南方稻田春玉米—晚稻种植模式资源利用效率及生产力优势研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了挖掘南方双季稻田的粮食生产潜力和保障粮食安全,应对因全球气候变暖引发的南方季节性干旱问题,促进南方稻区“粮-经-饲”结构协调发展,提高稻田生产系统的综合效益,促进稻区农业可持续、健康和低碳发展,为稻田种植结构的战略性调整提供科学依据,本研究在高产栽培条件下,以传统双季稻种植模式(R-R)为对照,通过2年大田定位试验和土壤-作物系统相结合的方法,比较系统地研究了稻田“春玉米-晚稻”种植模式(M-R)的生产力、资源利用效率及氮素利用特征;土壤背景供氮对M-R模式土壤养分特征的影响及不同施氮水平和耕作方式对M-R模式中晚稻产量形成的影响,其主要研究结果如下:
     1.M-R模式的周年生产力和资源利用效率优势显著,与传统R-R模式比较,产量和物质生产效率分别提高了20.0%和23.2%;土地资源利用率,光、温、水资源生产效率和光能利用率分别提高了9.75%,14.7%,20.4%,12.1%和19.1%;周年总产值和产投比分别提高了16.7%和8.04%,体现了M-R模式高产高效和资源高效利用的特点。
     2.M-R模式的N肥利用效率与R-R模式不同。与传统R-R模式比较,M-R模式的周年氮素收获指数提高3.01%~3.98%;氮肥籽粒和干物质生产效率分别提高10.8%~12.6%和12.7%~20.6%,氮肥吸收利用率(RE)增加13.0%-20.3%,而氮肥偏生产力(PFP)、农学利用率(AE)和生理利用率(PE)偏低,但与R-R模式差异均不显著。
     3.与R-R模式的连作晚稻比较,采用同一耕作方式,M-R模式的晚稻产量增幅为2.13%~6.47%;增产原因主要是由于叶面积指数增加,抽穗后剑叶的叶绿素含量(SPAD值)和PSⅡ的光化学量子产量(EQY)提高,热耗散(qN)降低,表现出光化学利用效率优势,最终使晚稻总干物质重增加了3.7%~6.8%。与常规翻耕栽培(CT)比较,免耕移栽(NT)使M-R模式的晚稻产量显著增加10.5%,增产效应显著的原因在于单位面积有效穗和颖花量增加(8.53%和6.77%);采用翻耕+秸秆碳(CTC)、翻耕+秸秆还田(CTS)处理可使M-R模式晚稻产量分别增加6.4%和3.3。
     4.采用同一耕作方式,M-R模式晚稻收获后土壤全量养分与R-R模式比较,差异不显著;但速效钾、速效磷和碱解氮(CTC除外)有不同程度提高。正常翻耕条件下,与R-R模式比较,M-R模式晚稻收获后土壤有机质含量降低了4.44%,且土壤pH值略有降低;采用免耕、秸秆还田和添加生物碳等措施可使土壤有机质含量分别提高10.8%,3.41%和44.4%。
     5.与R-R模式的连作晚稻比较,采用同一施氮水平,M-R模式的晚稻产量增加2.41%~6.32%,增产的原因主要是每穗粒数和单位面积颖花量的增加,生育后期(齐穗期后15天)LAI提高了1.34%~17.5%,叶片SPAD值提高0.75%~2.64%,剑叶净光合速率(Pn)提高7.77%~11.1%;同时提高PSⅡ的EQY和电子传递速率(ETR),降低热耗散(qN),辐射利用率(RUE)提高,最终使总干物重增加(1.64%~4.22%)而增产。
     6.在低土壤背景氮下,与NoNo比较,M-R模式NoN处理的晚稻产量显著增加41.8%,增产原因在于施氮处理显著提高了单位面积有效穗,在生育后期,LAI和叶片的SPAD显著提高了52.0%和13.0%;剑叶Pn明显提高13.2%、EQY、ETR和qP上相对优势较大,qN较低,RUE提高了4.49%;最终导致总干物质积累量显著提高了21.2%;高土壤背景氮下,与NN比较,M-R模式NNM处理的晚稻产量提高了4.73%,增产原因在于单位面积颖花量和有效穗的增加。
     7.晚季不同土壤背景供氮下,采用同一施氮水平,与R-R模式比较,M-R模式晚稻收获后的土壤有机质和全N含量降幅分别为5.44%~15.1%和1.4%~10.3%;土壤pH值略升高;在低土壤背景氮下,碱解氮、速效磷和速效钾含量分别平均降低了4.65%,13.7%%和10.5%;在高土壤背景氮下,碱解氮平均增加2.33%,速效钾平均降低了12.0%。在两季不施氮肥情况下,M-R模式的晚稻土壤碱解氮含量比R-R模式降低了9.30%,晚季增施氮肥能明显提高其土壤有机质和碱解氮含量,但会降低速效钾和速效磷含量,在两季施氮情况下,土壤碱解氮则提高了2.5%,晚季增施有机肥能明显提高其土壤有机质和全N含量,但降低土壤速效养分含量,特别是速效钾的含量。
     8.整个生育期间,M-R模式晚季稻田土壤养分含量变化表现出与R-R模式一致动态特征:土壤pH呈“先降后升,再略降低”的趋势;有机质含量表现为“先升高后降低,再略升高”的趋势;全量养分含量变化较小;在低土壤背景氮下,速效养分含量均呈“先持续下降,后略升高”的趋势;在高土壤背景氮下,土壤速效钾和速效磷与低土壤背景氮的趋势一样,而碱解氮呈“先持续下降后升高,再略下降”趋势。
The major objective of this study was for exploring the productive potentials in double rice cropping system in South China so as to ensure food security, deal with seasonal drought problems caused by global climate warming in South China, promote harmony development of the "grain crop-cash crop-feed crop" structure, enhance the comprehensive benefits in rice field productive system, accelerate sustainable, healthy and low carbon development of the agriculture as well as provide scientific accordance to strategic adjustment of the current rice field planting structure. This study was conducted under high yield cultivation conditions on a fixed field for 2 years with conventional double-rice cropping model (R-R) as check by a method of combination of soil with crop system. We discussed the annual productivity, resource use efficiency and nitrogen utilization characteristics in "spring maize-late rice" rotation pattern (M-R), analyzed the effect of background soil nitrogen supply on annual soil nutrient property and the dynamic changes in M-R planting pattern as well as the effects of different applied-N levels and tillage methods on yield formation of late rice in M-R cropping system. The main results were as follows:
     1. The experiments showed that M-R model had significantly advantages in annual productivity and resource use efficiency over the conventional R-R model. The annual yield and matter production efficiency in M-R model increased by 20.0% and 23.2%, respectively, compared to the traditional R-R planting model. And the annual soil resource use efficiency, the production efficiency of light, temperature, and water resources as well as radiation use efficiency (RUE) also increased by 9.75%,14.7%,20.4%,12.1% and 19.1%, respectively. Furthermore, the annual total output and the ratio of output/input increased by 16.7% and 8.04%, respectively. These results indicated that the M-R model was of higher yield, higher efficient and higher resource use efficiency.
     2. The results also showed that nitrogen fertilizer use efficiency in M-R planting model differed from that in R-R planting model. The M-R planting model was much better than R-R planting model in terms of nitrogen recovery efficiency (RE) and productive efficiency. The nitrogen recovery efficiency, whole nitrogen grain and matter production efficiency increased by 13.0%-23.0%,10.8%-12.6% and 12.7%-20.6%, respectively; the nitrogen harvest index (NHI) increased by 3.01%-3.98%; whereas the nitrogen partial factor productivity (PFP), agronomy use efficiency (AE) and physical utilization those of R-R planting model even these were not at significant level.
     3. With same tillage method, compared to late rice of R-R planting model, the yield of late rice of M-R planting model increased by 2.13%-6.74%. The reasons for the yield increase were due to the increase of leaf area index (LAI), and the enhancement of the SPAD value and the effective PSⅡquantum yield (EQY) of flag leaf, the reduction of the non-photochemical quenching index (qN) after heading stage in M-R planting model, as well as the good performance of the photochemical utilization efficiency, which led to 3.7%-6.8%increase of the final total dry matter accumulation of M-R planting model at maturing stage. Moreover, compared with conventional tillage (CT) treatment, the yield of late rice under no-tillage(NT) treatment in M-R increased by 10.5%, which reached significant difference. The reasons for this yield increasing came from both the effective tiller number and spikelet number per unit area increases (by 8.53% and 6.77%, respectively); The yields of late rice in conventional tillage+ carbon(CTC) treatment, in conventional tillage+ straw-retuning to field(CTS) treatment under M-R planting model could be increased by 6.4% and 3.3%, respectively.
     4. There had no significant differences in soil total nutrient content including total N, total P and total K after late -season rice harvest between M-R cropping system and traditional R-R cropping system. However, the soil available K and available P contents got some improvements. Under conventional tillage method, the soil organic matter content after late rice harvest in M-R cropping system decreased by 4.44% coupled with the soil pH value lowering compared to the R-R cropping system. With no-tillage in straw-retuning to field and organism carbon application treatments, the soil organic matter content in M-R cropping system could be increased by 10.8%,3.41% and 44.4%, respectively.
