一氧化氮对水稻幼苗镉毒害的缓解效应及其生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属镉(cadmium, Cd)是最主要的环境污染物之一,它会严重影响农作物的产量和品质。Cd对水稻的污染具有隐蔽性和危险性,它可以通过食物链给人民健康带来风险和危害。一氧化氮(nitricoxide, NO)是近年来备受关注的信号分子,它在植物信号转导及抗逆过程中发挥着重要作用。目前有关NO缓解植物重金属毒害的研究越来越多,但NO缓解植物重金属毒害的生理和分子机制鲜为人知。探讨外源NO对水稻Cd毒害的影响具有重要的理论和实践指导意义。
     本研究以秀水63为试验材料,采用营养液培养的方法研究了外源NO对水稻Cd毒害的缓解作用,并从水稻生长、氧化胁迫、光合特性、矿质元素吸收、细胞超显微结构和蛋白组学等角度探讨了外源NO缓解水稻Cd毒害的生理及分子机制。主要研究结果如下:
     (1)低浓度NO供体硝普钠(sodium nitroprusside, SNP,≤0.2mM)能够缓解Cd胁迫对水稻的毒害,而高浓度的SNP会抑制水稻的生长。0.005mM SNP能够缓解0.1mM Cd胁迫对水稻的毒害作用;0.1mM SNP能够缓解0.2mM Cd胁迫对水稻的毒害作用。具体表现为:外源NO能够缓解Cd毒害对水稻株高、根长和干重的抑制作用。同时也反映出外源NO缓解水稻Cd毒害具有浓度效应。
     (2)外施NO能显著减少Cd诱导的膜脂过氧化程度和HO2的含量,还能降低水稻植株SOD、POD、APX、GR活性和ASA的含量,促进CAT活性的升高和GSH的含量。表明NO通过调节水稻受到的氧化胁迫来缓解Cd对水稻的毒害作用。
     (3)外源NO能够增加Cd毒害下水稻叶片叶绿素的含量,提高叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、叶绿素最大荧光(Fm)、PSⅡ原初光能转换效率(Fv/Fm)、(?)合电子传递量子效率(ΦPSⅡ),降低叶片胞间CO2浓度(Ci),表明NO参与调节植物的光合作用,抑制Cd毒害对光系统损伤,降低热能耗散,缓解了Cd对水稻的毒害。
     (4)外源NO可以使Cd毒害下水稻叶片叶绿体基粒类囊体片层结构变得密集,淀粉粒增加,液泡变小,液泡中沉积更多的电子富集颗粒,水稻Cd中毒现象得到一定缓解。
     (5)外源NO降低了Cd毒害下水稻地上部Cd的含量,显著提高了水稻地上部Fe、Zn、Mn、Cu的含量以及根中K、Mg、Zn、Mn、Cu的含量,显著降低了根中Ca的含量。表明外源NO可能通过维持细胞质离子稳态平衡来缓解Cd对水稻生长发育的抑制作用。
     (6)外源NO处理的Cd毒害下水稻叶片和根中成功鉴定出41个蛋白质。其中,水稻叶片中磷酸甘油酸激酶、3-磷酸甘油醛脱氢酶、ATP合酶、NADP-苹果酸、氨甲基转移酶蛋白均下调表达;单脱氢抗坏血酸还原酶、磷酸甘油酸变位酶和铁氧还蛋白-亚硝酸盐还原酶上调表达。水稻根中5-甲基四氢叶酸-高半胱氨酸S-甲基转移酶、热激蛋白、ATP合酶和蔗糖-二磷酸尿核苷葡萄糖基转移酶蛋白表达上调;果糖激酶、异黄酮还原酶和半胱氨酸结合β裂解酶蛋白表达下调。表明,NO参与了水稻光合作用、碳代谢、氮代谢、能量代谢、氧化胁迫、信号转导和细胞分裂等途径的调节。
Cadmium (Cd) is one of the most deleterious elements that pollute environment. Cd can be absorbed and accumulated easily by plants. Excess Cd typically causes direct or indirect inhibition of physiological processes, such as respiration, transpiration, photosynthesis, oxidative stress, cell elongation, nitrogen metabolism and mineral nutrition, resulting in growth retardation, leaf chlorosis and low biomass in plants. Cd can be absorbed and accumulated by rice without obvious deleterious symptoms, which gives rise to a threat on human health by food chain. Therefore, high accumulation of Cd in rice is a potential risk for both animals and human. As a crucial gaseous signaling molecule in plants, Nitric oxide (NO) plays a significant role in modulating several physiological and biochemical functions. In recent decades, an increasing number of articles have reported the effect of exogenous NO in alleviating heavy metal toxicity in different plants, although the physiological processes and mechanisms of NO in alleviating heavy metal toxicity are still far from clear. Therefore, it is necessary and meaningful to investigate the mechanisms of NO in alleviating Cd toxicity in rice, it will also provide significant theory basis to control the accumulation of Cd in rice seeds.
     Japonica rice Xiushui63was used in the studies, a hydroponic experiment was conducted to investigate the effect of exogenous sodium nitroprusside (SNP), a NO donor, on alleviating the toxicity of Cd to rice. In order to elucidate the mechanisms of mitigate effect of NO application on Cd toxicity, growth parameters, reactive oxygen species, photosynthesis, mineral nutrition, ultrastruture and proteomic were researched. The main results were summarized as follows:
     (1) Low concentrations of SNP (≤0.2mM) could alleviate the toxicity of Cd to rice, high concentrations of SNP deteriorated the toxicity of Cd to rice plants. A hydroponic experiment was conducted to investigate the effects of exogenous sodium nitroprusside (SNP), a NO donor, on growth in rice plants treated with0.1mM Cd and0.2mM Cd. The results concluded that the application of0.005mM SNP significantly alleviated0.1mM Cd-induced inhibition in rice seedlings growth, as plant height, root length, shoot weight and root weight. The application of0.1mM SNP significantly alleviated0.2mM Cd stress in rice growth. There is SNP concentration effect on alleviating Cd stress in rice plants.
