牛心坨油田化学剂调驱提高采收率技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛心坨油田原油粘度高,含蜡量高,油水流度比的差异较大,加之油藏非均质性严重,且低孔低渗,目前已进入中高含水期(70%以上)产量快速递减阶段,尤其下层系及合采区水淹更加严重,综合含水已达75%以上,以往所进行的措施(压裂、调剖、分注)无法起到稳油控水作用,开发难度越来越大,举步维艰,迫切的需要研究筛选出低成本高效的调驱技术,提高牛心坨油田注入水波及体积及注水效率,改善牛心坨油层开发效果,从而达到稳油控水进一步提高牛心坨油层采收率的目的,为牛心坨油田的良性发展提供技术支持。
     该项目应用室内物理模拟实验方法,利用牛心坨油田天然岩心,分别进行聚合物驱和聚合物/活性剂二元复合驱的驱油实验,通过考察这些驱油体系的驱油效果,选择出适合牛心坨油田的最佳驱油体系。
     本文应用了数值模拟方法,建立了牛心坨油田N1-N7油层的精细地质模型,在水驱历史拟合的基础上、完成了T33-35井组及全区的水驱方案预测、调驱参数及段塞注入方式的优选,其中调驱参数优选主要包括聚合物分子量、用量、溶液浓度、注入速度、调驱时机的优选,形成适合牛心坨油田的最佳驱油方案,使牛心驼油田原油采收率在水驱基础上提高10个百分点左右。
     经过对不同含水初值分类的井组进行聚驱注入参数数值模拟的研究可知:综合含水率小于80%的井组其最佳驱油方案为采用先调后驱的方法,调剖剂用量为0.02PV,注入主段塞1500mg/L聚合物0.3PV,注入保护段塞800mg/L,0.2PV,注聚速度为0.075PV/a,后续水驱至含水98%;而综合含水率大于80%的井组其最佳驱油方案为采用先调后驱的方法,调剖剂用量为0.02PV,注入主段塞1500mg/L聚合物0.3PV,注入保护段塞800mg/L,0.2PV,注聚速度为0.08PV/a,后续水驱至含水98%。
     经过牛心坨油层聚驱注入参数数值模拟优选出适合现场施工的最佳驱油方案为:采用先调后驱的方法,调剖剂用量为0.02PV,注入主段塞1500mg/L聚合物0.3PV,注入保护段塞800mg/L,0.2PV,注聚速度为0.08PV/a,后续水驱至含水98%。
Niuxintuo is an oil field of high oil viscosity and high wax content, the oil flow ratio greater difference, together with high reservoir hetergeneity and low porosity and low permeability. At present, it has entered into the yield rapid declining stage with high water-cut stage(above 70%), flooded is more serious especially for the sinking department and close mining areas which integral water content is above 75%. The measures taken before such as fracturing, profile control and the separated injection cannot stabilize oil production and controlling water cut. Consequently, the development of it becomes more difficult, a new low cost and high efficiency displacement technology is badly needed to be studied in order to improve injected water sweep volume and injected water sweep efficiency in the Niuxintuo oil field, as well as to improve the effect Niuxintuo oil formation development, in this way, we will achieve the target by further stabilizing oil production and controlling water cut to boost the recovery of Niuxintuo oil formation, as well as being a technological support for the sound progress of Niuxintuo reservoir.
     This project uses the laboratory physics analog testing manner which is based on the fine geology model of Niuxintuo oil field natural rock, respectively uses the manners of polymer flooding and the polymer/surfactant binary complex flooding to carry on the displacement experiment, so as to select the best displacement system suited to Niuxintuo oil field through investigating the outcome of these displacement systems.
     The numerical simulation method is adopted in this article to establish the fine geology model of the oil layers ranged from N1 to N7 in the Niuxintuo oil field. Depending on the water flooding history matching, we accomplished the water flooding forecast of T33-35 well-group and the whole areas, as well as the best selection of the adjustable flooding parameters and the slug injection pattern. The selection of adjustable flooding parameters including polymer molecular weight, the dosage of polymer, the solution concentration, injection speed and the time of slug injection. Use this manner to come into being the best displacement measure for Niuxintuo oil field which had improved about ten percent of the crude oil recovery in the Niuxintuo oil field depending on the water flooding.
