用户名: 密码: 验证码:
不同利用方式和放牧强度对典型草原植被—土壤系统碳储量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变化背景下人类活动引起的环境问题越来越多的引起关注,碳循环格局的改变逐渐成为研究的热点。草地生态系统作为陆地最重要的生态系统之一,覆盖陆地表面1/4左右。过去几十年,长期人类活动对草地生态系统,尤其是碳蓄积产生了深刻的影响。在提升我国草原生态生产功能的重大需求下,开展“不同利用方式和放牧强度对典型草原植被-土壤系统碳储量的影响”研究,有助于我们深入地了解和掌握草地生态系统退化机理,为科学保护和合理利用草地资源提供理论依据。
     本研究以内蒙古锡林郭勒典型草原为研究区域,选择以大针茅(Stipa grandis)和羊草(Leymuschinensis)为建群种的代表植被类型,研究了不同退化草地植被-土壤碳密度及其分布规律,解析了不同利用方式和放牧强度对草地植被-土壤碳蓄积的影响,估算了典型草原区域植被-土壤碳储量并分析了其空间分布格局,主要结论如下:
     1.典型草原不同利用方式和放牧强度下植物碳含量较稳定,为0.42-0.44,接近于国际上通用的植物碳转换率0.45。地上、地下植物碳密度随利用强度的增强而减少,且两者之间有极显著相关性(P<0.01)。
     2.典型草原不同利用方式和放牧强度下0-100cm土壤有机碳密度为8.77-17.73kg/m2,不同利用方式和放牧强度对土壤有机碳密度的影响大于空间差异,垂直分布呈显著的递减规律,且可以用对数关系进行描述草地碳密度与土壤深度之间的回归关系,即不退化草地y=0.5685Ln(x)+3.118(R~2=0.849),轻度放牧退化y=0.6943Ln(x)+3.843(R~2=0.833),中度放牧退化y=0.4932Ln(x)+3.265(R~2=0.825),重度放牧退化y=0.553Ln(x)+3.217(R~2=0.902)。
     3.典型草原适度放牧利用有益于典型草原植被-土壤系统碳蓄积,植物激素水平、土壤主要理化性状、土壤微生物数量与质量等可辅助解释这一现象。
     4.内蒙古锡林郭勒典型草原植被-土壤系统碳储量估算值为1.51Pg,其中96%的碳储存在土壤当中,研究所采用的植被法与模型法相结合的区域碳储量估算方法具有可行性。
Environmental issues caused by human activities increasingly attract the attention of researchers underthe background of global change, and the structure change of carbon cycle has become a highlight inresearch. Grassland ecosystem, as the one of the main ecosystem of land, covered about1/4of landsurface. In the past decades, long-term human activities have had a profound impact on grasslandecosystem, especially on carbon sequestration. Under the great demand of promoting grasslandecological and productive function in China, developing research on “Effects of different utilization andgrazing intensity on carbon storage of vegetation-soil system in typical steppe” helps us to understandand master the degeneration mechanism of grassland ecosystem deeply, and provide theoretical basis forscientific conservation and rational utilization of grassland resources.
     Research took Xilingol typical steppe in Inner Mongolia as research area, selected representativevegetation types which were constructed by Stipa grandis and Leymus chinensis to research the carbondensity and distribution rule of vegetation-soil system under the different degradation grassland. Andanalysis the effects of different utilization way and grazing intensity on carbon sequestration ofvegetation-soil system, estimate the carbon storage and spatial pattern of vegetation-soil system oftypical steppe. The main results are as follows:
     1. The plant carbon content under the different utilization and grazing intensity was relativelystability, and the value was0.42-0.44, close to0.45, which was the internationalcommon-used conversion rate of carbon. Carbon density of above-and below-groundbiomass was decreased by the utilization intensity, and there was extreme significantcorrelation between them(P<0.01).
     2.0-100cm soil organic carbon density of typical steppe under the different utilization andgrazing intensity was8.77-17.73kg/m2. The difference of carbon density under differentutilization and grazing intensity was greater than the spatial difference. Soil organic carbondensity was decreased by soil depth and logarithm regression equations can explain theregression relationship between the soil organic carbon and soil depth: no degradation:y=0.5685Ln(x)+3.118(R~2=0.849), grazing lightly: y=0.6943Ln(x)+3.843(R~2=0.833),grazing moderately: y=0.4932Ln(x)+3.26(5R~2=0.825), grazing heavily: y=0.553Ln(x)+3.217(R~2=0.902).
     3. Proper use of grassland was beneficial to the carbon sequestration. Of vegetation-soil systemand can be explained by plant hormone content, soil physical and chemical properties and soil microbial number and mass.