     (2) Exogenous NO significantly reduced the Cd-induced lipid peroxidation, hydrogen peroxide (H2O2) content and ascorbic acid (ASA) content in rice plants. The addition of NO reversed (only partially) the Cd-induced increase in activities of antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR). The addition of NO with Cd increased catalase (CAT) activity and glutathione (GSH) content. The exogenous application of NO could be advantageous against Cd toxicity, and could confer tolerance to heavy metal stress in rice plants.
     (3) Exogenous NO significantly increased the chlorophyll content of rice leaves under Cd stress. NO significantly inhibited the decreases of net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), maximum fluorescence (Fm), PSII intrinsic photochemical efficiency (Fv/Fm), quantum yield of PSII (OPSII), and also inhibited the increase of intercellular CO2concentration (Ci). The results indicated that NO could modulate photosynthesis in plant, reduce energy dissipation and increase plant resistance by enhancing photosynthesis.
     (4) Exogenous NO made chloroplasts become better or in relatively normal shape with parallel pattern of lamellae. Addition of NO with Cd, the number of vacuoles was increased, but with much smaller size, compared with Cd alone treatment. Moreover, more EDG were deposited in vacuoles.
     (5) Exogenous NO decreased the Cd content in rice leaves, increased Cd content in root roots. NO significantly increased iron (Fe), zinc (Zn), manganese (Mn), copper (Cu) contents in rice shoot and potassium (K), magnesium (Mg), zinc (Zn), copper (Cu) contents in rice root; significantly decreased calcium (Ca) contents in rice roots induced by Cd stress. The results indicated that NO could maintain the mineral nutrition balance to mitigate Cd stress in rice plants.
     (6) In rice leaves and roots,41proteins were identified under SNP treatment. Phosphoglycerate kinase, Glyceraldehyde-3-phosphate dehydrogenase B, ATP synthase, NADP dependent malic enzyme, and aminomethyl transferase in rice leaves were down-regulated expressed, while monodehydroascorbate reductase, phosphoglycerate mutase and ferredoxin-nitrite reductase were up-regulated expressed. In rice roots,5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, heat shock protein, ATP synthase, and sucrose-UDP glucosyltransferase1were up-regulated expressed, Fructokinase II, isoflavone reductase and cysteine conjugate betalyase were down-regulated expressed. The results indicated that these proteins which participated in photosynthesis, carbohydrate metabolism, nitrogen metabolism, oxidative phosphorylation, oxidative stress responses, signal transductions and cell division.
引文
葛才林,骆剑锋,刘冲,等.重金属对水稻光合作用和同化物输配的影响[J].核农学报,2005,19(3):214-218
    黄冬芬.水稻对土壤重金属的响应及其调控[D].扬州大学,2008
    李绍长.低磷胁迫对植物光合和呼吸作用的影响[J].石河子大学学报(自然科学版),2003,7(2):157-160
    刘东华,蒋悟生,李憋学.镉对洋葱根生长和细胞分裂的影响[J].环境科学学报,1992,12(4):439-446
    刘宛,郑乐,李培军,等.镉胁迫对大麦幼苗基因组DNA多态性影响[J].农业环境科学学报,2006,25(1):19-24
    孟艳艳.一氧化氮对棉花叶片衰老过程中抗氧化酶及叶片蛋白质组的影响[D].中国农业科学院,2011
    史静,潘根兴,李恋卿.外加Cd对两水稻品种细胞超微结构的影响研究[J].生态毒理学报,2008,3(4):403-409
    史庆华,赖齐贤,朱祝军,等.一氧化氮在植物中的生理功能[J].细胞生物学杂志,2005,27(1):39-42
    孙仲秧.外源脱落酸缓解水稻镉毒害的生理机制研究[D].浙江大学,2006
    王鹏程,杜艳艳,宋纯鹏.植物细胞一氧化氮信号转导研究进展[J].植物学报,2009,44(5):517-525
    王逸群,郑金贵,陈文列,等.Hg2+、Cd2+污染对水稻叶肉细胞伤害的超微观察[J].福建农林大学学报:自然科学版,2004,33(4):409-413
    邬飞波,张国平.不同镉水平下大麦幼苗生长和镉及养分吸收的品种间差异[J].应用生态学报,2002,13(12):1595-1599
    夏小燕,杨丽琴,翟福勤,等.有机酸对小麦幼苗镉毒的缓解作用[J].农业环境科学学报,2007,26(3):990-995
    杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志,1994,15(6):20-26
    张佩,周琴,孙小芳,等.抗坏血酸对镉胁迫下油菜幼苗生长的影响[J].农业环境科学学报,2008,27(6):2362-2366
    张伟锋,陈平.镉对水稻幼苗叶片几种元素含量的影响[J].农业与技术,2004,24(5):65-67
    Arthur E, Crews H, Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain [J]. Inter J Phytoremed,2000,2(1):1-21
    Baker AJM, Reeves RD, Hajar ASM. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae) [J]. New Phytol,1994,127(1): 61-68
    Barroso JB, Corpas FJ, Carreras A, et al. Localization of nitric-oxide synthase in plant peroxisomes [J]. J Biological Chemistry,1999,274:36729-36733
    Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants [J]. Planta,2000,210:215-221
    Benavides MP, Gallego SM, Tomaro M. Cadmium toxicity in plants [J]. Brazi J Plant Physiol,2005, 17(1):21-34
    Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues [J]. Plant Cell, 2004,16:332-341
    Blaudez D, Botton B, Chalot M. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillns involutus [J]. Microbiology,2000,146:1109-1117
    Boveris AD, Galatro A, Puntarulo S. Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals [J]. Biol Res,2000,33:159-165
    Bright J, Desikan R, Hancock JT, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis [J]. Plant J,2006,45:113-122
    Carrier P, Baryla A, Havaux M. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil [J]. Planta,2003,216(6):939-950
    Chungh LK. Sawhney SK. Photosynthetic activities of Pisum sativum seedlings grown in the presence of cadmium [J]. Plant Physiol Biochm,1999,37(4):297-303
    Clarke A, Desikan R, Hurst RD, et al. NO way back:nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures [J]. Plant J,2000,24(5):667-677
    Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants [J]. Biochimie,2006,88(1):1707-1719
    Cohen CK, Fox TC, Garvin DF, et al. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants [J]. Plant Physiol,1998,116:1063-1072
    Cooney RV, Harwood PJ, Custer LJ, et al. Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids [J]. Environ Health Perspect,1994,102(5):460-462