     5. Compared with R-R planting pattern with the same N fertilizer rate, the yield of late rice in M-R planting patter increased by 2.41-6.32%. The reasons for increasing yield were due to the increases of grain number per hill and spikelets number per unit area. Also compared with R-R planting pattern during late growth stage (15 days after 80% heading), the leaf area index(LAI) of M-R planting patter was 1.34% to 17.5% higher; the SPAD value of flag leaf of M-R planting pattern,0.75% to 2.64% higher; the net photosynthetic rate (Pn)of flag leaf in M-R planting model,7.77% to 11.1% higher. Meanwhile, M-R planting pattern showed much better in terms of effective PS II quantum yield (EQY), electron transports rate (ETR) and coefficient of photo-chemical quenching (qP) which can reduce the coefficient of non-photochemical quenching (qN), and enhance the radiation use efficiency (RUE), and contributed the final total dry matter weight of M-R planting pattern to an increase of 1.64 to 4.42% over R-R planting pattern.
     6. Compared with NoNo under low indigenous soil N-supply, the yield of later-season rice of the NoN treatment in M-R planting pattern increased significantly by 41.8% due to the effective panicle number per unit obviously increase by N-fertilizer application; the LAI and the SPAD value of flag leaf in the N0N treatment were 52.0% and 13.0% higher, respectively, during later growing stage; the net photosynthetic rate (Pn)of flag leaf of NoN treatment was 13.2% higher during later growth stage; the effective PSⅡquantum yield (EQY), electron transports rate (ETR) and coefficient of photo-chemical quenching (qP) which can reduce the coefficient of non-photochemical quenching (qN) showed strong advantage; the radiation use efficiency(RUE) was 4.49% higher. All these contributed to an increase of the final total dry matter accumulation of NON treatment at maturity stage to 21.2%, reaching significant difference. While under high indigenous soil N-supply, the yield of the late rice of NNM treatment in M-R planting pattern increased by 4.73% due to the effective panicle number increase and the spikelets increase per unit area.
     7. Under different indigenous soil N-supply for later -season rice, the total soil N content and organic matter content in M-R cropping pattern with same N-fertilizer application rate decreased by 1.4%-10.3% and 5.44%-10.5%, respectively, compared with R-R planting pattern. However, the soil pH value of M-R model was higher than that of R-R model. Under low indigenous soil N supply, the available soil nutrients including available N, available P and available K in M-R cropping system decreased by 4.65%, 13.7% and 3.04%, respectively, compared with traditional R-R planting model. However, with high indigenous soil N supply, the content of available N in M-R cropping pattern was 2.33% higher but 12.0% lower of the content of available K compared with R-R planting model. With zero N-fertilizer application to the 2 cropping seasons, the content of soil available N after later-season rice harvest in M-R cropping pattern was 9.30% lower than that R-R planting model, and N application to second cropping season could dramatically increase the soil organic matter and soil available N content, but decrease the soil available K content. With N-fertilizer application to 2 cropping seasons, the content of available N after later-season rice harvest in M-R cropping pattern increased by 2.50% compared with R-R planting model, and organic fertilizer application to the second season in M-R cropping pattern could enhance the soil organic matter and the total N contents, but decrease the soil available nutrient contents, especially for the soil available K content.
     8. During whole crop growing season in late rice field, the dynamic change tendency in soil nutrient contents appeared the same both in M-R and R-R planting system:soil pH value showed a tendency curve like "down-up-down"; the soil organic matter content showed a tendency curve like "down-up-stable finally"; the total nutrient content showed constant; with low indigenous soil N, the available soil nutrient content in M-R planting pattern showed a trend curve like "up-down "; with high indigenous soil N, the available soil K and available P in M-R planting pattern had the same tendency as with low soil N background; the available N content in M-R planting pattern showed a tendency curve like "down-up-down".
引文
[1]卞新民,冯金伙.多元多熟种植制度复种指数计算方法探讨[J].南京农业大学学报,1999,22(1):11-15.
    [2]卞新民,李萍萍,章熙谷等.江苏中南部地区麦玉米稻新三熟制的生态与经济适应性分析[J].生态经济,1997,(4):35-39.
    [3]蔡燕飞,章家恩,张杨珠,等.稻作制度对红壤性水稻土有机质特征的影响[J].土壤,2006,38(4):396-399.
    [4]曾希柏,孙楠,高菊生,等.双季稻田改制对作物生长及土壤养分的影响[J].中国农业科学2007,40(6):1198-1205
    [5]陈风波.水稻种植模式变迁对中国南方地区水稻产量的影响[J].新疆农垦经济,2007(8):6-10.
    [6]陈阜.我国多熟种植制度新进展[J].耕作与栽培,1997,(2):9-11.
    [7]陈书涛,黄耀,郑循华,等.轮作制度对农田氧化亚氮排放的影响及驱动因子[J].中国农业科学,2005,38(10):2053-2060.
