鄱阳湖对典型天气过程的影响及近地面边界层特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄱阳湖是我国最大的淡水湖,由于其复杂的地形和水陆地表性质的不均匀性,影响了边界层的温湿结构和物理过程,进而对湖区过境天气系统变化产生影响,以致于该区域严重的灾害性天气时有发生。因此,研究鄱阳湖的边界层特征及对区域天气气候的影响很有必要。本论文通过应用鄱阳湖地区铁塔观测资料、常规气象观测资料以及再分析资料等,采用资料分析、数值模拟等方法,对鄱阳湖湖效应降水特征、鄱阳湖对过境典型天气的影响以及鄱阳湖地区典型天气条件下的近地面层特征进行了分析研究。论文的主要研究内容和结论为:
     (1)鄱阳湖湖效应降水特征。通过1980-2008年期间气象资料分析,发现鄱阳湖地区发生湖效应降水事件33次。湖效应降水发生条件为,低层为干冷的西北或偏北气流从较暖的水面经过,使气流变暖、变湿,不稳定发展导致降水。其天气背景概念模型主要有2类:一类是槽型(TR型),这是主要的类型,约占88%,主要出现在11月-次年6月;另一类是热带气旋型(TC型),这种类型主要发生在8-9月,所占比例较小,约为12%。
     (2)鄱阳湖对典型过境天气的影响。分析了鄱阳湖对过湖强天气系统具有加强和减弱作用的2个典型个例,发现这种加强和减弱作用是由于鄱阳湖在不同季节呈现冷源和热源作用造成的。6月底前鄱阳湖主要以热源作用为主,进入7月则以冷源作用为主。除了季节变化影响外,由于水陆比热差异导致的湖温和气温的昼夜变化差异亦会使鄱阳湖对过湖天气系统产生影响,表现为白天鄱阳湖呈冷源作用,夜间呈热源作用。
     个例一分析了2007年7月23日白天午后到傍晚期间位于鄱阳湖西面的幕阜山脉生成的对流云团在经过鄱阳湖主湖体后产生了明显减弱。原因是盛夏季节鄱阳湖因冷源作用使对过境对流云团产生减弱影响。模拟结果表明,鄱阳湖对过境对流云团的减弱作用就是通过湖体冷源作用激发的反气旋性环流导致的辐散下沉作用造成的。
     个例二分析了鄱阳湖对2010年6月19-20日江西中北部暴雨过程的影响。模拟结果表明,叠加鄱阳湖地形数据的试验模拟降水结果与实况基本一致。在垂直输送和水汽输送方面,鄱阳湖对降水有明显的增幅作用。这种正反馈主要是由于鄱阳湖表现的热源作用导致的。
     (3)强降水天气过程的近地面边界层特征。通过分析2011年6月5日夜间至6日早晨鄱阳湖北部的一次局地性强降水天气过程发现,鄱阳湖为强降水提供了充足的水汽条件,加强了近表面层不稳定性的发展。强降水过程中来自鄱阳湖地表的感热和潜热通量向上输送,近地面层湍流动能增加。降水发生前,近表面层中尺度动量通量占主要地位,且逐渐转为向上输送:但在降水过程中,湍流动量通量呈显著加强趋势。
     (4)冷空气大风过程的近地面边界层特征。通过对2010年2月25日一次影响江西的强冷空气过程边界层特征进行分析,发现随着冷锋过境,鄱阳湖地区近地面层风速符合幂指数函数规律,高度越高风速越大,强风爆发越早。强风期间有系统性下沉运动存在。通过对阵风动量通量和湍流动量通量的比较发现,冷空气大风过程加强了近地面层的湍流,加剧了地表与上层大气的相互作用。
Poyang Lake is one of the largest freshwater lakes in China, due to its complexity of terrain and the inhomogeneity of water-land surface, significantly influences the structures of temperature and humidity of local boundry layer and the physical process, which can eventually influences the development of the weather system passing over the Lake. Therefore, it is of great scientific signifcane to research and analyze the characteristics of boundary layer over Poyang Lake and the lake effects on transitting weather system. In this paper, the methods of data analysis and numerical simulation have been employed to analyze the characteristics of the Poyang Lake-effect on precipitation, the surface layer over Poyang Lake under typical weather condition, and the Poyang Lake effect on the transitting weather system. The mian contents and results are as follows:
     (1) Characteristics of Poyang Lake-effect on precipitation.