    Corpas FJ, Barroso JB, Carreras A, et al. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants [J]. Plant Physiol,2004,136(1):2722-2733
    Corpas FJ, Barroso JB, Carreras A, et al. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development [J]. Planta,2006,224(2):246-254
    Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato [J]. Planta,2004,218(6):900-905
    Cortieeiro SC, Lima AIG, Figueira EMDAP. The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under Cd exposure [J]. Enzyme Microb Tech,2006,40(1): 132-137
    Crawford NM, Galli M, Tischner R, et al. Response to Zemojtel et al.:plant nitric oxide synthase:back to square one [J]. Trends Plant Sci,2006,11:526-527
    Czarnecka E, Edelman L, Schoffl F, et al. Comparative analysis of physical stress responses in soybean seedlings using cloned heat shock cDNAs [J]. Plant Mol Biol,1984,3:45-58
    Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in Plants:a review [J]. Environ pollut, 1997,98(1):29-36
    Delledonne M, Zeier J, Marocco A, et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response [J]. Proc Natl Acad Sci USA, 2001,98(23):13454-13459
    Delledonne M, Xia Y, Dixon RA, et al. Nitric oxide functions as a signal in plant disease resistance [J]. Nature,1998,394(6693):585-588
    Desikan R, Cheung MK, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells [J]. J Exp Bot,2004,55(395):205-212
    Dong J, Wu FB, Zhang GP. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum)[J]. Chemosphere,2006,64(10): 1659-1666
    Durner J, Klessig DF. Nitric oxide as a signal in plants [J]. Curr Opin Plant Biol,1999, (2):369-374
    Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose [J]. Proc Natl Acad Sci USA,1998,95(17):10328-10333
    Ebbs S, Lau I, Ahner B, et al. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl) [J]. Planta,2002,214(4):635-640
    Edelman AM, Blumenthal DK, Krebs EG. Protein serine/threonine kinases [J]. Ann Rev Biochem,1987, 56:567-613
    Ferrari TE, Varner JE. Intact tissue assay for nitrite reductase in barley aleurone layers [J]. Plant Physiol, 1971,47(6):790-794
    Ferreira RR, Formazier RF, Vitoria AP, et al. Changes in antioxidant enzyme activities in soybean under cadmium stress [J]. J Plant Nutr,2002,25(2):327-342
    Flores-Perez U, Sauret-Gueto S, Gas E, et al. A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids [J]. Plant Cell,2008,20:1303-1315
    Foissner I, Wendehenne D, Langebartels C, et al. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco [J]. Plant J,2000,23(6):817-824
    Fujimaki S, Suzui N, Ishioka NS, et al. Tracing cadmium from culture to spikelet:noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant [J]. Plant Physiol,2010,152(4):1796-1806
    Garces H, Durzan D, Pedroso MC. Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana [J]. Ann Bot,2001,87(5):567-574
    Garcia-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress [J]. Plant Physiol,2001,126(3):1196-1204
    Godber BL, Doel JJ, Durgan J, et al. A new route to peroxynitrite:a role for xanthine oxidoreductase [J]. FEBS Lett,2000,475(2):93-96
    Goncalves JF, Antes FG, Maldaner J, et al. Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions [J]. Plant Physiol Biochem,2009,47:814-821
    Grun S, Lindermayr C, Sell S, et al. Nitric oxide and gene regulation in plants [J]. J Exp Bot,2006, 57(3):507-516
    Guerinot ML. The ZIP family of metal transporters [J]. Biochim Biophys Acta,2000,1465(1-2): 190-198
    Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling [J]. Science,2003,302(5642):100-103
    Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance [J]. J Exp Bot,2002,53(366): 1-11
    Hamel LP, Nicole MC, Sritubtim S, et al. Ancient signals:comparative genomics of plant MAPK and MAPKK gene families [J]. Trends Plant Sci,2006,11(4):192-198
    Haydon MJ, Cobbett CS. Transporters of ligands for essential metal ions in plants [J]. New Phytol,2007, 174(3):499-506
    He JM, Xu H, She XP, et al. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean [J]. Funct Plant Biol,2005,32(3):237-247
    Hernandez LE, Lozano-Rodriguez E, Garate A, et al. Influence of cadmium on the uptake, tissue accumulation and subcellular distribution of manganese in pea seedlings [J]. Plant Sci,1998, 132(2):139-151
    Hinkle PM, Shanshala ED, Nelson EJ. Measurement of intracellular cadmium with fluorescent dyes. Further evidence for the role of calcium channels in cadmium uptake [J]. J Biol Chem,1992, 267(35):25553-25559
    Hsu YT, Kao CH. Cadmium toxicity is reduced by nitric oxide in rice leaves [J]. Plant Growth Regul, 2004,42:227-238
    Janistyn B. Gas chromatographic-mass spectroscopic identification and quantification of cyclic Guanosine-3',5'-monophosphate in maize seedling (Zea mays) [J]. Planta,1983,159:382-385
    Jasid S, Simontacchi M, Bartoli CG, et al. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplast lipids and proteins [J]. Plant Physiol,2006,142(3): 1246-1255
    Jiang WS, Liu DH, Xu P. Cd-induced system of defence in the garlic root meristematic cells [J]. Biologia Plantarum,2009,53:369-372
    Jungmann J, Reins HA, Schobert C, et al. Resistance to cadmium mediated by ubiquitin-dependent proteolysis [J]. Nature,1993,361(6410):369-371
    Kaiser WM, Brendle-Behnisch E. Acid-base-modulation of nitrate reductase in leaf tissues [J]. Planta, 1995,196:1-6
    Kapuganti JG, Alisdair RF, Werner MK, et al. On the origins of nitric oxide [J]. Trends Plant Sci,2011, 16(3):160-168