    [8]陈印军,唐华俊,尹吕斌.对我国南方双季稻主产区粮食生产结构调整的思考[J].科技导报,1999,(1):36-39
    [9]陈印军,尹吕斌.对南方双季稻主产区“玉米替代”的反思[J].中国农村经济,1999.(2):20-25
    [10]陈印军,尹吕斌.如何解决我国南方双季稻主产区早稻积压和饲料粮短缺的问题[J].科技导报,1999,(8):48-51.
    [11]陈志辉,黄虎兰.湖南省玉米生产发展几个问题的商榷[J].作物研究,2003,17(4):204-205.
    [12]陈志辉,赵政文.湖南省特用玉米生产现状评述及发展对策[J].作物研究,2001,(1)43-45.
    [13]丁一汇.IPCC第二次气候变化科学评估报告的主要科学成果和问题[J].地球科学进展,1997,12(2):158-163.
    [14]丁元树,王人民,陈锦新.稻田年内水旱轮作对土壤微生物和速效养分的影响[J].浙江农业大学学报,1996,22(6):561-565.
    [15]范连益,陈志辉,龚德万.湖南省稻田玉米发展前景及高产栽培技术[J].作物研究,1998,(3):42-44.
    [16]范明生,樊红柱,吕世华,等.西南地区水旱轮作系统养分管理存在问题分析与管理策略建议[J].西南农业学报,2008,21(6):1564-1568.
    [17]范明生,江荣风,张福锁,等.水旱轮作系统作物养分管理策略[J].应用生态学报,2008,19(2):424-432
    [18]范明生,刘学军,江荣风,等.覆盖旱作方式和施氮水平对稻-麦轮作体系生产力和氮素利用的影响[J].生态学报,2004,(24):2591-2596.
    [19]范明生.水旱轮作系统养分资源综合管理研究[D].中国农业大学,2005.
    [20]方福平,王磊,廖西元.中国早稻生产波动及成因分析[J].中国农村经济,2006,(2):11-17,26.
    [21]高菊生,刘更另,秦道珠,等.红壤稻田不同轮作方式对水稻生长发育的影响[J].耕作与栽培,2002,(2):1-2.
    [22]高菊生,徐明岗,秦道珠,等.长期稻-稻-紫云英轮作对水稻生长发育及产量的影响[J].湖南农业科学,2008,(6):25-27.
    [23]高旺盛,梁志杰,崔勇.美国农作制度可持续发展趋势及关键技术[J].世界农业.2000.(11):6-7.
    [24]高旺盛.耕作制度改革回顾与新世纪展望[J].耕作与栽培,1999.(1):1-5.
    [25]谷文艳.世界粮食供求状况及未来走势综述[J].国际资料信息,2005,(11):1-11.
    [26]韩广轩,朱波,张中杰,等.华川中丘陵水旱轮作土壤-小麦系统CO2排放及其影响因素[J].地球科学进展,2004,19(增刊):496-451.
    [27]韩广轩,朱波,高美荣.水稻油菜轮作稻田甲烷排放及其总量估算[J].中国生态农业学报,2006,14(4):134-137.
    [28]韩广轩,朱波,张中杰,等.水旱轮作土壤-小麦系统C02排放及其影响因素[J].生态环境,2004,13(2):182-185
    [29]何福平.农村劳动力老龄化对我国粮食安全的影响[J].求索,2010,(11):74-76.
    [30]贺喜全,盛良学.开发优质专用玉米,促进粮食结构调整[J].作物研究,2002,(2):69-71
    [31]胡万里,段宗颜,陈拾华,等.云南大田不同轮作模式养分平衡现状研究[J].西南农业学报,2009,22(3):594-597.
    [32]胡忠孝.中国水稻生产形势分析杂交水稻[J].2009,24(6):1-7.
    [33]黄冲平,丁鼎良.水旱轮作对作物产量和土壤理化性状的影响[J].浙江农业学报,1995,7(6):448-450.
    [34]黄国勤,黄禄星.稻田轮作系统的减灾效应研究[J].气象与减灾研究,2006,29(3):25-29.
    [35]黄国勤,黄秋萍.江西省生物入侵的现状、危害及对策[J].气象与减灾研究,2006,29(1):51-55.
    [36]黄国勤,熊云明,钱海燕,等.稻田轮作系统的生态学分析[J].生态学报,2006,26(4):1159-1164.
    [37]黄国勤,熊云明,钱海燕,等.稻田轮作系统的生态学分析[J].土壤学报,2006,43(1):69-78.
    [38]黄国勤,张桃林,赵其国.中国南方耕作制度[M].北京:中国农业出版社,1997.