     4. The estimate value of vegetation-soil system carbon storage was1.51Pg, and96%of carbonwas stored in soil. Carbon estimate method adopted in this research which combinedvegetation method and model method was feasible.
引文
1.敖伊敏,焦燕,徐柱.典型草原不同围封年限植被-土壤系统碳氮储量的变化.生态环境学报,2011,20(10):1403~1410.
    2.鲍雅静.羊草草原割草演替与能量固定及分配规律的关系研究.[博士学位论文].呼和浩特:内蒙古大学,2001.
    3.鲍雅静,李政海,刘惠.放牧与割草影响下羊草草原植物与群落能量固定及分配规律的比较.大连民族学院学报,2006,8(1):9~12.
    4.包青海,宝音陶格涛,阎巧玲,敖亚萍.羊草草原割草处理群落特征比较研究.内蒙古大学学报(自然科学版),2003,34(1):74~78.
    5.曹樱子,王小丹.藏北高寒草原样带土壤有机碳分布及其影响因素.生态环境学报,2012,21(2):213~219.
    6.陈芙蓉,程积民,刘伟,李媛,陈奥,赵新宇.不同干扰对黄土高原典型草原土壤有机碳的影响.草地学报,2012,20(2):298~311.
    7.陈冠荣.化工百科全书.北京:化学工业出版社,1998,15:645~645.
    8.陈银萍,李玉强,赵学勇,罗永清,尚雯.放牧与围封对沙漠化草地土壤轻组及全土碳氮储量的影响.水土保持学报,2010,24(4):182~186.
    9.程积民,邹厚远.封育刈割放牧对草地植被的影响.水土保持研究,1998,5(1):36~54.
    10.程积民,邹厚远,本江昭夫.黄土高原草地合理利用与草地植被演替过程的试验研究.草业学报,1995,4(4):17~22.
    11.迟延艳.草原群落演替过程中植物内源激素对植物个体大小调控作用的研究.[硕士学位论文].内蒙古:内蒙古大学,2006.
    12.丁越岿,杨劼,宋炳煜,胡格吉勒图,张琳.不同植被类型对毛乌素沙地土壤有机碳的影响.草业学报,2012,21(2):18~25.
    13.董晓玉.放牧与围封对黄土高原典型草原植物碳、氮、磷生态计量特征及其贮量的影响.[硕士学位论文].兰州:兰州大学,2009.
    14.董云社,齐玉春.“草地生态系统碳循环过程”研究进展.地理研究,2006,25(1):183~183.
    15.杜国祯,覃光莲,李自珍,刘正恒,董高生.高寒草甸植物群落中物种丰富度与生产力的关系研究.植物生态学报,2003,27(1):125~132.
    16.杜占池,杨宗贵,崔骁勇.草原光合生理生态研究.中国草地,1999,3:20~27.
    17.方精云.北半球中高纬度的森林碳库可能远小于目前的估算.植物生态学报,2000,24(5):635~638.
    18.方静云,郭兆迪.寻找逝去的陆地碳汇.自然杂志,2006,29(1):1~6.
    19.方精云,刘国华,徐蒿龄.中国陆地生态系统的碳库.见:王庚辰,温玉璞编著.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社,1996.
    20.方精云,王娓.作为地下过程的土壤呼吸:我们理解多少?.植物生态学报,2007,31(3):345~347.
    21.方精云,杨元合,马文红,安尼瓦尔·买买提,沈海花.中国草地生态系统碳库及其变化.中国科学:生命科学,2010,40(7):566~576.
    22.冯秀,仝川,张鲁,苗百岭,丁勇,张远鸣.内蒙古白音锡勒牧场区域尺度草地退化现状评价.自然资源学报,2006,21(4):575~583.
    23.傅野思,夏学齐,杨忠芳,李娟.内蒙古自治区土壤有机碳库储量及分布特征.现代地质,2012,26(5):886~895.
    24.高雪峰,韩国栋,张功,赵萌莉,卢萍.荒漠草原不同放牧强度下土壤酶活性及养分含量的动态研究.草业科学,2007,24(2):10~13.
    25.高英志,韩兴国,汪诗平.放牧对草原土壤的影响.生态学报,2004,24(4):790~797.
    26.高永恒.不同放牧强度下高山草甸生态系统碳氮分布格局和循环过程研究.[博士学位论文].成都:中国科学院成都生物研究所,2007.
    27.耿元波,董云社,齐玉春.草地生态系统碳循环研究评述.地理科学进展,2004,23(3):74~81.
    28.何念鹏,韩兴国,于贵瑞.长期封育对不同类型草地碳贮量及其固持速率的影响.生态学报,2011,31(15):4270~4276.
    29.侯向阳,徐海红.不同放牧制度下短话针茅荒漠草原碳平衡研究.中国农业科学,2011,44(14):3007~3015.