     Through the data analysis we found there exists Lake-effect precipitation over Poyang lake. During such events, winds from the north to northwest advect cold and dry air over Poyang Lake, which rapidly warms and moistens the overlying air mass, finally resulting precipitations. Two synoptic weather patterns are favorable for lake-effect precipitation events:a trough-type pattern (~88%of events) from November to June, and a tropical-cyclone-type pattern (~12%of events) from August to September.
     (2) Characteristics of Poyang Lake-effect on the transiting weather systems. Here, this paper analyaed two typical examples of transitting weather systems that was strenghened or reduced accordingly, it is indicated that such functions of strenghenning or reducing were caused by the functions of cool source or heat source displayed by Poyang lake seansonally. There exists key thransitting point between cool season and hot season upon the end of June and the early of July, before the end of June Poyang lake plays the role as heat source and after the early July palys the role as cool source, this transit is coincided with the time that is the terminal of rainfall period by the end of June and start of hot and dry period.
     One example analyzed the phenomenon that the convective clouds generated in Mufu Mountains were remarkably weakened or dissipated after passing over Poyang Lake. It is explained that during hot summer the transiting convective clouds were weakened by the function as cool source produced by Poyang lake. The simulating result show that this weakening function by Poyang lake on the transiting convective clouds were caused by the anti-cyclonical circulations, which is initiated by the cool source of Poyang lake, that will cause atmosphere submerging and diverging.
     Other example analyzed the influence on a heavy precipitation process occurred in north central Jiangxi during19-20June2010. The simulating result shows that it is identical with the real situation when the Poyang lake geographical data added to the experiment of numerical simulation. On views of the vertical transportation and vapor transportation, Poyang Lake could positively feedback the local anomalous increase of precipitation. This kind of positive reaction majorly generated by the heat source function of Poyang lake.
     (3) Characteristics of surface layer during a heavy rainfall process. By analyzing a local heavy rainfall process over Poyang Lake region,
     it is found that Poyang lake provided enough water vapor for strong strengthened the unstable development of nearing surface layer. During the heavy rainfall, the sensible and latent heat fluxes, the horizontal and vertical turbulent momentum fluxes increased rapidly; In addition, the turbulent kinetic energy increased greatly. Before the heavy rain occurrence, the mesoscale momentum flux was larger than the turbulent momentum flux, however, during the heavy rainfall, the turbulent flux increased remarkably.
     (4) Characteristics of near surface layer during a strong wind process. Through the analysis of the characteristics of near surface layer during a strong wind process,it is found that with the passage of cold air front, the wind speed of near surface layer is obeyed under the rule of power exponent, and the wind speed increases with the height of the surface layer, more earlier and stronge wind more produced quickly. And there exists a systematic descending movement. Though the comparison between gusty momentum flux and turbulent momentum flux, it is indicated that the porcess of strong wind from cool air could strenghen the turbulence of near surface, and could strenghen the mutual function between the surface and up atmosphere.
引文
Agee E M and Gilbert S R. An aircraft investigation of mesoscale convection over Lake Michigan during the 10 January 1984 cold air outbreak. J Atmos Sci,1989, 46(13):1877-1897.
    Agee E M and Hart M L. Boundary layer and mesoscale structure over Lake Michigan during a wintertiome cold air outbreak. J Atmos Sci,1990,47(19): 2293-2316.
    Anctil F and Donelan M A. Air-water momentum flux observations over shoaling waves. J Phys Oceanogr,1996,26(7):1344-1353.
    Angel J R and Isard S A. The frequency and intensity of Great Lake cyclones. J Climate,1998,11(1):61-71.
    Ballentine R J, Stamm A J, Chermack E E. Mesoscale model simulation of the 4-5 January 1995 lake-effect snowstorm. Wea Forecasting,1998,13(4):893-920.
    Bellaire F R. The modification of warm air moving over cold water. Proc.8th Conf. on Great Lakes Res., Ann Arbor, Mich,1965, pp.249-256.
    Beyrich F, Leps J-P, Mauder M, et al. Area-averaged surface fluxes over the LITFASS region based on eddy-covariance measurements. Bound Layer Meteorol,2006,121: 33-65.
    Bolin B. On the influence of the Earth's orography on the general character of the westerlies. Tellus,1950,2(3):184-195.