    Kolbert Z, Bartha B, Erdei L. Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordial [J]. J Plant Physiol,2008,165(9):967-975
    Kopyra M, Gwozdz EA. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus [J]. Plant Physiol Biochem,2003, 41(11-12):1011-1017
    Kuo WN, Ku TW, Jones DL, et al. Nitric oxide synthase immunoreactivity in baker's yeasts, lobster, and wheat germ [J]. Biochem Arch,1995,11:73-78
    Kupper H, Lombi E, Zhao FJ, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopis halleri [J]. Planta,2000,212(1):75-84
    Laspina NV, Groppa MD, Tomaro ML, et al. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress [J]. Plant Sci,2005,169(2):323-330
    Lavid N, Barkay Z, Tel-Or E. Accumulation of heavy metals in epidermal glands of the waterlily (Nymphaeaceae) [J]. Planta,2001,212(3):313-322
    Leon AM, Palma JM, Corpas FJ, et al. Antioxidative enzymes in cultivars of peppers plants with different sensitivity to cadmium [J]. Plant Physiol Biochem,2002,40:813-820
    Li L, Zhao Y, McCaig BC, et al. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichoma development [J]. Plant Cell,2004,16(1):126-143
    Liu Y, Wu R, Wan Q, et al. Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots [J]. Plant Cell Physiol,2007,48(3):511-522
    Lundberg JO, Weltzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics [J]. Nat Rev Drug Discov,2008,7(2):156-167
    Lux A, Martinka M, Vaculik M, et al. Root responses to cadmium in the rhizosphere:a review [J]. J Exp Bot,2011,62(1):21-37
    Mahler RJ, Bingham FT, Page AL, et al. Cadmium-enriched sewage sludge application to acid and calcareous soils:effect on soil and nutrition of lettuce, corn, tomato, and swiss chard [J]. J Environ Qual,1982,11(4):694-700
    Mallick N, Mohn FH, Rai L, et al. Evidence for the non-involvement of nitric oxide synthase in nitric oxide production by the green alga Scenedesmus obliquus [J]. J Plant Physiol,2000,156(3): 423-426
    Narwal RP, Singh M. Effect of cadmium and zinc application on quality of maize [J]. India J Plant Physiol,1993,36(3):170-173
    Neill SJ, Desikan R, Hancock JT. Nitric oxide signaling in plants [J]. New Phytol,2003,159:11-35
    Newton RP, Kingston EE, Evans DE, et al. Occurrence of guanosine 3',5'-cyclic monophosphate (cyclic GMP) and associated enzyme systems in phaseolus vulgaris L. [J]. Phytochemistry,1984, 23:1367-1372
    Nocito FF, Pirovano L, Cocucci M, et al. Cadmium-induced sulfate uptake in maize roots [J]. Plant Physiol,2002,129(4):1872-1879
    Ogawa I, Nakanishi H, Mori S, et al. Time course analysis of gene regulation under cadmium stress in rice [J]. Plant Soil,2009,325:97-108
    Pagnussat GC, Simontacchi M, Puntarulo S, et al. Nitric oxide is required for root organogenesis [J]. Plant Physiol,2002,129(3):954-956
    Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor [J]. Nature,1987,327(6122):524-526
    Parani M, Rudrabhatla S, Myers R, et al. Microarray analysis of nitric oxide responsive transcripts in Arabidopsis [J]. Plant Biotechnol J,2004,2(4):359-366
    Planchet E, Jagadis Gupta K, Sonoda M, et al. Nitric oxide emission from tobacco leaves and cell suspensions:rate limiting factors and evidence for the involvement of mitochondrial electron transport [J]. Plant J,2005,41(5):732-743
    Polverari A, Molesini B, Pezzotti M, et al. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana [J]. Mol Plant Microbe Interact,2003,16(12):1094-1105
    Rivetta A, Negrini N, Cocucci M. Involvement of Ca2+-calmodulin in Ca2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination [J]. Plant Cell Environ,1997,20:600-608
    Rockel P, Strube F, Rockel A, et al. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro [J]. J Exp Bot,2002,53(366):103-110
    Rogers EE, Eide DJ, Guerinot ML. Altered selectivity in an Arabidopsis metal transporter [J]. Proc Nat1 Acad Sci USA,2000,97(22):12356-12360
    Rumer S, Gupta KJ, Kaiser WM. Plant cells oxidize hydroxylamines to NO [J]. J Exp Bot,2009,60(7): 2065-2072
    Sandalio LM, Dalurzo HC, Gomez M, et al. Cadmium-induced changes in the growth and oxidative metabolism of pea plants [J]. J Exp Bot,2001,52(364):2115-2126
    Sang J, Jiang M, Lin F, et al. Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants [J]. J Integr Plant Biol,2008,50(2): 231-243
    Seligman K, Saviani EE, Oliveira HC, et al. Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-dencient plants [J]. Plant Cell Physiol,2008,49(7):1112-1121
    Siedlecka A, BaszynAski T. Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency [J]. Physiol Plantarum,1993,87: 199-202
    Singh HP, Batish DR, Kaur G, et al. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots [J]. Environ Exp Bot,2008,63:158-167
    Smith GC, Brennan EG. Cadmium-zinc interactionship in tomato plants [J]. Phytopathology,1983,73: 879-882
    Song WY, Martinoia E, Lee J, et al. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis [J]. Plant Physiol,2004,135(2):1027-1039
    Stohr C, Stremlau S. Formation and possible roles of nitric oxide in plant roots [J]. J Exp Bot,2006, 57(3):463-470
    Suzuki N, Koizumi N, Sano H. Screening of cadmium-resonsive genes in Arabidopsis thaliana [J]. Plant Cell Environ,2001,24:1177-1188
    Tanou G, Job C, Rajjou L, et al. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity [J]. Plant J,2009,60(5):795-804
    Thomine S, Wang R, Ward JM, et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes [J]. Proc Natl Acad Sci USA, 2000,97(9):4991-4996
    Trewavas AJ, Rodrigues C, Rato C. Cyclic nucleotides:the current dilemma [J]. Curr Opin Plant Biol, 2002,5(5):425-429