    [39]黄国勤,张桃林.论南方稻田耕作制度的调整与改革[J].热带亚热带土壤科学,1996,5(2):108-115.
    [40]黄国勤.江西稻田耕作制度的演变与发展[J].耕作与栽培,2005,(4):1-3.
    [41]黄国勤.论开发南方农田饲料生产[J].农业技术经济,1997,(1):7-10.
    [42]黄国勤.中国南方稻田耕作制度的发展[J].耕作与栽培,2006,(3):1-5,28.
    [43]黄国勤.中国南方稻田耕作制度的演变和发展[J].中国稻米,1997,(4):3-8.
    [44]黄其正.对我国玉米调运的思考[J].中国农村观察,1995,(6),44-46,23.
    [45]黄勤,魏朝富,高明,等.不同耕作制对稻田甲烷排放通量的影响[J].西南农业大学学报,1996,18(5):436-439.
    [46]姜长云,张艳平.我国粮食生产的现状和中长期潜力[J].经济参考研究,2009,(15):16-29.
    [47]蒋佩兰,刘隆旺.不同复种方式玉米田害虫及其天敌与产量关系的研究[J].江西农业大学学报,1995,17(1):25-27.
    [48]蒋瑞萍,李苹,解开治,等.不同种植模式对水稻土真菌数量及群落多样性的影响研究[J].广东农业科学,2009,(2):44-47.
    [49]解开治,徐培智,陈建生,等.“123种植模式”对土壤酶学特征及土壤养分的影响[J].土壤通报,2009,40(2):279-285.
    [50]李建国,青先国,李一平,等.吨粮种植模式经济效益的梯度差异[J].上海农业学报,1995,11(4):55-67.
    [51]李建国,青先国,李一平.吨粮田种植模式养分循环状态的稻田梯度差异研究[J].农业现代化研究,1996,17(4):228-233.
    [52]李林,邹冬生,屠乃美,等.南方稻田农作制度研究进展[J].河南科技大学学报(农学版),2003,23(3):14-17.
    [53]李萍萍,卞新民,章熙谷.长江三角洲麦玉米-稻新种植制度高产稳产的生态学原理研究[J].应用生态学报,1998,9(1):41-46.
    [54]李萍萍,陆建飞,章熙谷,等.麦玉米稻三熟制高产高效同步性分析[J].农业技术经济,1994,(2):18-20.
    [55]李绍清,罗印华.建议调减早稻面积改种春玉米[J].湖南经济,1998,(4):20-22.
    [56]李玮君,王春甲.气候变化对我国农作物种植结构的影响[J].气候变化研究进展,2010,6(2):123-119
    [57]李文纯,崔雪堂,李桂芝,等.建立弹性种植模式促进农业结构调整[J].耕作与裁培,2005,(1):5,9.
    [58]李向东,陈源泉,隋鹏,等.中国南方集约多熟稻田保护性耕作制度[J].生态学杂志,2007,26(10):1653-1656.
    [59]李小坤,鲁剑巍,吴礼树,等.水旱轮作下根区与非根区黄褐土钾素动态研究[J].植物营养与肥料学报,2009,15(4):850-856.
    [60]李友华,刘国强.粮食安全与农业结构战略性调整黑龙江粮油科技[J].2010,(2):6-9.
    [61]刘建.稻田种植春玉米经济效益及高效耦合技术研究[J].中国生态农业学报,2004,12(2):143-145.
    [62]刘建.发挥区域优势,建立现代高效生态型农作制度-兼论沿江地区耕作制度的研究及发展方向[J].南京农专学报,2001,17(2):1-6.
    [63]刘建.江苏沿江稻区玉米-稻模式新型种植方式研究[J].耕作与栽培,2000,(1):5-7.
    [64]刘建.江苏沿江地区以春玉米为中心多元高效种植制度研究[J].中国农学通报,2003,19(6): 105-109
    [65]刘巽浩,等.集约持续农林-中国与发展中国家的主要抉[J].世界农业,1993,(3):4-6.
    [66]刘巽浩.耕作学[M].北京:中国农业出版社,1996.
    [67]刘巽浩.农作制与中国农作制区划[J].中国农业资源与区划,2002,23(5):11-15.
    [68]刘巽浩等,吨粮田经济效益研究[M].北京农业大学出版社,1992.
    [69]刘祚祥,陈文胜.加强农业基础地位和确保国家粮食安全战略研究综述[J].阴山学刊,2010,23(5):94-100.
    [70]卢布,吴凯,陈印军,等.2020年我国区域粮食生产潜力及实现途径[J].中国软科学增刊(上),2009,188-192
    [71]卢维盛,廖宗文,张建国,等.不同水旱轮作方式对稻田甲烷排放影响的研究[J].农业环境保护,1999,18(5):200-202.