    Boudra D B. A study of the early winter effects of the Great Lakes. I:Comparison of very fine scale numerical simulations with observed data. Mon Wea Rev,1981, 109(12):2507-2526.
    Braham R R, Kelly R D. Lake-effect snow storms on Lake Michigan, USA. Cloud Dynamics,1982, E M Agee and T Asai, Eds, D Reidel:87-101.
    Brummer B. Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice. Boundary Layer Meteorol,1996,80:109-125.
    Businger J A, Wyngaard J C, Izumi Y et al. Flux-profile relationships in the atmospheric surface layer. J Atmos Sci,1971,28(2):181-189.
    Bussieres N and Schertzer W M. The evolution of AVHRR-derived water temperature over lakes in the Mackenzie basin and hydrometeorological applications. J Hydrometeor,2003,4(4):660-672.
    Byrd G P, Anstett R A, Heim J E, et al. Mobile sounding observations of lake-effect snowbands in western and central New York. Mon Wea Rev,1991,119(9): 2323-2332.
    Carpenter D M. The lake effect of the Great Salt Lake:overview and forecast problems. Wea Forecasting,1993,8(2):181-193.
    Chang S S and Braham R R. Observational study of a convective internal boundary layer over Lake Michigan. J Atmos Sci,1991,48(20):2265-2279.
    Charnock H. Wind stress on a water surface. Quart J Roy Met Soc,1955,81(350): 639-640.
    Chen F and Avissar R. The impact of land-surface wetness on mesoscale heat fluxes. Appl Meteor,1994,33:1323-1339.
    Cheng X L, Zeng Q C, and Hu F. Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer. J Geophys Res,2011,116, D06101, doi:10.1029/2010JD015081.
    Chu P S, Wang J B. Recent climate change in the tropical western Pacific and Indian Ocean regions as detected by outgoing long wave radiation. J Climate,1997,10(4): 636-646.
    Chuang H Y, Sousounis P J. The impact of the prevailing synoptic situation on the lake-aggregate effect. Mon Wea Rev,2003,131(5):990-1010.
    Clark C A, Arritt R W. Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J Appl Meteorol,1995, 34(9):2029-2045.
    Danard M B, Rao G V. Numerical study of the effects of the Great Lakes on winter cyclone. Mon Wea Rev,1972,100(5):374-382.
    Dyer A J, Bradley E F. An alternative analysis of flux-gradient relationship in the 1976 ITCE. Bound Layer Meteorol,1982,22:3-19.
    Ellenton G E, Danard M B. Inclusion of sensible heating in convective parameterization applied to lake-effect snow. Mon Wea Rev,1979,107(5):551-565.
    Eltahir E A B. A soil moisture-rainfall feedback mechanism,1. Theory and Observations. Water Resour Res,1998,34 (4):765-776.
    Fritsch J M and Vislocky R L. Enhanced depiction of surface weather features. Bull Amer Meteor Soc,1996,77:491-506.
    Gallus W A, Segal M. Cold front acceleration over Lake Michigan. Wea Forecasting, 1999,14(5):771-781.
    Garratt J R. The internal boundary layer-a review. Bound Layer Meteorol,1990,22: 171-203.
    Gash J H C and Culf A D. Applying a linear detrend to eddy correlation data in real time. Boundary Layer Meteorol,1996,79:301-306.
    Grover E K and Sousounis P J. The influence of large-scale flow on fall precipitation systems in the Great Lakes basin. J Climate,2002,15(14):1943-1956.
    Halldin S, Gryning S-E and Gottschalk L. Energy, water and carbon exchange in a boreal forest landscape-NOPEX experiences. Agric For Meteorol,1999,98-99: 5-29.
    Heikinheimo M, Kangas M, Venalainen A, et al. Momentum and heat fluxes over lakes Tamnaren and Raksjo determined by the bulk-aerodynamic and eddy-correlation methods. Agric For Meteorol,1999,98-99:521-534.
    Hjelmfelt M. Numerical study of the influence of environmental conditions on lake-effect snowstorms on Lake Michigan. Mon Wea Rev,1990,118:138-150.
    Hinze J O. Turbulence:An introduction to its mechanism and theory,2nd edition. 1975, New York:McGraw-Hill.
    Holroyd E W. Lake effect cloud bands as seen from weather satellites. J Atmos Sci, 1971,28(7):1165-1170.
    Jian Feng, Leighton H and MacKay M. Radiation budgets in the Mackenzie river basin:retrieval from satellite observations and an evaluation of the Canadian Regional Climate Model. J Hydrometeor,2003,4(4):731-747.