    30.侯扶江,徐磊.生态系统健康的研究历史与现状.草业学报,2009,18(6):210~224.
    31.侯扶江,杨中艺.放牧对草地的作用.生态学报,2006,26(1):244~264.
    32.呼格吉勒图,杨劼,宝音陶格涛,包青海.不同干扰对典型草原群落物种多样性和生物量的影响.草业学报,2009,18(3):6~11.
    33.胡曰利,吴晓芙.土壤微生物生物量作为土壤质量生物指标的研究.中南林学院学报,2002,22(3):51~53.
    34.贾宏涛,蒋平安,赵成义.围封年限对草地生态系统碳分配的影响.干旱地区农业研究.2009,27(1):33~36.
    35.姜恕.中国科学院内蒙古草原生态系统定位研究站的建立和研究工作概述.见:中国科学院内蒙古草原生态系统定位研究站编.草原生态系统研究.北京:科学出版社,1985,1~11.
    36.李博.中国北方草地退化及其防治对策.中国农业科学,1997,30(6):1~9.
    37.李存焕,王红霞.不同利用方式对短花针茅荒漠草原生产力及根系生物量的影响.中国草地,1991,5:33~38.
    38.李凌浩,陈佐忠.草地群落的土壤呼吸.生态学杂志,1998,17(4):45~51.
    39.李香真,陈佐忠.不同放牧率对草原植物与土壤C,N,P含量的影响.草地学报,1998,6(2):90~98.
    40.李怡.放牧对大针茅草原碳储量的影响.[硕士学位论文].呼和浩特:内蒙古农业大学,2011.
    41.李长青,苏美玲,杨新吉勒图.内蒙古碳汇资源估算与碳汇产业发展潜力分析.干旱区资源与环境,2012,26(5):162~168.
    42.李春莉,赵萌莉,韩国栋,红梅.不同放牧压力下荒漠草原土壤有机碳特征及其与植被之间关系的研究.干旱区资源与环境,2008,22(5):134~138.
    43.李德全.植物生理学.北京:中国农业科技出版社,2003.
    44.李娟,张世熔,孙波,赵其国,肖鹏飞.潋水河流域生态修复过程中土壤速效钾的时空变异.水土保持学报,2004,18(6):88~92.
    45.李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响.植物生态学报,1998,8,(22):300~302.
    46.李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应:I碳循环的分室模型、碳输入与贮存.植物学通报,1998,15(2): l4~22.
    47.李勤奋,韩国栋,敖特根,彭少麟.划区轮牧制度在草地资源可持续利用中的作用研究.农业工程学报,2003,19(3):224~227.
    48.李志刚,侯扶江.管理方式与地形对黄土高原丘陵沟壑区草地土壤呼吸的影响.土壤通报,2009,40(4):721~724.
    49.林启美,吴玉光.熏蒸法测定土壤微生物量碳的改进.生态学杂志,1999,18(2):63~66.
    50.刘华,舒孝喜.盐胁迫对碱茅生长及碳水化合物含量的影响.草业科学,1997,14(1):18~201.
    51.刘艳.典型草原划区轮牧和自由放牧制度的比较研究.[硕士学位论文].呼和浩特:内蒙古农业大学,2004.
    52.刘钟龄,王炜.内蒙古草地退化的现状及演替规律.见:陈敏主编.改良退化草地与建立人工草地研究.呼和浩特:内蒙古人民出版社,1997,1~19.
    53.罗华,杨洪.浅谈对碱解氮的认识.石河子科技,1999,2:42~44.
    54.马文红,韩梅,林鑫,任艳林,王志恒,方精云.内蒙古温带草地植被的碳储量.干旱区资源与环境,2006,20:192~195.
    55.马文红,方精云,杨元合,安尼瓦尔·买买提.中国北方草地生物量动态及其与气候因子的关系.中国科学:生命科学,2010,40:632~641.
    56.潘根兴.中国土壤有机碳、无机碳库量研究.科技通报,1999,15(5):330~332.
    57.潘瑞炽.植物生理学.北京:高等教育出版社,2004.
    58.潘愉德, Melillo J M, Kicklighter D W,肖向明, Mcguire A D.大气CO2升高及气候变化对中国陆地生态系统结构与功能的制约和影响.植物生态学报,2001,25(2):175~189.
    59.裴海昆.不同放牧强度对土壤养分及其质地的影响.青海大学学报(自然科学版),2004,22(4):29~31.
    60.彭长辉,潘愉德.陆地植物第一生产力及其地理分布.见:方精云主编.全球生态学-气候变化与生态响应.北京:高等教育出版社和施普林格出版社,2000,191~211.