    Tsyganov VE, Belimov AA, Borisov AY, et al. A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium [J]. Ann Bot,2007,99(2): 227-237
    Turgeon R, Wolf S. Phloem transport:cellular pathways and molecular trafficking [J]. Annu Rev Plant Biol,2009,60:207-221
    Ueno D, Iwashita T, Zhao FJ, et al. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri [J]. Plant Cell Physiol,2008, 49(4):540-548
    Van Assche F, Cligsters H. Effects of heavy metal on enzyme activity in Plants [J]. Plant Cell Environ, 1990,13(2):195-206
    Vassilev A, Lidon FC, do Ceu Matos M, et al. Photosynthetic performance and some nutrients content in cadmium-and copper-treated barley plants [J]. J Plant Nutr,2002,25(11):2343-2360
    Verret F, Gravot A, Auroy P, et al. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal Hisll stretch [J]. FEBS Lett,2005,579(6): 1515-1522
    Vert G, Grotz N, Dedaldechamp F. IRTI, an Arobidopsis transporter essential for iron uptake from the soil and for plant growth [J]. Plant Cell,2002,14(6); 1223-1233
    Vranova E, Inze D, Van Breusegem F. Signal transduction during oxidative stress [J]. J Exp Bot,2002, 53:1227-1236
    Wang Y, Yun BW, Kwon E, et al. S-nitrosylation:an emerging redox-based post-translational modification in plants [J]. J Exp Bot,2006,57(8):1777-1784
    Wendehenne D, Pugin A, Klessig DF, et al. Nitric oxide:comparative synthesis and signaling in animal and plant cells [J]. Trends Plant Sci,2001,6(4):177-183
    Wilson ID, Neill SJ, Hancock JT. Nitric oxide synthesis and signaling in plants [J]. Plant Cell Environ, 2008,31:622-631
    Wink DA, Mitchell JB. Chemical biology of nitric oxide:insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide [J]. Free Radic Biol Med,1998,25(4-5):434-456
    Xu J, Wang WY, Sun JH, et al. Involvement of auxin and oxide in plant Cd-stress responses [J]. Plant soil,2011,346:107-119
    Yang YJ, Cheng LM, Liu ZH. Rapid effect of cadmium on lignin biosynthesis in soybean roots [J]. Plant Sci,2007,172(3):632-639
    Zhang GP, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage [J]. Field Crops Res, 2002,77:93-98
    Zhang ZY, Wang HH, Wang XM, et al. Nitric oxide enhances aluminum tolerance by affecting cell wall polysaccharides in rice roots [J]. Plant Cell Rep,2011,30(9):1701-1711
    Zhao MG, Tian QY, Zhang WH. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis [J]. Plant Physiol,2007,144(1):206-217
    Zhu RK, Macfie SM, Ding ZF. Cadmium-induced plant stress investigated by scanning electrochemical microscopy [J]. J Exp Bot,2005,56(421):2831-2838
    Zhu SH, Zhou J. Effect of nitric oxide on ethylene production in strawberry fruit during storage [J]. Food Chemistry,2007,100(4):1517-1522
    丁海东,齐乃敏,朱为民,等.镉、锌胁迫对番茄幼苗生长及其脯氨酸与谷胱甘肽含量的影响[J].中国生态农业学报,2006,14(2):53-55
    李景梅,葛建镕,冯耀勇,等.不同镉水平对菠菜生长及营养元素含量的影响[J].长春理工大学学报(自然科学版),2007,30(4):72-75
    刘建新.镉胁迫下玉米幼苗生理生态的变化[J].生态学杂志,2005,24(3):265-268
    袁祖丽,马新明,韩锦峰,等.镉胁迫对烟草营养器官发育及矿质元素的影响[J].河南科学,2005,23(5):679-682
    张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报,2006,32(1):1-8
    张义凯,韩小娇,金洪,等.外源NO对铜胁迫下番茄光合、生物发光特性及矿质元素吸收的影响[J].植物营养与肥料学报,2010,16(1):172-178
    中华人民共和国国家标准[S].GB/T 14609-2008.粮油检验:谷物及其制品中铜、铁、锰、锌、钙、镁的测定-火焰原子吸收光谱法.北京:中国标准出版社,1999
    Assche FV, Clijsters H. Effects of metals on enzyme activity in plants [J]. Plant Cell Environ,1990, 13(3):195-206
    Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants [J]. Ann Rev Plant Biol,2008,59:21-39
    Cui Y, Zhang X, Zhu Y. Does copper reduce cadmium uptake by different rice genotypes [J]? J Environ Sci,2008,20(3):332-338
    GrazianoM, Beligni MV, Lamattina L. Nitric oxide improves internal iron availability in plants [J]. Plant Physiol,2002,130:1852-1859
    Hsu YT, Kao CH. Cadmium toxicity is reduced by nitric oxide in rice leaves [J]. Plant Growth Regul, 2004,42:227-238
    Jiang XJ, Luo YM, Liu Q, et al. Effects of cadmium on nutrient uptake and translocation by Indian Mustard [J]. Environ Geochem Health,2004,26:319-324
    Laspina NV, Groppa MD, Tomaro ML, et al. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress [J]. Plant Sci,2005,169(2):323-330
    Liu J, Li K, Xu J, et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes [J]. Field Crops Res,2003,83:271-281
    Mo WH, Li MX. The effect of Cd on root tip cell division of bean [J]. Plant Bulletin,1992,9(3):30-34
    Nada E, Ferjani BA, Ali R, et al. Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture [J]. Acta Physiol Plant,2007,29:57-62
    Panda P, Nath S, Chanu TT, et al. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.) [J]. Acta Physiol Plant,2011,33:1737-1747
    Ramos I, Esteban E, Lucena JJ, et al. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction [J]. Plant Sci,2002,162.(5):761-767
    Singh HP, Batish DR, Kaur G, et al. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots [J]. Environ Exp Bot,2008,63(1-3):158-167
    Singh NK, Nelson DE, Kuhn DM, et al. Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential [J]. Plant Physiol,1989,90(3):1096-1101
    Wong CKW, Cobbett CS. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana [J]. New Phytol,2009,181(1):71-78
    Yoshida S. Laboratory manual for physiological studies of rice [M]. Beijing:Science Press,1975
    Zhang G, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage [J]. Field Crops Res, 2002,7:93-98
    蔡伟明,汤章城.现代植物生理学实验指导[M].北京:科学出版社,1999,315-316
    曹莹,黄瑞冬,曹志强.铅胁迫对玉米生理生化特性的影响[J].玉米科学,2005,13(3):61-64
    Courtois C, Besson A, Dahan J, et al. Nitric oxide signalling in plants:interplays with Ca2+and protein kinases [J]. J Exp Bot,2008,59(2):155-163