    King P W S, Leduc M J, Sills D M L, et al. Lake breezes in southern Ontario and their relation to tornado climatology. Wea Forecasting,2003,18(5):795-807.
    Kristovich D A R, Laird N F, Hjelmfelt M R, et al. Convective evolution across Lake Michigan during a widespread lake-effect snow event. Mon Wea Rev,2003,131(4): 643-655.
    Kristovich D A R, Spinar M L. Diurnal variations in lake-effect precipitation near western Great Lakes. J Hydrometeor,2005,6(2):210-218.
    Kossmann M, Sturman A P, Zawar-Reza P, et al. Analysis of the wind field and heat budget in an alpine lake basin during summertime fair weather conditions. Meteorol Atmos Phys,2002,81:27-52.
    Laird N F, Kristovich D A R, Liang, X Z, et al. Lake Michigan lake breezes: climatology, local forcing, and synoptic environment. J Appl Meteor,2001,40(3): 409-424.
    Laird N F, Kristovich D A R. Comparison of observations with idealized model results for a method to resolve winter lake-effect mesoscale morphology. Mon Wea Rev, 2004,132(4):1093-1103.
    Laird N F, Desrochers J, Payer M. Climatology of Lake-Effect Precipitation Events over Lake Champlain.J Appl Meteor Climatol,2009,48(2):232-250.
    Laird N F, Sobash R, Hodas N. The frequency and characteristics of lake-effect precipitation events associated with the New York State Finger Lakes. J Appl Meteor Climatol,2009,48(4):873-886.
    Lavoie R L. A mesoscale numerical model of lake-effect storms. J Atmos Sci,1972, 29(6):1025-1040.
    Lenschow D H. Two examples of planetary boundary layer modification over the Great Lakes. J Atmos Sci,1973,30:568-581.
    Liu H, Liu S, Zhang Y, et al. Study of water-air interaction and turbulent fluxes. Annual Meeting of LAPC,2009, Xiamen.
    Liu H, Zhang Y, Liu S, et al. Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. J Geophys Res,2009,114,D04110,doi:10.1029/2008 JD010891.
    Liu J L, Stewart R E. Water vapor fluxes over the Saskatchewan river basin. J Hydrometeor,2003,4(5):944-959.
    Long Z, Perrie W, Gyakum J, et al. Northern lake impacts on local seasonal climate. J Hydrometeor,2007,8(4):881-896.
    MacKay M D, Seglenieks F, Verseghy D, et al. Modeling Machenzie basin surface water balance during CAGES with the Canadian regional climate model. J Hydrometeor,2003,4(4):748-767.
    Mahfouf J F, Richard E and Mascart P. The influence of soil and vegetation on the development of mesoscale circulations. J Climate Appl Meteor,1987,26:1483-1495.
    Miles N L, Verlinde J. Observations of transient linear organization and nonlinear scale interactions in lake-effect cloud. Part Ⅱ:nonlinear scale interaction. Mon Wea Rev,2005,133(3):692-706.
    Miner T J, Fritsch J M. Lake-effect rain events. Mon Wea Rev,1997,125(12): 3231-3248.
    Miner T, Sousounis P J, Wallman J, et al. Hurricane Huron. Bull Amer Metero Soc, 2000,81(2):223-236.
    Mohr K I, Baker D R, Tao W, et al. The Sensitivity of West African Convective Line Water Budgets to Land Cover, Journal of Hydrometeorology,2003,4:62-76.
    Moore, P. K. and Orville, R. E. Lightning characteristics in lake-effect thunderstorms. Mon. Wea. Rev.1990,118(9):1767-1782.
    Nicosia D J, Ostuno E J, Clark J H E, et al. A flash flood from a lake-enhanced rainband. Wea Forecasting,1999,14(2):271-288.
    Niziol T A. Operational forecasting of lake effect snow in western and central New York. Weather Forecasting,1987,2:310-321.
    Niziol T A, Snyder W R, Waldstreicher J S. Winter weather forecasting throughout the eastern United States. Part Ⅳ:Lake effect snow. Weather Forecasting,1995,10: 61-77.
    Payer M, Desrochers J, Laird N F. A lake-effect snowband over Lake Champlain. Mon Wea Rev,2007,135(11):3895-3900.
