑宝,最小耗能原理及其应用,科学出版社,2001
    朱岳明,大坝渗流计算与渗控措施研究综述,河海科技进展,1993.12,13(4):109~116
    朱岳明,张燎军,渗流场求解的改进排水子结构法,岩土工程学报,1997.3,19(2):70~76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700