    Davenport SB, Gallego SM, Benavides MP, et al. Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annus L. cells [J]. Plant Growth Regul,2003,40: 81-88
    Ferrer MA, Barcelo AR. Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans [J]. Plant Cell Environ,1999,22(7):891-897
    Foyer CH, Descourvieres P, Kunert KJ. Protection against oxygen radicals:an important defence mechanism studied in transgenic plants [J]. Plant Cell Environ,1994,17(5):507-523
    Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts:A proposed role in ascorbic acid metabolism [J]. Planta,1976,133:21-25
    Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine [J]. Anal Biochem,1980,106:207-212
    Hodges DM, DeLong JM, Forney CF, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds [J]. Planta,1999,207:604-611
    Hsu YT, Kao CH. Cadmium toxicity is reduced by nitric oxide in rice leaves [J]. Plant Growth Regul, 2004,42:227-238
    Hung KT, Chang CJ, Kao CH. Paraquat toxicity is reduced by nitric oxide in rice leaves [J]. J Plant Physiol,2002,159(2):159-166
    Jaleel CA, Riadh K, Gopi R, et al. Antioxidant defense responses:physiological plasticity in higher plants under abiotic constraints [J]. Acta Physiol Plant,2009,31:427-436
    Jarup L, Akesson A. Current status of cadmium as an environmental health problem [J]. Toxicol Appl Pharm,2009,238(3):201-208
    Kelly EE, Wagner BA, Buettner GR, et al. Nitric oxide inhibits iron-induced lipid peroxidation in HL-60 cells [J]. Arch Bioch Biophys,1999,370(1):97-104
    Lamattina L, Garcia-Mata C, Graziano M, et al. Nitric oxide:the versatility of an extensive signal molecule [J]. Annu Rev Plant Biol,2003,54:109-136
    Laspina NV, Groppa MD, Tomaro ML, et al. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress [J]. Plant Sci,2005,169(2):323-330
    Li H, Marshall ZM, Whorton AR. Stimulation of cystine uptake by nitric oxide:regulation of endothelial cell glutathione levels [J]. Am J Physiol Cell Physiol,1999,276:C803-C811
    Liu JG, Zhu QS, Zhang ZJ, et al. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet [J]. J Sci Food Agric,2005,85(1): 147-153
    Martinez GR, Mascio PD, Bonini MG, et al. Peroxynitrite does not decompose to singlet oxygen (1DO2) and nitroxyl (NOJ [J]. Proc Natl Acad Sci USA,2000,97:10307-10312
    Nakano Y, Asada K. Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplast [J]. Plant Cell Physiol,1981,22:867-880
    Panda P, Nath S, Chanu TT, et al. Cadmium stress-induced oxidative stress and role of nitric oxide in rice(Oryza sativa L.) [J]. Acta Physiol Plant,2011,33:1737-1747
    Patterson BD, MacRae EA, Ferguson IB. Estimation of hydrogen peroxide in plant extracts using titanium (IV) [J]. Anal Biochem,1984,139(2):487-492
    Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, et al. Cadmium-induced subcellular accumulation of O2- and H2O2 in pea leaves [J]. Plant Cell Environ,2004,27(9):1122-1134
    Sandalio LM, Rodriguez-Serrano M, del Rio LA, et al. Reactive oxygen species and signaling in cadmium toxicity [J]. In:del Rio LA, Puppo A (eds.) Reactive oxygen species in plant signaling, Signaling and Communication in plants,2009,175-189
    Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes [J]. J Exp Bot,2002,53(372):1305-1319
    Siddiqui MH, Al-Whaibi MH, Basalah MO. Role of nitric oxide in tolerance of plants to abiotic stress [J]. Protoplasma,2011,248:447-455
    Singh HP, Batish DR, Kaur G, et al. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots [J]. Environ Exp Bot,2008,63(1-3):158-167
    Singh HP, Kaur S, Batish DR, et al. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice) [J]. Nitric Oxide,2009,20(4):289-297
    Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging [J]. Photosynthetica,2008,46:21-27
    Wang YS, Yang ZM. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L [J]. Plant Cell Physiol,2005,46(12):1915-1923
    Wang Z, Zhang Y, Huang Z, et al. Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress [J]. Plant Soil,2008,310:137-149
    Wendehenne D, Durner J, Klessig DF. Nitric oxide:a new player in plant signalling and defence responses [J]. Curr Opin Plant Biol,2004,7(4):449-455
    Wendehenne D, Gould K, Lamotte O, et al. NO signaling functions in the biotic and abiotic stress responses [J]. BMC Plant Biol,2005,5 (Suppl 1):S35, doi:10.1186/1471-2229-5-S1-S35
    Wilson ID, Neill SJ, Hancock JT. Nitric oxide synthesis and signalling in plants [J]. Plant Cell Environ, 2008,31(5):622-631
    Xiang C, Werne B, Christensen EM, et al. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels [J]. Plant Physiol,2001,126:564-574
    Xiong J, Fu G, Tao L, et al. Roles of nitric oxide in alleviating heavy metal toxicity in plants [J]. Arch Biochem Biophys,2010,497:13-20
    Xu WH, Li YG, He JP, et al. Cd uptake in rice cultivars treated with organic acids and EDTA [J]. J. Environ Sci,2010,22(3):441-447
    Yu CC, Hung KT, Kao CH. Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves [J]. J Plant Physiol,2005,162(12):1319-1330
    Zhao CX, Guo LY, Jaleel CA, et al. Prospectives for applying molecular and genetic methodology to improve wheat cultivars in drought environments [J]. Comp Rend Boil,2008,331:579-586
    邓培雁,刘威,韩博平.宝山堇菜(Viola baoshanensis)镉胁迫下的光合作用[J].生态学报,2007,27(5):1858-1862
    蒋运生,柴胜丰,唐辉,等.光照强度对广西地不容光合特性和生长的影响[J].广西植物,2009,29(6):792-796
    李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196
    阮海华,沈文飚,徐朗莱.一氧化氮调节盐胁迫下小麦幼苗根部质膜H+-ATPase和焦磷酸酶活性提高耐盐性[J].植物学报,2004,46(4):415-422