    Peace R L, Sykes R B. Mesoscale study of a lake effect snow storm. Mon Wea Rev, 1966,94(8):495-507.
    Peterson T C, Golubev V S, Groisman P Y. Evaporation losing its strength. Nature, 1995,377:687-688.
    Petterssen S, Calabrese P A. On some weather influences due to warming of the air by the Great Lakes in winter. J Meteor,1959,16(6):642-652.
    Pleim J E and Xiu A. Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J Appl Meteor,1995,34: 16-32.
    Qian W H, Quan L S, Shi S Y. Variations of the Dust Storm in China and its Climatic Control. J Climate,2002,15:1216-1228.
    Queney P. The problem of air flow over mountains:A summary of theoretical studies. Bull Amen Meteor Soc,1948,29:16-29.
    Reinking R F, and coauthors. The Lake Ontario Winter Storms (LOWS) project. Bull Amer Meteor Soc,1993,74:1828-1849.
    Ren Z H, Gao Q X, Su F Q, et al. The regional characteristics of the atmospheric environment and the impact of dust-storm in Beijing. Engineering Sciences,2003, 5(2):49-56.
    Rife D, Warner T, Chen F, et al. Mechanisms for diurnal boundary layer circulations in the Great Basin Desert. Mon Wea Rev,2002,130:921-938.
    Rowntree P R. Sensitivity of GCM to land surface processes. Proc Workshop in Intercomparison of Large Scale Models for Extended Range Forecasts, Reading, United Kingdom, ECMWF,1983:225-261.
    Ruhf R J, Cutrim E M C. Time series analysis of 20 years of hourly precipitation in southwest Michigan. J Great Lakes Res,2003,29(2):256-267.
    Schwartz M D, Karl T R. Spring phenology:Nature's experiment to detect the effect of "green-up" on surface maximum temperature. Mon Wea Rev,1995,118(4): 883-890.
    Schertzer W M, Rouse W R, Blanken P D, et al. Over-lake meteorology and estimated bulk heat exchange of Great Lake during 1998 and 1999. J Hydrometeor,2003,4(4): 649-659.
    Scott C P J and Sousounis P J. The utility of additional soundings for forecasting lake-effect snow in the Great Lakes region. Wea Forecasting,2001,16:448-462.
    Segal M, Arritt R W. Nonclassical mesoscale circulations caused by surface sensible heat-flux gradient. Bull Amer Metero Soc,1992,73(10):1593-1604.
    Segal M, Arritt R W, Shen J, et al. On the clearing of cumulus clouds downwind from lakes. Mon Wea Rev,1997,125(4):639-646.
    Slemmer J W. Characteristics of winter snowstorms near Salt Lake City as deduced from surface and radar observations. M.S. thesis,1998, Dept. of Meteorology, University of Utah,138 pp.
    Sousounis P J and Fritsch J M. Lake-aggregate mesoscale disturbances. Part II:A case study of the effects on regional and synoptic-scale weather systems. Bull Amer Meteor Soc,1994,75:1793-1811.
    Sousounis P J, Mann G E. Lake-aggregate mesoscale disturbances. Part Ⅴ:impacts on lake-effect precipitation. Mon Wea Rev,2000,128(3):728-745.
    Sousounis P J, Wallman J, Mann G E, et al. "Hurricane Huron":an example of an extreme lake-aggregate effect in Autumn. Mon Wea Rev,2001,129(3):401-419.
    Steenburgh W J, Halvorson S F, Onton D J. Climatology of lake-effect snowstorms of the Great Salt Lake. Mon Wea Rev,2000,128(3):709-727.
    Steenburgh W J, Onton D J. Multiscale analysis of the 7 December 1998 Great Salt Lake-effect snowstorm. Mon Wea Rev,2001,129(6):1296-1317.
    Steiger S M, Hamilton R, Keeler J, et al. Lake-effect thunderstorms in the lower Great Lakes. J Appl Meteor Climatol,2009,48(5):889-902.
    Stivari S M, Oliveira A P D, Karam H A, et al. Patterns of local circulation in the Itaipu Lake area:numerical simulations of lake breeze. J Appl. Meteor,2003,42(1): 37-50.
    Stull R B. An introduction to boundary layer meteorology. Kluwer Academic Publishers.1988. p478.
    Venalainen A, Heikinheimo M and Tourula T. Latent heat flux from small sheltered lakes. Bound Layer Meteorol,1998,86:355-377.