引文
[1]王振奇,刘绍平,何贞铭,等.牛心坨油田牛心坨油层储集条件研究[J].江汉石油学院学报,2000,22(3):20-23.
    [2]许晓宏,刘绍平,何贞铭,等.牛心坨油田储层特征及其定量模拟[J].江汉石油学院学报,2000,22(3):27-29.
    [3]吕立华,李明华,苏岳丽.稠油开采方法综述[J].内蒙古石油化工,2005(3):110-112.
    [4]苏海芳编,国内外低渗透油田开发技术调研[C].胜利油田2003年低渗透油藏开发技术座谈会.
    [5]邱勇松.低渗透油藏渗流机理及开发技术研究[D].中科院博士生论文.
    [6]裘怪楠,刘雨芬,等编著.低渗透砂岩油藏开发模式[M].北京:石油工业出版社,1999.
    [7]张连生.用活化孔隙假设解释聚合物控制油井含水量的机理[J],石油勘探与开发,1978:38-43.
    [8]付晓泰,王振平,卢双舫.气体在水中的溶解机理及溶解度方程[J].中国科学B(辑),1996(2):127-132.
    [9]吴文样,侯吉瑞,卢文忠.大庆油田三元复合驱体系注入方式物理模拟实验研究[J].油田化学,1998(4):354-357.
    [10]刘东升.聚合物驱注采井节点分析方法及其应用[M].石油工业出版社,2001年5月第一版,1-10.
    [11]郭尚平,田根林,王芳,等.聚合物驱后进一步提高采收率的四次采油问题[J].石油学报,1997,18(4):49-53.
    [12]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-51.
    [13]夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的机理[D].大庆石油学院,2001:123.
    [14]牟建海,李干佐.三次采油技术的发展现状及展望[J].化工科技市场,2000,2(7):17-20.
    [15]李道品等.低渗透油田开发[M].北京:石油工业出版社,1997.
    [16]吴文祥,张洪亮.复合驱油体系与大庆原油间的界面张力的研究[J].油气采收率技术,1995,2(1):1-7.
    [17]Clark S R, Pitts M J. Design and application of an alkaline-surfac-rant-polymer recovery system to the west Kiehl Field[Z]. SPE17538,1988.
    [18]王德民.发展三次采油新理论新技术,确保大庆油田持续稳定发展(下)[J].大庆石油地质与开发,2001,(8):1.
    [19]刘玉章.EOR聚合物驱提高采收率技术[M].北京:石油工业出版社,2006,19-21.
    [20]戚连庆.聚合物驱油工程数值模拟研究[M].北京:石油工业出版社,1998:28-30.
    [21]胡博仲,刘恒.聚合物驱采油工程[M].北京:石油工业出版社,1997:40-42.
    [22]芦文生.绥中36-1油田聚合物驱数值模拟研究[J].中国海上油气(地质),2002,16(5):333-335.
    [23]李干佐,房秀敏.表面活性剂在能源和选矿工业中的应用[M].北京:中国轻工业出版社,2002,79-80.
    [24]Mungan N. Enhanced Oil Recovery Using Water as a Driving Fluid-Part4:Fundamentals of Alkaline Flooding[J]. World Oil(June 1981):9-20.
    [25]Raimondi Pet al. Alkaline Water Flooding Design and Implementation of a Field Pilot [J]. J. pet. Tech. (Oct.1977):59-68.
    [26]李干佐,翟利民.三次采油[J].科学出版社,2000,52(1):10-12.
    [27]张宏方,王德民,王立军.聚合物溶液在多孔介质中的渗流规律及提高驱油效率机理[J].大庆石油地质与开发,2002,26(1):48-51.
    [28]滕学伟.聚合物驱后提高采收率技术研究[D].中国石油大学,2009.
    [29]谌华山,张龙胜.用聚合物驱油提高稠油砂岩油藏采收率[J].江汉石油职工大学学报,2005,18(6):40-42.