    61.朴世龙,方精云,贺今生,肖玉.中国草地植被生物量及其空间分布格局.植物生态学报,2004,28:491~498.
    62.祁彪.青海环湖地区不同退化程度高寒草地土壤碳储量的研究.[博士学位论文].兰州:甘肃农业大学,2005.
    63.齐玉春,董云社,耿元波,杨小红,耿会立.我国草地生态系统碳循环研究进展.地理科学进展,2003,22(4):342~352.
    64.曲建升,孙成权,张志强,高峰.全球变化科学中的碳循环研究进展与趋向.地球科学进展,2003,18(6):980~987.
    65.善玉梅.放牧强度和草地利用方式对内蒙古典型草原土壤氮矿化和凋落物分解的影响.[博士学位论文].内蒙古:内蒙古农业大学,2011.
    66.任继周.草地农业生态学.北京:中国农业出版社,1995.
    67.戎郁萍,韩建国,王培,毛培胜.放牧强度对草地土壤理化性质的影响.中国草地,2001,23(4):41~47.
    68.苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展.中国沙漠,2002,22(3):220~228.
    69.孙振中,王吉顺,潘国艳,欧阳竹,李发东,程维新.刈割对华北平原人工草地土壤呼吸速率的影响.自然资源学报,2012,27(5):809~819.
    70.王凯雄,姚铭,许利君.全球变化研究热点——碳循环.浙江大学学报(农业与生命科学版),2001,27(5):473~478.
    71.王亮,牛克昌,杨元合,周鹏.中国草地生物量地上-地下分配格局:基于个体水平的研究.中国科学:生命科学,2010,40(7):642~649.
    72.王明君,韩国栋,赵萌莉,陈海军,王珍,郝晓莉,薄涛.草甸草原不同放牧强度对土壤有机碳含量的影响.草业科学,2007,24(10):6~10.
    73.王其兵,李凌浩,白永飞,邢雪荣.模拟气候变化对3种草原植物群落混合凋落物分解的影响.植物生态学报,2000,24(6):674~679.
    74.王其兵,李凌浩,刘先华.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析.植物生态学报,1998,22(5):409~414.
    75.王仁忠.放牧和刈割干扰对松嫩草原羊草草地影响的研究.生态学报,1998,18(2):210~213.
    76.王绍强,周成虎,刘纪远,李克让,杨晓梅.东北地区陆地碳循环平衡模拟分析.地理学报,2001,56(4):390~400.
    77.王艳芬,陈佐忠.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报,1998,22(6):545~551.
    78.王艳芬,汪诗平.不同放牧率对内蒙古典型草原地下生物量的影响.草地学报,1999,7(3):198~203.
    79.王泽环,宝音陶格涛,包青海,仲延凯.割一年休一年割草制度下羊草群落植物多样性动态变化.生态学杂志,2007,26(12):2008~2012.
    80.吴瑾,吴克宁,赵华甫,高硕.土壤有机碳储量估算方法及土地利用调控措施研究进展.中国土地科学,2010,24(10):18~24.
    81.肖向明,王义凤,陈佐忠.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应.植物学报,1996,38(1):45~52.
    82.解宪丽.基于GIS的国家尺度和区域尺度土壤有机碳库研究.[博士学位论文].南京:南京师范大学地理科学学院,2004.
    83.解宪丽,孙波,周慧珍,李忠佩.不同植被下中国土壤有机碳的储量与影响因子.土壤学报,2004,41(5):687~699.
    84.徐敏云,李培广,谢帆,黄顶,王芳,晏宗明,王堃.土地利用和管理方式对农牧交错带土壤碳密度的影响.农业工程学报,2011,27(7):320~325.
    85.许泉,芮雯奕,何航,吴峰,罗鸿,卞新民,张卫健.不同利用方式下中国农田土壤有机碳密度特征及区域差异.中国农业科学,2006,39(12):2505~2510.
    86.许中旗,李文华,许晴,闵庆文,王英舜,吴雪宾.人为干扰对典型草原土壤有机碳密度及生态系统碳贮量的影响.自然资源学报,2009,24(4):621~629.
    87.延昊,王绍强,王长耀,张国平.风蚀对中国北方脆弱生态体统碳循环的影响.第四纪研究,2004,24(6),672~677.
    88.闫玉春,唐海萍,常瑞英,刘亮.典型草原群落不同围封时间下植被、土壤差异研究.干旱区资源与环境,2008,22(2):145~151.
    89.杨勇.放牧强度对内蒙古典型草原土壤净氮矿化的影响.[硕士学位论文].呼和浩特:内蒙古农业大学,2010.
    90.杨永辉,王智平,佐仓保夫,唐常源,新藤静夫.全球变暖对太行山植被生产力及土壤水分的影响.应用生态学报,2002,13(6):667~671.