    孙光闻,陈日远,刘厚诚,等.镉对植物光合作用及氮代谢影响研究进展[J].中国农学通报,2005,21(9):234-236,251
    张义凯,崔秀敏,杨守祥,等.外源NO对镉胁迫下番茄活性氧代谢及光合特性的影响[J].应用生态学报,2010,21(6):1432-1438
    周红卫,施国新,徐勤松.Cd2+污染水质对水花生根系抗氧化酶活性和超微结构的影响[J].植物生理学通讯,2003,39(3):211-214
    朱建玲,徐志防,曹洪麟,等.镉对南美蟛蜞菊光合特性的影响[J].生态环境,2008,17(2):657-660
    Baryla A, Carrier P, Franck F, et al. Leaf chlorosis in oilseed rape plant (Brassica napus) grown on cadmium-polluted soil:caused and consequences for photosynthesis and growth [J]. Planta,2001, 212:696-709
    Cai Y, Cao FB, Wei K, et al. Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings fJ]. J Hazard Mater,2011,192:1056-1066
    Dong J, Wu FB, Zhang GP. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentun) [J]. Chemosphere,2006,64: 1659-1666
    Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis [J]. Ann Rev Plant Physiol,1982, 33:317-345
    Garcia-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress [J]. Plant Physiol,2001,126:1196-1204
    Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta,1989, 990(1):87-92
    Jin XF, Yang XE, Islam E, et al. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance [J]. J Hazard Mater,2008,156(1-3):387-397
    Lichtenthaler H. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes [J]. Methods Enzymol,1987,148:350-382
    Liu DH, Kottke I. Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry [J]. J Biosci,2004,29:329-335
    Panou-filotheou H, Bosabalidis AM, Karataglis S. Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp.hirtum) [J]. Ann Bot,2001,88(2):207-214
    Pietrini F, Iannelli MA, Pasqualini S, et al. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chlorophasts of Phragmites australis (Cav.) Trin. Ex Steudel [J]. Plant Physiol,2003,133(2):829-837
    Polle A, Schutzendiibel A. Heavy metal signalling in plants:linking cellular and organismic responses [J]. Top Curr Genet,2004,4:187-215
    Sanita di Toppi L, Gabrielli R. Response to cadmium in higher plants [J]. Environ Exp Bot,1999,41(2): 105-130
    Siedleska A, BaszynAski T. Inhibition of electron flow around photosystem Ⅰ in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency [J]. Physiol Plant,1993,87(2): 199-202
    Uchida A, Jagendorf AT, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice [J]. Plant Sci,2002,163(3):515-523
    Vecchia FD, Rocca NL, Moro I, et al. Morphogenetic, ultrastructural and physiological da mages suffered by submerged leaves of Elodea Canadensis exposed to cadmium [J]. Plant Sci,2005, 168(2):329-338
    Wojtaszek P. Nitric oxide in plants:to NO or not to NO [J]. Phytochemistry,2000,54(1):1-4
    Zhu RK, Macfie SM, Ding ZF. Cadmium-indueed plant stress investigated by scanning electrochemical microscopy [J]. J Exp Bot,2005,56(421):2831-2838
    刘增辉,邵宏波,初立业,等.干旱、盐、温度对植物体NADP-苹果酸酶的影响与机理[J].生态学报,2010,30(12):3334-3339
    吴洁,倪沛洲,凌霞.蛋白激酶c的研究进展[J].中国药物化学杂志,2001,11(3):182-186
    Agrawal GK, Rakwal R. Rice proteomics:a cornerstone for cereal food crop proteomes [J]. Mass Spectrom Rev,2006,25:1-53
    Andrews JR, Baker NR. Oxygen-sensitive differences in the relationship between photosynthetic electron transport and CO2 assimilation in C3 and C4 plants during state transitions [J]. Aust J Plant Physiol,1997,24(4):495-503
    Babiychuk E, Kushnir S, Belles-Boix E, et al. Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drug diamide [J]. J Biol Chem,1995,270: 26224-26231
    Bradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein using the principle of protein-dye binding [J]. Anal Biochem,1976,72:248-254
    Chastain CJ, Chollet R. Regulation of pyruvate, orthophosphate dikinase by ADP-/Pi-dependent reversible phosphorylation in C3 and C4 plants [J]. Plant Physiol Biochem,2003,41:523-532
    Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings [J]. Proteomics,2005,5:3162-3172
    Danchenko M, Skultety L, Rashydov NM, et al. Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment [J]. J Proteome Res,2009, 8:2915-2922
    Drincovich MF, Casati P, Andreo CS. NADP-malic enzyme from plants:a ubiquitous enzyme involved in different metabolic pathways [J]. FEBS Lett,2001,490:1-6
    Fan HF, Cui WT, Li XF, et al. Proteomics analysis of rice seedling responses to ovine saliva [J]. J Plant Physiol,2011,168:500-509
    Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism [J]. Annu Rev Plant Physiol Plant Mol Biol,1989,40:347-369
    Kai G, Miao Z, Qiu C, et al. Molecular cloning and characterization of a Taxadienol acetyl transferase cDNA from Taxus x media [J]. Plant Sci,2004,167:759-764
    Kauffmann S, Legrand M, Geoffroy PL, et al. Biological function of pathogenesis-related proteins:four PR proteins of tobacco have 1,3-beta-glucanase activity [J]. EMBO J,1987,6:3209-3212
    Ke Y, Han G, He H, et al. Differential regulation of proteins and phosphoproteins in rice under drought stress [J]. Biochem Biophys Res Commun,2009,379:3-8
    Khan MMK, Komatsu S. Rice proteomics:recent developments and analysis of nuclear proteins [J]. Phytochemistry,2004,65:1671-1681
    Kim ST, Cho KS, Yu S, et al. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells [J]. Proteomic,2003,3(12):2368-2378
    Kim YJ, Choi SH, Park BS, et al. Proteomic analysis of the rice seed for quality improvement [J]. Plant Breeding,2009,128:541-550
    Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation [J]. Nature,1996,384: 557-560
    Lee K, Bae DW, Kim SH, et al. Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium [J]. J Plant Physiol,2010,167:161-168