    [72]卢维盛,张建国,廖宗文,等.不同水分管理及耕作制度对广州地区稻田甲烷排放的影响[J].华南农业大学学报,1997,18(3):57-61.
    [73]陆建飞.太湖地区种植制度的演变及其对当前种植结构调整的意义[J].农业现代化研究,2001),22(4)::229-232.
    [74]罗文杰,罗文忠.海南稻田耕作制度的改革[J].海南大学学报(自然科学版),2001,19(1):71-75.
    [75]骆世明.农业生态学[M].长沙:湖南科学技术出版社,1987.
    [76]马红波,褚庆全.我国粮食生产问题、潜力与对策[J].农业经济,2007,(7):53-54.
    [77]潘旭东,马晓平.世界粮食危机背景下我国粮食安全问题探析[J].价格月刊2010,(12):70-76.
    [78]彭春芳.双季稻消失与农民兼业-对黄宗智《长江三角洲小农家庭与乡村发展》的现代思考[J].濮阳职业技术学院学报,2010,23(1):117-119.
    [79]青先国,李建国,李一平.稻田吨粮种植模式能量转换效益的梯度差异研究[J].湖南农业科学1996,12(4):16-19.
    [80]沈明星,王高武,蔡永海.麦/玉米-稻对土壤生产力和理化性状的影响[J].江苏农业科学,1998(2):50-52.
    [81]沈学年,刘巽浩.多熟种植[M].北京:中国农业出版社,1983.
    [82]盛良学,贺喜全,徐国强.南方红壤低丘岗区农田种植结构调整对策及配套技术研究[J].耕作与栽培,2002,(4):7-8,36.
    [83]石德权,郭庆法,汪黎明,等.我国玉米品质现状、问题及发展优质食用玉米对策[J].玉米科学,2001,9(2)3-7.
    [84]石少龙.湖南玉米的生产流通和消费[J].粮食科技与经济,2003,(5)17-19.
    [85]舒惠国.生态经济战略是江西21世纪发展的必然抉择[J].江西气象科技,2001,24(1):1-6.
    [86]汤文光,肖小平,唐海明,等.湖南农作制高效种植模式及其发展策略[J].湖南农业利·学,2009,(1):36-39.
    [87]佟屏亚.论高产高效吨粮田开发的理论与实践[J].耕作与栽培,1992,(4):10-16
    [88]佟屏亚.中国吨粮田开发的实践与方向[J].科技导报,1996,(11):46-48
    [89]王道龙.保障粮食安全的重要意义及我国的对策[J].当代经济科学,1999,(1):36-39.
    [90]王德仁,陈苇.长江中下游及分洪区种植结构调整与减灾避灾种植制度研究[J].中国农学通报,2000,16(4):1-3.
    [91]王定勇,石孝均,毛知耘.长期水早轮作条件下紫色土养分供应能力的研究[J].植物营养与肥料学报,2004,10(2):120-126.
    [92]王辉,屠乃美.稻田种植制度研究现状与展望[J].作物研究,2006,(5):498-503.
    [93]王季春,谢德体,任昌福,等.水旱连作高产田作物群体生产力的研究[J].西南农业大学学报,1995,17(2):134-137.
    [94]王乐.湖南省稻田典型种植模式的经济效益分析[J].湖北农业科学,2010,49(2):509-512.
    [95]王人民,陈锦新,丁元树.稻田年内水旱轮作的后效应研究[J].中国水稻科学,1999,13(4):223-228.
    [96]王人民,丁元树,陈锦新.稻田年内水旱轮作对晚稻产量及生长发育的影响[J].浙江农业大学学报,1996,22(4):412-417.
    [97]王人民,丁元树.稻田年内水旱轮作对土壤肥力的影响[J].中国水稻科学,1998,12(2):85-91.
    [98]王淑彬,黄国勤,黄海泉,等.稻田水旱轮作的生态经济效应研究[J].江西农业大学学报(自然科学版)2002,24(6):757-76].
    [99]王淑彬,黄国勤,李年龙,等.稻田水旱轮作(第3年度)的土壤微生物效应[J].江西农业大学学报(自然科学版),2002,24(3):320-323.
    [100]王淑彬,黄国勤,刘隆旺.稻田水旱轮作(第二年度)对农田杂草的影响[J].江西农业大学学报,2002,24(1):20-23.
    [101]王淑彬,黄国勤.稻田水旱轮作的生态经济效应研究[J].江西农业大学学报,2002,24(6):757-761.
    [102]王树安.中国的吨粮田建设[M].北京农业大学出版社,1994.
    [103]王先华.稻田不同轮作方式对培肥地力的作用[J].耕作与栽培,2002.(6):9-10.