    Wang X F. Statistical characteristics of tropical cyclones making landfalls and passing through lakes in China. J Tropical Meteorol.2009,15(1):63-67.
    Wiggin B L. Great snowstorms of the Great Lakes. Weatherwise,1950,3:123-126.
    Wilson J W. Effect of Lake Ontario on precipitation. Mon Wea Rev,1977,105(2): 207-214.
    World Meteorological Organization (WMO). Guide to Meteorological Instruments and Methods of Observation.5th ed,1983, Geneva, Switzerland.
    Wylie D P and Young J A. Boundary-layer observations of warm air modification over Lake Michigan using a tethered balloon. Bound Layer Meteorol,1979,17:279-291.
    Yeh T C. The circulation of the high troposphere over China in the winter of 1945-1946. Tellus,1950,2 (3):173-183.
    Zeng Q C, Cheng X L, Hu F, et al. Gustiness and coherent structure of a strong winds and their role in dust emission. Adv Atmos Sci,2010,27(1):1-13.
    Zhang R J, Arimoto R, An J L, et al. Ground observations of a strong dust storm in Beijing in March 2002. J Geophys Res,2002,110, D18S06, doi: 10.1029/2004JD004589.
    Zumpfe D E, Horel J D. Lake-breeze fronts in the Salt Lake valley. J Appl Meteor Climatol,2007,46(2):196-211.
    曹晓岗,张吉,王慧,陈永林.“080825”上海大暴雨综合分析.气象,2009,35(4): 51-58
    陈红岩,陈家宜,胡非,等.HUBEX试验区近地面层的湍流输送.气候与环境研究,2001,6(2):221-227.
    陈磊,田文寿,王婵.半干旱区植被减少与城市化对大气的局地和非局地影响的数值模拟.高原气象,2009,28(2):233-245.
    陈良栋,高太长.长江河谷的穿谷流对其下风方强对流活动的影响.气象,1983,10(9):1-6.
    程雪玲,曾庆存,胡非,等.大气边界层强风的阵性和相干结构.气候与环境研究,2007,12(3):227-243.
    高志球,马耀明,王介民,等.南沙群岛海域近海面粗糙度、中性曳力系数及总体交换系数研究.热带海洋,2000,19(1):38-43.
    郭锐,李泽椿,张国平.ATOVS资料在淮河暴雨预报中的同化应用研究.气象,2010,36(2):1-12
    胡非.湍流、间歇性与大气边界层.北京:科学出版社,1995,P160.
    胡非,洪钟祥,雷孝恩.大气边界层和大气环境研究进展.大气科学.2003,27(4):712-728.
    胡非,洪钟祥,陈家宜,刘熙明.白洋淀地区非均与大气边界层的综合观测研究-—实验介绍及近地层微气象特征分析.大气科学,2006,30(5):883-893.
    胡隐樵.边界层气象学.地球科学进展.1991,6(6):57-59.
    李强,李永华,周锁铨,等.基于WRF模式的三峡地区局地下垫面效应的数值试验.高原气象,2011,30(1):83-93.
    李永华,徐海明,高阳华,等.西南地区东部夏季典型旱涝年的OLR特征.高原气象,2009,28(4):861-869.
    林爱兰,梁建茵.向外长波辐射(OLR)与广东降水.热带气象学报,1993,9(3): 248-255.
    刘建新,张宏升,宋星灼,等.白洋淀湿地夏末大气边界层温湿廓线特征对比分析.北京大学学报,2007,43(1):36-41.
    刘鹏,钱永甫,严蜜.东亚下垫面热力异常与南海夏季风爆发早晚和强弱的关系.热带气象学报,2011,27(2):209-218.
    刘树华,文平辉,张雁,等.陆面过程和大气边界层相互作用敏感性实验.气象学报,2001,59(5):533-548.
    刘熙明.非均匀边界层结构和湍流通量特征的分析.中国科学院大气物理研究所博士论文,2006.
    刘熙明,全利红,姜金华,等.北京地区一次强沙尘天气过程的中尺度通量特征.气候与环境研究,2007,12(3):296-301.
    刘熙明,胡非,姜金华,甄灿明.白洋淀水陆不均匀地区能量平衡特征分析.大气科学,2008,32(6):1411-1418.
    刘小红,洪钟祥.北京地区一次特大强风过程边界层结构的研究.大气科学,1996,20(2):223-228.