    [30]廖广志,王启民,王德民.化学复合驱原理及应用[M].北京:石油工业出版社,1999:50-52.
    [31]韩冬,沈平平.表面活性剂驱油原理及应用[M].北京:石油工业出版社,2001:159-160.
    [32]WANG DEMIN, HAO YUEXING. Result of Polymer Flooding Pilots in the Central Area of Daqing Oilfield [C]. SPE 26401:5-7.
    [33]杨承志等.化学驱提高石油采收率[M].北京:石油工业出版社,1999:39-40
    [34]廖广志,王克亮,闫文华.流度比对化学驱驱油效果影响实验研究[J].大庆石油地质与开发,2001,20(2):14-17.
    [35]WANG DEMIN, CHENG JIECHENG, YANG QINGYAN. Viscous-elastic polymer can increase microscale displacement efficiency in cores [A]. SPE 63227,2000:2-8.
    [36]夏惠芬,王德民,侯吉瑞,等.聚合物溶液的粘弹性对驱油效率的影响[J].大庆石油学院院报,2002,26(2):109-111.
    [37]王德民,程杰成,杨清彦,等.粘弹性聚合物溶液能提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-51.
    [38]夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的研究[J].石油学报,2001,22(4):60-65.
    [39]夏惠芬,王德民.聚合物溶液的粘弹性实验[J].大庆石油学院学报,2002,26(2):105-108.
    [40][美]S.K.拜佳.聚合物在多孔介质中的流动[M].石油工业出版社,1998,12(5): 277-280.
    [41]殷庆国.杏十二区聚合物/表面活性剂驱油技术研究[D].大庆石油学院,2010.
    [42]范勇.杏十三区聚合物驱试验数值模拟研究[D].大庆石油学院,2009.
    [43]庞宗威等.聚合物分子量与岩心渗透率匹配关系得研究[J].大庆石油管理局勘探开发研究院采收率研究室,1990,104-111.
    [44]沈平平,闫存章,袁士义,等.聚合物驱提高采收率技术[M].北京:石油工业出版社,2006:1-2.
    [45]赵福麟.EOR原理[M].山东东营:石油大学出版社,2001:1-3.
    [46]吴文祥,侯吉瑞,张云祥,等.聚合物分子量对聚合物驱油效率的影响[J].油田化学,1996(12):5-8.
    [47]韩显卿.提高采收率原理[M].北京:石油工业出版社,1993:32-33.
    [48]邵振波,付天郁,王冬梅.合理聚合物用量确定方法[J].大庆石油地质与开发,2001,20(2):60-62.
    [49]黎洪,程林松,等.粘弹效应改善聚驱效果的数值模拟研究[J].石油勘探与开发.2002,17(6):25.
    [50]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):46-50.
    [51]程林松.聚合物驱粘弹效应影响因素的数值模拟研究[J].西安石油学院学报(自然科学版),2002,17(6):25-27.
    [52]叶仲斌,彭杨,施雷庭,等.多孔介质剪切作用对聚合物溶液粘弹性及驱油效果的影响[J].油气地质与采收率,2008(19):16-18.
    [53]夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60--65.
    [54][美]W.利特马恩.聚合物驱油[M].北京:石油工业出版社,1991:69.
    [55]Camilleri. D. Angelson. S.Lake. L.W. Discription Of an Improved Compositional Micellar/Polymer Simulator.1987 Society Of Petroleum Engineers. SPE13967.
    [56]Moritis G. New technology. Improved economics boost EOR hopes. Oil Gas J,1996: 39-61.
    [57]Zeito. G.A. Threo Dimensional Numerical Simulation of Polymer Flooding in Homogeneus and Herteorgeneous systems, SPE2186.
    [58]Naji saad. Field Scale simulation of chemical Flooding. PhD Dissertation, University of Texas at Austin.
    [59]付天郁,邵振波,毕艳昌.注入速度对聚合物驱油效果的影响[J].大庆石油地质与开发,2001,20(2):63-66.