    91.袁道先.喀斯特作用于碳循环研究进展.地球科学进展,1999,14(5):425~432.
    92.岳曼,常庆瑞,王飞,霍艾迪.土壤有机碳储量研究进展.土壤通报,2008,39(5):1173~1178.
    93.曾希柏,刘更另.刈割对植被组成及土壤有关性质的影响.应用生态学报,2000,11(1):57~60.
    94.展争艳,李小刚,张德罡,王哲锋.利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响.土壤学报,2005,42(5):777~782.
    95.赵娜,邵新庆,吕进英,王堃.草地生态系统碳汇浅析.草原与草坪,2011,31(6):75~82.
    96.张成霞,南志标.放牧对草地土壤微生物影响的研究评述.草业科学,2010,27(1):65~70.
    97.张凡,祈彪,温飞,张德罡,吴红,张力.不同利用程度高寒干旱草地碳储量的变化特征分析.草业学报,2011,20(4):11~18.
    98.张峰.中国草原碳库储量及温室气体排放量估算.[博士学位论文].兰州:兰州大学,2010.
    99.章力建,刘帅.保护草原增强草原碳汇功能.中国草地学报,2010,32(4):1~5.
    100.张连义,张静祥,赛音吉亚,包红霞,镡建国,郭志忠.典型草原植被生物量遥感监测模型—以锡林郭勒盟为例.草业科学,2008,25(4):31~36.
    101.张新时.研究全球变化的植被-气候分类系统.第四纪研究,1993,2:157~169.
    102.张新时,高琼,杨奠安,周广胜,倪健,王权.中国东北样带的梯度分析及其预测.植物学报,1997,39(9):785~799.
    103.郑晓翾,王瑞东,靳甜甜,木丽芬,刘国华.呼伦贝尔草原不同草地利用方式下生物多样性与生物量的关系.生态学报,2008,28(11):5392~5400.
    104.钟华平,樊江文,于贵瑞,韩彬.草地生态系统碳蓄积的研究进展.草业科学,2005,22(1):4~11.
    105.仲延凯,包青海,孙维.内蒙古白音锡勒地区天然割草场改良措施的研究.中国草地,1994,(5):1~6.
    106.仲延凯,赖广东.割草对羊草种群叶片数和株高的影响.内蒙古大学学报(自然科学版),1993,24(4):414~419.
    107.仲延凯,孙卫国,孙维.割草对典型草原植物营养元素贮量及分配的影响Ⅱ.地上生物量的营养元素贮量及分配.干旱区资源与环境,1999,13(3):77~85.
    108.周德庆.微生物学实验教程.北京:高等教育出版社,2006.
    109.周广胜,王玉辉,高素华,郭建平.羊草对CO2倍增和水分胁迫的适应机制.地学前缘,2002,9(1):93~94.
    110.周华坤,周兴民,赵新全.模拟增温效应对矮嵩草草甸影响的初步研究.植物生态学报,2000,24(5):547~553.
    111. Bachelet D, Neilson R P, Lenihan J M, Drapek R J. Climate change effects on vegetationdistribution and carbon budget in the United States. Ecosystems,2001,4:164~185.
    112. Batjes N H. Total carbon and nitrogen in the soils of the world. Eur. J. soil Sci.,1996,47:151~163.
    113. Bohn H L. Estimate of organic carbon in world soils. Soil Sci. Am. J.,1982,46:1118~1119.
    114. Buringh P. Organic carbon in soils of the world. In: Woodwell G M. The Role of TerrestrialVegetation in the Global Carbon Cycle: Measurement by Remote Sensing. Chichester: John wiley&Sons Ltd,1984:91~110.
    115. Bridge B J, Mott J J, Brtigan R J. The formation of degraded of areas in the dry savanna woodlandsof northern Australia. Aust. J. Soil Res,1983,21:91~104.
    116. Carlen C, K lliker R, N sberger. Dry matter allocation and nitrogen productivity explain growthresponses to photoperiod and temperature in forage grasses. Oecologia,1999,121:441~446.
    117. Clavero T, Razz R. Effects of biological additives on silage composition of mott dwarfelephantgrass and animal performance. Revista Cientifica Facultad de Ciencias VeterinariasUniversidad del Zulia,2002,12:313~316.
    118. Clements F E. Plant succession: an analysis of the development of vegetation. Washington:Carnegie Institution of Washington,1916:45~47.
    119. Collatz G J, Berry J A, Clark J S. Effects of climate and atmospheric CO2partial pressure on theglobal distribution of C4grasses: present, past, and future. Oecologia,1998,114:441~454.