    柳苗,李栋梁.青藏高原东部雨季OLR与降水变化特征及相关分析.高原气象,2007,26(2):249-256.
    卢兵,汪泽培.鄱阳湖湖泊气候及其围垦后的变化.湖泊科学,1995,7(1):77-84.
    吕世华,陈玉春.绿洲和沙漠下垫面状况对大气边界层特征影响的数值模拟.中国沙漠,1995,15(2):116-123.
    吕雅琼,杨显玉,马耀明.夏季青海湖局地环流及大气边界层特征的数值模拟.高原气象,2007,26(4):686-692.
    马耀明,王介民,刘巍,等.南沙海域大气湍流结构及输送特征研究.大气科学,1997,21(3):357-365.
    闵骞,刘影.鄱阳湖水面蒸发量的计算与变化趋势分析(1955-2004年).湖泊科学,2006,18(5):452-457.
    倪允琪,周秀骥.我国长江中下游梅雨锋暴雨研究的进展.气象,2005,31(01):9-12.
    潘玉萍,沙文钰,王巨华,等.发展新型的海面空气动力学粗糙度参数化方案.自然科学进展,2007,17(8):1069-1077.
    彭珍,刘熙明,洪钟祥,等.北京地区一次强沙尘暴过程的大气边界层结构和湍流通量输送特征.气候与环境研究,2007,12(3):267-276.
    曲绍厚,胡非,李亚秋,等.北冰洋及其临近海域极昼期间大气边界层结构特征试验研究.地球物理学报,2002,45(1):8-16.
    苏从先,胡隐樵.绿洲和湖泊的冷岛效应.科学通报,1987,10:756-758.
    孙仲毅,王军,靳冰凌,等.河南省北部一次暴雪天气过程诊断分析.高原气象,2010,29(5):1338-1344.
    陶诗言.东亚冬季冷空气活动的研究——短期预报手册.1957,中央气象局.
    陶诗言,卫捷,张小玲.2007年梅雨锋降水的大尺度特征分析.气象,2008,34(4):3-15.
    万军山,吕丹苗,刘福基.鄱阳湖水体夏季气温效应.湖泊科学,1993,5(1):26-31.
    万军山,吕丹苗,刘福基.鄱阳湖水体夏季气温效应.应用气象学报,1994,5(3):374-379.
    王浩.湖陆风演变过程的数值模拟.南京大学学报,1991,27(2):190-203.
    王浩,傅抱璞.水体对湍流交换系数的影响.地理研究,1991,10(3):1-10.
    王俊勤,胡隐樵,陈家宜,等.HEIFE区边界层某些结构特征.高原气象,1994,13(3):299-306.
    现代大气科学前沿与展望.国家自然科学基金委员会等主编.北京:气象出版社,1996,P148-151.
    徐火生,汪泽培.鄱阳湖水温时空变化规律分析.水文,1989,6:28-32.
    许爱华,叶成志,欧阳里程,等.“云娜”台风登陆后的路径和降水的诊断分析.热带气象学报,2006,22(3):229-236.
    许建林,曲绍厚.1997年冬季南海南部海区不同天气过程下的湍流通量输送.热带海洋,2000,19(2):19-26.
    严开伟,吕乃平,景荣林.近水面层温、湿、风廓线和湍流交换规律.气象学报,1982,40(1):59-72.
    张宏升,刘新建,朱好,等.北京北郊冬季大风过程湍流通量演变特征的分析研究.大气科学,2010,34(3),661-668.
    张礼平,丁一汇,陈正洪,等.OLR与长江中游夏季降水的关联.气象学报,2007,65(1):75-82.
    张强.大气边界层气象学研究综述.干旱气象.2003,21(3):74-78.
    曾庆存,等.千里黄云——东亚沙尘暴研究.北京:科学出版社,2006,pp228.
    赵鸣.边界层和陆面过程对中国暴雨影响研究的进展.暴雨灾害,2008,27(2):186-190.
    赵其国,黄国勤,钱海燕.鄱阳湖生态环境与可持续发展.土壤学报,2007,44(2):318-326.
    周明煜,钱粉兰.西太平洋海-气相互作用研究进展.地球物理学报,1997,40(增):37-45.
    中国湖泊科学数据库.http://www.lakesci.csdb.cn/.
    朱乾根,林锦瑞,寿绍文,等.天气学原理与方法.北京:气象出版社,2007,pp649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700