    [104]王志明,朱培立,黄东迈,等.水旱轮作条件下土壤有机碳的分解及土壤微生物量碳的周转特征[J].江苏农业学报,2003,19(1):33-36.
    [105]]王子芳,高明,秦建成,等.稻田长期水旱轮作对土壤肥力的影响研究[J].西南农业大学学报(自然科学版),2003,25(6):514-517.
    [106]魏朝富,高明,黄勤,等.耕作制度对西南地区冬水田甲烷排放的影响[J].土壤学报,2000,37(2):157-165.
    [107]吴泽军.发展玉米生产促进粮食转化[J].作物研究,1995,9(2):40-42.
    [108]武兰芳,陈阜,欧阳竹.种植模式演变与研究进展[J].耕作与栽培,2002,(3):1-5.
    [109]武兰芳,陈阜,欧阳竹.种植制度演变与研究进展[J].耕作与栽培,2003,(3):1-5.
    [110]武兰芳,朱文珊.试论中国种植制度改革与发展[J].耕作与栽培,1999,(4):1-6.
    [111]夏松波,胡入荣,杨新笋.湖北省农作制度的优势和发展分析[J].耕作与栽培,2000,(3):1-2.
    [112]辛良杰,李秀彬.近年来我国南方双季稻区复种的变化及其政策启示[J].自然资源学,2009,24(1):58-65.
    [113]熊止琴,邢光熹,施书莲,等.轮作制度对水稻生长季节稻田氧化亚氮排放的影响[J].应用生态学报,2004,14(10):1761-1764.
    [114]徐华山,李培德.长江中下游双季稻发展面临的问题与建议[J].安徽农学通报,2010,16(19):72-73.
    [115]徐培智,解开治,陈建生,等.一季中晚稻的稻菜轮作模式对土壤酶活性及可培养微生物群落的影响[J].植物营养与肥料学报,2008,14(5):923-928.
    [116]徐少安,刘建.江苏沿江稻田三熟种植方式生态经济效益研究[J].江苏农业学报,1998,14(1):15-19.
    [117]许学宏,戴其根,邱枫.麦田套播稻研究进展与展望[J].耕作与栽培,1998,(1):1-3,31.
    [118]杨贵羽,汀林,王浩.基于水土资源状况的中国粮食安全思考[J].农业工程学报,2010,26(12):1-5.
    [119]杨文钰,屠乃美.作物栽培学各论[M].中国农业出版社,2003.3:105-106.
    [120]姚凤梅,张佳华,孙白妮,等.气候变化对中国南方稻区水稻产量影响的模拟和分析气候与环境研究[J].2007,12(5):659-666.
    [121]尹光华,蔺海明.旱农区不同种植模式作物最佳补灌时期和适宜补灌量研究[J].干旱地区农业研究,2000,18(1):85-90.
    [122]游艾青,陈亿毅,陈志军.湖北省双季稻生产的现状及发展对策[J].湖北农业科学,2009,48(12):3190-3192.
    [123]游年顺,雷捷成,黄利兴早稻生产的意义与杂交稻品质改良的思路,福建稻麦科技,2000,19(1):38-41.
    [124]袁建华,颜伟,陈艳萍,等.南方丘陵生态区玉米生产现状及发展对策[J].玉米科学,2003,(专刊):29-31.
    [125]张伯平.改革开放以来我国稻田种植制度的变革[J].耕作与栽培,2002,(4):4-6,55.
    [126]张国明,郭李萍,史培军,等.农田土壤生态系统冬小麦夏玉米轮作CO2排放特征研究[J].北京师范大学学报(自然科学版),2007,43(4):457-460.
    [127]张厚瑄.中国种植制度对全球气候变化响应的有关问题-气候变化对我国种植制度的影响[J].中国农业气象,2000,21(1):9-13.
    [128]张厚瑄.中国种植制度对全球气候变化响应的有关问题-我国种植制度对气候变化响应的主要问题[J].中国农业气象,2000,21(2):10-13.
    [129]张建平,赵艳霞,王春乙,等.气候变化对我国南方双季稻发育和产量的影响[J].气候变化研究进展,2005,1(4):151-156.
    [130]张龙,肖华明,余侃.对当前我国粮食安全现状的思考[J].当代经济,2010,(12):46-47.
    [131]张铭,陈庆明,邱枫,等.玉米-水稻集约型农作制的春玉米超高产栽培技术开发研究[J].江苏农业利学1997,(4):32-35,12.
    [132]张石宝,李树云,李存信,等.云南南亚热带北缘地区稻田亩产吨粮的种植模式及其生态生理学研究[J].广西植物,2001,21(2):150-156.