    Leterrier M, Corpas FJ, Barroso JB, et al. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions [J]. Plant Physiol,2005,1138:2111-2123
    Liu SK, Cheng YX, Zhang XX, et al. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance [J]. Plant Mol Biol,2007,64:49-58
    Marshall SD, Putterill JJ, Plummer KM, et al. The carboxylesterase gene family from Arabidopsis thaliana [J]. J Mol Evol,2003,57:487-500
    Menu T, Saglio P, Granot D, et al. High hexokinase activity in tomato fruit perturbs carbon and energy metabolism and reduces fruit and seed size [J]. Plant Cell Environ,2004,27:89-98
    Muraoka H, Tang YH, Terashima I, et al. Contribution of diffusional limitation and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light [J]. Plant Cell Environ,2000,23:235-250
    Okamura IK, Hosaka H, Yoshimura M, et al. Crystal structure of human T-protein of glycine cleavage system at 2.0 A resolution and its implication for understanding non-ketotic hyperglycinemia [J]. J Mol Biol,2005,351:1146-1159
    Raiser M, Wamelink MM, Kowald A, et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress [J]. J Biol,2007,6:10
    Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants:Conserved and novel mechanisma [J]. Annu Rev Plant Biol,2006,57:675-709
    Salekdeh GH, Siopongco J, Wade LJ, et al. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics,2002,2:1131-1145
    Semane B, Dupae J, Cuypers A, et al. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress [J]. J Plant Physiol,2010,167:247-254
    Senior AE, Nadanaciva S, Weber J. The molecular mechanism of ATP synthesis by F1F0-ATP synthase [J]. Biochim Biophys Acta,2002,1553(3):188-211
    Kim ST, Cho KS, Kim SG, et al. A rice isoflavone reductase-like gene, OsIRL, Is induced by rice blast fungal elicitor [J]. Mol Cells,2003,16(2):224-231
    Taylor L, Nunes-Nesi A, Parsley K, et al. Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content [J]. Plant J,2010,62:641-652
    Wang L, An C, Qian W, et al. Detection of the putative cis-region involved in the induction by a Pyricularia oryzae elicitor of the promoter of a gene encoding phenylalanine ammonia-lyase in rice [J]. Plant Cell Rep,2004,22:513-518
    Wen FP, Zhang ZH, Bai T, et al. Proteomics reveals the effects of gibberellic acid (GA3) on salt-stressed rice (Oryza sativa L.) shoots [J]. Plant Sci,2010,178:170-175
    Hurley JH, Newton AC, Parker PJ, et al. Taxonomy and function of C1 protein kinase Chomology domains [J]. Protein Sci,1997,6:477-480
    杜丽娜,张存莉,朱玮,等.植物次生代谢合成途径及生物学意义[J].西北林学院学报,2005,20(3):150-155
    吴雪霞,朱月林,朱为民,等.外源一氧化氮对NaCl胁迫下番茄幼苗生长和光合作用的影响[J]西北植物学报,2006,26(6):1206-1211
    樊怀福,郭世荣,焦彦生,等.外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J].生态学报,2007,27(2):546-553
    罗俊,张木清,林彦铨,等.甘蔗苗期叶绿素荧光参数与抗旱性关系研究[J].中国农业科学,2004,37(11):1718-1721
    樊洪泓,李廷春,李正鹏,等.强光胁迫下外源NO对霍山石斛叶绿素荧光和抗氧化系统的影响[J].园艺学报,2008,35(8):1215-1220
    张义凯,崔秀敏,杨守祥,等.外源NO对镉胁迫下番茄活性氧代谢及光合特性的影响[J].应用生态学报,2010,21(6):1432-1438
    何水林.植保素代谢与植物防御反应[J].广州:广东科技出版社,2002:1-25
    张文利,沈文飚,叶茂炳.小麦叶片顺乌头酸酶对NO和H202的敏感性[J].植物生理与分子生物学学报,2002,28(2):99-104
    Akio U, Andre TJ, Takashi H. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice [J]. Plant Sci,2002,163:515-523
    Beligni MV, Fath A, Bethke PC, et al. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers [J]. Plant Physiol,2002,129(4):1642-1650
    Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants [J]. Planta,2000,210(2):215-221
    Chandok MR, Ytterberg AJ, Van Wijk KJ, et al. The pathogen-inducible nitric oxide synthase (iNOS) in plant is a variant of the P protein of the glycine decarboxylase complex [J]. Cell,2003,113(4): 469-482
    Echevarria-Zomeno S, Ariza D, Jorge I, et al. Changes in the protein profile of Quercus ilex leaves in response to drought stress and recovery [J]. J Plant Physiol,2009,166(3):233-245
    Kuriakose SV, Prasad MNV. Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes [J]. Plant Growth Regul, 2008,54:143-156
    Leshem YY, Wills RBH, Ku VVV. Evidence for the function of the free radical gas-nitric oxide (NO)-as an endogenous maturation and senescence regulating factor in higher plant [J]. Plant Physiol Biochem,1998,36:825-833
    Mayer MP, Bukau B. Hsp70 chaperones:cellular functions and molecular mechanism [J]. Cell Mol Life Sci,2005,62(6):670-684
    Millar AH, Day DA. Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria [J]. FEBS Lett,1996,398:155-158
    Moffatt BA, Wang L, Allen MS, et al. Adenosine kinase of Arabidopsis. Kinetic properties and gene expression [J]. Plant Physiol,2000,124(4):1775-1785
    Qiao W, Xiao S, Yu L, et al. Expression of a rice gene OsNOAl reestablishes nitric oxide synthesis and stress-related gene expression for salt tolerance in Arabidopsis nitric oxide-associated 1 mutant Atnoal [J]. Environ Exp Bot,2009,65:90-98
    Scheibe R, Backhausen JE, Emmerlich V, et al. Strategies to maintain redox homeostasis during photosynthesis under changing conditions [J]. J Exp Bot,2005,56:1481-1489
    Uchida A, Jagendorf AT, Hibino T, e t al. Effects of hydrogen peroxide and nitric oxide on both s alt and heat stress tolerance in rice [J]. Plant Sci,2002,163:515-523
    Laxalt AM, Beligni MV, Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans [J]. Eur J Plant Pathol,1997,103:643-651
    del Rio LA, Corpas FJ, Barroso JB. Nitric oxide and nitric oxide synthase activity in plants [J]. Phytochemistry,2004,65(7):783-792
    Clark D, Durner J, Navarre DA, et al. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase [J]. Mol Plant Microbe Interact,2000,13(12):1380-1384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700