    [60]Woods, C.L., Goodyear, S.G., Foulser, R.W.S. and Hubbard. A Numerical Modeling Study of the Mechanisms of Gelation in Porous Media, In Situ (1991) 15,347-387.
    [61]宋考平,杨二龙,邓庆军,等.聚合物驱合理注入速度的选择[J].大庆石油学院学 报,2001,25(4):15-18.
    [62]王业飞,李继勇,赵福麟.高矿化度条件下表面活性剂驱油体系[J].油气地质与采收率,2001,8(1),67-69.
    [63]周晖,黄荣华.疏水缔合水溶性丙烯酰胺-丙烯酸正辛醋共聚物的溶液性能[J].油田1997,14(3):252.
    [64]方李华,蔡诗琴.石油开采中表面活性剂驱的应用与展望[J].精细与专用化学品,2000(22):9-10.
    [65]李干佐,沈强,郑立强.新型驱油用表面活性剂天然混合羧酸盐[J].油田化学,1999,19(I):57.
    [66]Teeuw. D, Hesselink J. T. Power-law Flow and Hydrodyndmic Behavior of Biopolyrher Solution in Porous Media. SPE8982. SPE 5th International Oilfield and Geothermal Chemistry Stanford. May 1980.
    [67]牟建海,李干佐.三次采油技术的发展现状及展望[J].化工科技市场,2000,2(7):17-20.
    [68]R.I. Tanner. From A to(BK)Z in constitutive equations[J]. J.Non-Newtonian Fluid Mech, 1988(32):673-702.
    [69]王中华.油田用表面活性剂现状和发展趋势[J].河南化工,2006(23):4-7.
    [70]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2000:21-22.
    [71]Bourrel M, Schechter R S. Microemulsions and Related Systems. For-mulation, Solveney and Physical Propeties. In:Surfactant Science series Vol.30. NewYork:M arcel Dekker Inc,1988.18.
    [72]张路,罗澜,赵滩,等.油相性质对水相中混合表面活性剂协同效应的影响[J].油田化学,2000,17(3):268-271.
    [73]郭东红.表面活性剂驱的驱油机理与应用[J].精细石油化工进展,2002,7:36-39.
    [74]Song, W. et al. Alkaline/surfactant/polymer combination flooding for improving recovery of the oil with High Acid Value[C]. Paper SPE 29905 presented at the 1995 International Meeling on Petroleum Engineering, Beijing, PR China Novl 14-17.
    [75]Gao Shutang, Li Huabin, Yang zhenyu, etal. The alka-line/surfactant/polymer pilot perfor mance of saertu, west central, Daqing oil field[J]. SPE Reservoir Engineering,1996, 11(3):181-188.
    [76]韩冬,沈平平编著.表面活性剂驱油原理及应用[M].北京石油工业出版社,2001(8):21-25.
    [77]孙新春,向湘兴.环烷酸盐作为ASP驱油体系中表面活性剂的研究[J].新疆石油科技,1997,7(2):54-59.
    [78]Chan K S, Shah D 0. The molecular mechanism for achieving ultra low interfacial tension minimum in a petroleum sulfonate/oil/brine system[J]. Journal of Dispersion Science and Technology,1980,1(7):55.
    [79]崔正刚,张天林,邹文华,等.重烷基苯磺酸盐的合成及其在提高石油采收率中的应用研究[J].表面活性剂/洗涤剂技术与经济进展,1998:95-102.
    [80]赵国玺编著.表面活性剂物理化学[M].北京大学出版社,1991:97-100.
    [81]周润才编译.表面活性剂/聚合物驱油的基本原理[M].国外油气田工程,1995:52-55.
    [82]Paul G W, Lake L W, Pope G A. A Simplified Predictive Model for Micellar-Polymer Flooding. SPE,1982:2-5.
    [83]伍晓林,张国印.石油羧酸盐的研究及其在三次采油中的应用[J].油气地质与采收率,2001,8(1):3-5.
    [84]吴委萍,胡学军,黄柱花,等.表面活性剂一聚合物驱复合段塞的优化设计[J].江汉石油,2000,14(1):22-24.