    120. Collins S L, Knapp A K, Briggs J M, Blair J M, Steinauer E M. Modulation of diversity by grazingand mowing in native tallgrass prairie. Science,1998,280(5364):745~747.
    121. Crutzen P J, Ramanathan V. The ascent of atmospheric sciences. Science,2000,290:299~304.
    122. Deker K L, Wang D, Waite C. Snow removal and ambient air temperature effects on forest soiltemperatures in northern Vermont. Soil Science Society of American Journal,2003,67:1234~
    1242.
    123. Derner J D, Briske D D, Boutton T W. Does grazing mediate soil carbon and nitrogenaccumulation beneath C4, perennial grasses along an environmental gradient? Plant and Soil,1997,191:47~156.
    124. Dodd J D, Hopkins H H. Yield and carbohydrate content of blue grama as affected by clipping.Transactions of the Kansas Academy of Science,1985,61:282~287.
    125. Eddy V D M, Argenta T. Aboveground and belowground biomass relations in steppes underdifferent grazing conditions. Oikos, l989,56:364~370.
    126. Eswaran H, Vander B E, Reich P. Organic carbon in soils of the world. Soil Sci. Soc. Am. J.1993,57:192~194.
    127. Fan J W, Zhong H P, Harris W, Yu G R, Wang S Q, Hu Z M, Yue Y Z. Carbon storage in thegrasslands of China based on field measurements of above-and below-ground biomass. ClimaticChange,2008,86:375~396.
    128. Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China,1981-2000. SciChina Ser D,2007,50:1341~1350.
    129. Floate M J S. Effects of grazing by large herbivores on nitrogen cycling in agricultural ecosystems.In: Clark F E, Rosswall T. Terrestrial Nitrogen Cycles. British: Ecological Bulletins-NFR33,1981,585~601.
    130. Forster S M. Microbial aggregation of sand in an embryo dune system. Soil Biol. Biochem.,1979,11:537~543.
    131. Frank D A, McNaughton S J. Evidence for the promotion of aboveground grassland production bynative large herbivores in Yellowstone National Park. Oecologia,1993,96:157~161.
    132. Frank A B, Tanaka D L, Hoffman L, Follet R F. Soil carbon and nitrogen of northern Great Plainsgrasslands as influenced by long–term grazing. Range Manage,1995,48:470~474.
    133. Fulkerson W J, Michell P J. The effect of height and frequency of mowing on the yield andcomposition of perennial ryegrass-white clover swards in the autumn to spring period. Grass andForage Science,1987,42:169~174.
    134. Frissel M J. Cycling of mineral nutrients in agricultural ecosystems. Agro-Ecosystems,1977,4:1~254.
    135. Gauthier G R, Hughes R J, Reed A, Beaulieu J, Rochefort L. Effect of grazing by greater snowgeese on the production of graminoids at an arctic site (Bylot Island, NWT, Canada). Journal ofEcology,1995,83:653~664.
    136. Golluscio R A, Sala O E, Lauenroth W K. Differential use of large summer rainfall events byshrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia,1998,115:17~25.
    137. Greene R S B, Kinnell P I A, Wood J T. Role of plant cover and stock trampling on runoff and soilerosion from semiarid wooded rangelands. Australian Journal Soil Research,1994,32:953~973.
    138. He N P, Yu Q, Wu L, Wang Y S, Han X G. Carbon and nitrogen store and storage potential asaffected by land–use in a Leymus chinensis grassland of northern China. Soil Biology&Biochemistry,2008,40:2952~2959.
    139. Henderson D C. Carbon storage in grazed prairie grasslands of Alberta. Edmonton:University ofAlberta,2000.
    140. Hontoria C, Rodriguez-Murillo J C, Saa A. Relationships between soil organic carbon and sitecharacteristics in Peninsular Spain. Soil Sci. Soc. Am. J.,1999,63:614~621.
    141. Hiernaux P, Bielders C L, Valentin C, Bationo A, Fernandez–Rivera S. Effects of livestock grazingon physical and chemical properties of sandy soils in Sahelian rangelands. Arid Environment,1999,41:231~245.
    142. Janssens I A, Freibauer A, Ciais P, Smith P, Nabuurs G J, Folberth G, Schlamadinger B, Hutjes R,Ceulemans R, Schulze D, Valentini R, Dolman A J. Europe’s terrestrial biosphere absorbs7to12%of European anthropgenic CO2emission. Science,2003,300:1538~1542.
    143. Jenkinson D S, Ladd J N. Microbial biomass in soil: measurement and turnover. In: Paul V E A,Ladd J N. Soil biochemistry. New York: Marcel Dekker,1981,415~417.
    144. Joergensen R G, Brookes P C. Ninhydrin-reactive nitrogen measurements of microbial biomass in0.5mol K2SO4soil extracts. Soil biology and biochemistry,1990,22(8):1023~1027.