    [85]李柏林,程杰成.二元无碱驱油体系研究[J].油气地面工程,2004,23(6):16-17.
    [86]张爱美,曹绪龙,李秀兰,等.胜利油区二元复合驱油先导试验驱油体系及方案优化研究[J].新疆石油学院学报,2004,16(3):40-42.
    [87]李孟涛,刘先贵,杨孝君.无碱二元复合体系驱油试验研究[J].石油钻采工艺,2004,26(5):74-76.
    [88]李华斌,吴文祥.ASP三元复合驱油层适应性研究[1].西南石油学院学报,2000,22(4):48-50.
    [89]王克亮,廖广志,等.三元复合和聚合物驱油液粘度对驱油效果影响实验研究[J].油田化学,2001,18(4):356-357.
    [90]赵明国.大庆油田三元复合驱中岩石润湿性的变化[J].大庆石油地质与开发,2000,19(2):34-36.
    [91]张景存.三次采油[M].北京:石油工业出版社,1995.39-46.
    [92]张国印,伍晓林,等.三次采油用烷基苯磺酸盐类表面活性剂研究[J].大庆石油地质与开发,2001,2(2),26-28.
    [93]黄宏度.驱油用石油羧酸盐的研制[J].油田化学,1991,8(3):235-239.
    [94]廖广志,杨振宇,刘奕.三元复合驱中超低界面张力影响因素研究[J1.大庆石油地质与开发,2001,20(1):40-42.
    [95]李华斌,隋军,杨振宇.大庆油田三元复合驱注入程序及段塞优化设计[J1.西南石油学院学报,2001,23(5):46-48.
    [96]侯吉瑞,刘中春,等.三元复合体系的粘弹效应对驱油效率的影响[J].油气地质与采收率,2001,8(3):62-64.
    [97]卢样国,戚连庆.低活性剂浓度三元复合体系驱油效果实验研究[J].石油学报,2002,23(5):63-65.
    [98]翟瑞滨,曹铁,鹿守亮.三元体系中化学剂浓度对驱油效果的影响[J].大庆石油地质与开发,2002,21(4):65-67.
    [99]夏惠芬,刘春泽,等.三元复合驱油体系粘弹性及界面活性对驱油效率的影响[J].油 田化学,2003,20(1):63.
    [100]王业飞,李继勇,赵福麟.高矿化度条件下表面活性剂驱油体系[J].油气地质与采收率,2001,8(1),67-69.
    [101]侯吉瑞,刘中春.低碱ASP三元复合驱技术的适用界限分析[J].石油大学学报(自然科学版),2003,27(3):46-45.
    [102]Q Liu,杨凤华,张帮亮.表面活性剂吸附解吸行为提高化学驱采收率[J].国外油田工程,2004,2(2):36-38.
    [103]隋智慧.驱油用表面活性剂的研究[J].精细石油化工进展[J],2005:1-4.
    [104]葛际江,张贵才,蒋平,等.驱油用表面活性剂的发展[J].油田化学,2007,9(3):287-290.
    [105]Moritis G. New technology improved economics boost EOR hopes [J]. Oil Gas J,1996 (Apr 15):39-61.
    [106]刘玉章,吕西辉.胜利油田用化学法提高原油采收率的探索与实践[J].油气采收率技术,1994,I(1):25-28.
    [107]李方.表面活性剂与聚合物间相互作用研究[D].济南,山东大学化学院1997.
    [108]Miklos T. Szabo Molecular and Microscopic Interpretation of the Flow of Hydrolyzed Polyacrylamide Solution Though Porous Media. SPE 4028.218-233.
    [109]张逢玉,卢艳,韩建彬.表面活性剂及其复配体系在三次采油中的应用[J].石油与天然气化工,1999(2):31-34.
    [110]周润才编译.表面活性剂/聚合物驱油的基本原理[M].国外油气田工程,1995:52-55.
    [111]Paul G W, Lake L W, Pope G A. A Simplified Predictive Model for Micellar-Polymer Flooding. SPE 1982:2-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700