    145. Johnston A, Dormaar J F, Smoliak S. Long-term grazing effects on fescue grassland soils. RangeManage,1971,24:185~188.
    146. Keller A A, Goldstein R A. Impact of carbon storage through restoration of drylands on the globalcarbon cycle. Environ Manage,1998,22:757~766.
    147. Knapp A K, Briggs J M, Koelliker J K. Frequency and extent of water limitation to primaryproduction in a Mesic temperate grassland. Ecosystems,2001,4:19~28.
    148. Krebs C J. Ecology: The Experimental Analysis of Distribution and Abundance (Fifth edition,影印版).北京:科学出版社,2003,583~608.
    149. Lauenroth W K, Burke I C, Paruelo J M. Patterns of production and precipitation-use efficiency ofwinter wheat and native grasslands in the central great plains of the United States. Ecosystems,2000,3:344~351.
    150. Lauenroth W K, Sala O E. Long-term forage production of a North American shortgrass steppe.Ecological Applications,1992,2:397~403.
    151. Li K R, Wang S Q, Cao M K. Vegetation and soil carbon storage in China. Science in China SeriesDearth Sciences,2004,47:49~57.
    152. McNaughton S J, Milchunas D G, Frank D A. How can net primary production be measured ingrazing ecosystems? Ecology,1996,77:974~977.
    153. Milchunas D G, Laurenroth W K, Chapman, P L. Plant competition, abiotic, long-and short-termeffects of large herbivores on demography of opportunistic species in semiarid grassland.Oecologia,1992,92:520~531.
    154. Milchunas D G, Laurenroth W K. Quantitative effects of grazing on vegetation and soils over aglobal range of environments. Ecological Monographs,1993,63(4):327~366.
    155. Monson R K, Szarek S R. Life cycle characteristics of Machaeranthera gracilis (Compositae) indesert habitats. Oecologia,1981,49:50~55.
    156. Morgan J A, Legain D R, Mosier A R, et al. Elevated CO2enhances water relations andproductivity and affects gasexchange in C3and C4grasses of the Colorado shortgrass steppe.Global Change Biology,2001,7:451~466.
    157. Morgan J A, LeCain D R, Read J J, et al. Photosynthetic pathway and ontogeny affect waterrelations and the impact of CO2on Bouteloua gracilis (C4) and Pascopyrum smithii (C3).Oecologia,1998,114:483~493.
    158. Mutz J L, Drawe D L. Clipping frequency and fertilization influence herbage yield and crudeprotein content of four grasses in South Texas. J. Range Management,1983,36:582~585.
    159. Newton P C D. Direct effect of increasing carbon dioxide on pasture plants and communities. NewZealand J. Agr. Res.1991,34:1~24.
    160. Ni J. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutionsand responses to climate change. Climate Change,2001,49:339~358.
    161. Ni J. Carbon storage in grasslands of China. Journal of Arid Environments,2002,5:205~218.
    162. Ni J. Forage yield-based carbon storage in grasslands of China. Climatic Change,2004,67:237~246.
    163. Olsen J S, Watts J A, Allison L J. Carbon in live vegetation of major world ecosystem. Oak Ridge:Oak Ridge National Laboratory,1983,50~51.
    164. Ojima D S, Parton W J, Scurlock J M O. Modeling the climate and CO2changes on grasslandstorage of soil. Water Air Soil Pollution,1993,70:643~657.
    165. Owensby C E, Coyne P I, Ham J M, Auen L M. Biomass production in a tallgrass prairieecosystem exposed to ambient and elevated CO2. Ecological Applications,1993,3:644~653.
    166. Pacala S W, Hurtt G C, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET,Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E,Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB. Consistentland-and atmosphere-based US carbon sink estimates. Science,2001,292:2316~2320.
    167. Pankhurst C E. Defining and assessing soil health and sustainable productivity. Biologucalindicators of soil health. CAB International,1997.
    168. Peter S, Phillipp E, Bernhard S. Plant foraging and rhizome growth patterns of Solidago altissimain response to mowing and fertilizer application. Journal of Ecology,1998,86:341~354.
    169. Piao S L, Fang J Y, Zhou L M, Tan K, Tao S. Changes in biomass carbon stocks in China'sgrasslands between1982and1999. Global Biogeochemical Cycles,2007,21(2): GB2002, doi:10.1029/2005GB002634.
    170. Post W M, Emanuel W R, Zinke P J, Stangenberger A G. Soil carbon pools and world life zones.Nature,1982,298(8):156~159.
    171. Post W M, Izaurralde R C, Mann L K, Bliss N. Monitoring and verifying changes of organiccarbon in soil. Climatic Change,2001,51:73~99.
    172. Povirk K. Carbon and nitrogen dynamics of an alpine grassland: affects of grazing history andexperimental warming on CO2flux and soil properties.[MS thesis]. Laramie: University ofWyoming,1999.
    173. Prentice I C. Biorne modeling and the carbon cycle. The global carbon cycle. Berlin: SpringerVerlag,1993:219~238.
    174. Rapport D J. Epidemiology and ecosystem health: Natural bridges. Ecosystem Health,1999,5(3):174~179.
    175. Rapport D J, Costanza R, McMichael A J. Assessing ecosystem health. Trends in Ecology&Evolution,1998,13(10):397~402.
    176. Reeder J D, Franks C D, Milchunas D G. Root biomass and microbial processes. In: Follett R F,Kimble J M, Lal R. The potential of US grazing lands to sequester carbon and mitigate thegreenhouse effect. Boca Raton: Lewis Publishers,2001,1~10.
    177. Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-aridmixed-grass and short-grass rangelands. Environmental Pollution,2002,116:457~463.
    178. Robin W S. Murray M. Rohweder. Pilot analysis of global ecosystem: grassland ecosystems.Washington, DC: World Resource Institute,2000,49~53.
    179. Schuman G E, Booth D T, Waggoner J W. Grazing reclaimed mined land seeded to native grassesin Wyoming. J. Soil and Water Conservation,1990,45:653~657.
    180. Schuman G E, Reeder J D, Manley J T, Hart R H, Manley W A. Impact of grazing management onthe carbon and nitrogen balance of a mixed-grass rangeland. Ecological Applications,1999,9:65~71.
    181. Scurlock J M O, Hall D O. The global carbon sink: a grassland perspective. Global ChangeBiology,1998,4:229~233.
    182. Scurlock J M, Olson R J. Estimating net primary productivity from grassland biomass dynamicsmeasurements. Global Change Biology,2002,8:736~753.
    183. Shariff A R, Biondini M E, Grygiel CE. Grazing intensity effects on litter decompostiion and soilnitrogen mineralization. Journal of Range Management,1994,47:444~449.
    184. Silvertown J, Dodd M E, McConway K, et al. Rainfall, biomass variation, and communitycomposition in the Park Grass Experiment. Ecology,1994,75:2430~2437.
    185. Snyman H A, Du Preez C C. Rangeland degradation in a semi–arid South Africa-II: influence onsoil quality. Arid Environ,2005,60:483~507.
    186. Stevenson F J. Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients. New York:Johm Wiley&Sons, INC,1989.
    187. Styles D, Coxon C. Meteorological and management influences on seasonal variation inphosphorus fractions extracted from soils in western Ireland. Geoderma,2007,142:152~164.
    188. Venkateswarlu B, Rao A V. Distribution of microorganisms in stabilized and unstabilized sanddunes of the Indian desert. J. Arid Environ.,1981,12:201~207.
    189. Wang H Q, Joseph D C, Charles A S H, Davied P M. Spatial and seasonal dynamics of surface soilcarbon in the Luquillo Experimental Forest, Puerto Rico. Ecological Modelling,2002,147:105~122
    190. WBGU. The accounting of biological sinks and sources under the Kyoto Protocol. Special Report.Berlin: German Advisory Council on Global Change,1998.
    191. Whittaker R H, Likens G E, Primary production: The biosphere and man. In: Lieth H, Whittaker RH. Primary Productivity of the Biosphere. New York: Springer-Verlag,1975:305~308.
    192. Whittaker R H, Likens G E. Carbon in the biota. In: Woodwell G M, Pecan E V. Carbon and theBiosphere. Washington D C: National Technical Information Service,1997:281~302.
    193. Wu H B, Guo Z T, Peng C H. Land use induced changes of organic carbon storage in soils of China.Global Change Biology,2003,9:305~315.
    194. WU J O, Doneel A G, Syers J K. Measurement of soil microbial biomass C by fumigation-extraction-an automated Procedure. Soil Biology and Biochemistry,1990,22:1167~1169.
    195. Williams P H, Morton J D. Effects of mowing interval, return of clippings, and potassium fertilizeron production and botanical composition of pasture in a mowing trial. New Zealand Journal ofExperimental Agriculture.1987,15(2):147~150.
    196. Yang Y H, Fang J Y, Ma W H, Smiyh P, Mohammat A, Wang S P, Wang W. Soil carbon stock andits changes in northern China’s grasslands from1980s to2000s. Global Change Biology,2010,16(11):3036~3047.
    197. Zhou G S, Wang Y H, Jiang Y L, Xu Z Z. Carbon balance along the North China Transect(NECT-IGBP). Science in China (Series C),2002,45(Supp.):18~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700