    [133]张玉启,张文霞,陈国惠.种植制度调整与农民增收问题的调查分析和政策建议-以对豫东地区种植结构调整的调查为例[J].西南农业大学学报(社会科学版),2007,5(4):55-59.
    [134]赵明宇,于秀丽.试析影响我国粮食安全的不利因素及未来发展思路[J].白城师范学院学报,2004,18(4):5-7.
    [135]赵强基,郑建初,袁从,等.中国南方稻区玉米-稻种植模式的建立和实践[J].江苏农业学报,1997,13(4):215-219.
    [136]郑建初,赵国良,刘华周,等.苏南稻田新种植制度的轮作效应[J].江苏农业科学,1997(2):6-10.
    [137]中国耕作制度研究会.面向21世纪的中国农作制[M].石家庄:河北科技出版社,1999
    [138]中国技术协会主编,中国作物协会编著.作物学学科发展报告2007-2008[M].中国-北京:中国技术出版社,2008,2.
    [139]钟伟荣,郑国组,朱建军.水旱轮作防治茄子青枯病[J].上海蔬菜,2000,(1):44.
    [140]钟武云.湖南稻田耕作制度改革的形势与对策[J].作物研究,2003,17(3):114-116.
    [141]邹应斌,李克勤,任泽民.作物高效生产的热点问题与关键技术[J].作物研究,2004,(3):123-127.
    [142]邹长明,陈福兴,张马祥,等.湘南红壤稻田不同轮作制度的土壤培肥和经济效益研究[J].湖南农业科学,1995,(6):33-35.
    [143]Ali M Y, Waddington S R, Hudson D, Timsina J, Dixon J. Maize-rice cropping system in Bangladesh:status and research opportunities[M]. CIMMYT-IRRI Joint publication, CIMMYT, Mexico,2008.
    [144]Ali M Y, Waddington S R, Timsina J, Hudson D, Dixon J. Maize-rice cropping systems in Bangladesh:status and research needs[J]. Journal of Agric Sci and Techn 2009,3(6):35-53.
    [145]Brad N C, Athwal D S, Hill F F. Proposal for Broadening the Mission of the International Rice Research Institute[J]. Los Banos es.37,1973.
    [146]Bradfeild, R. Maximizing food production through multiple cropping Systems centered on rice[J]. Pages in International Rice Research Institute.Rice sience and man.Los Banos Philippines.1972.
    [147]Carangal V R.1978a.Asian Cropping Systems Network. IRRI Res.Prog.Rov.1978 (36b). Interna-tional Rice Research Institute.Los Banos, Philippines.
    [148]Carangl V R, Jayasuriya S K. Asian Cropping Systems Network.Paper Prepared for IRRI Research Program Review[J].15 January 1982. International Rice Research Institute, Los Banos, Laguna PhilippineS.1982.
    [149]Folt Z, John, Hohn C. Lee, Marshall A, Martin. Farm -level economic and environmental impacts of eastern Corn Belt cropping systems[J]. J.Prod.Agric,1993,6 (2):290-296.
    [150]Gardner J C. Evaluation of Integrated Low input Crop livestock Production systems[J].North Central LISA Program 1988-1989 Progress Report. Fargo, N.D:Carrington Center, North Dakota state University,1989.
    [151]Hanson J C, Lichtenberg E, Decker A M, Clark A. J. Profitability of no-tillage corn following a hairy vetch cover crop[J]. J.Prod.Agr,1993,6,432-437.
    [152]Helmers G A, Langemeier M R, Atwood J. An economic analysis of alternative cropping systems of east-central NebraSka [J]. American Journal of Alternative Agriculture,1986. (1): 153-158.
    [153]Hoque M.Z. Cropping Systems in Asia on farm Research and Management [J]. The Asia Cropping Systems Network,1984,13-29.
    [154]Joroge J M, Kimemia J K.. Economic Benefits of intercropping Young Arabca and RobuSta Coffee with Food Crops in Kenya[J].1995,24 (1):27-34.
    [155]King L D. Reduced Chemical Input Cropping System Experiment.Progress Report [J]. North Carolina State University, Raleigh.March 3.Mimeograph.
    [156]Martin, Marshall A, Marvin M, Schreiber, Jean R, Riepe, Robert B J. The economics of alternative tillage systems crop rotain and berbicide use on three representative East-Central Corn Belt Farms[J]. Weed Science,1991,39:299-307.
    [157]Modgal S C, Dasgupta M K., Ghosh D C. Changing Concepts in cropping systems[J]. Proceed-ings national symposium on sustainable agriculture in subhumid zone.March,1995,3-5, 113-121.
    [158]Ott, Stephen L, William L, Hargrove. Profits and risks of using crimson clover and hairy vetch cover crops in no-till cornproduction.[J]. American Journal of Alternative Agriculture,1989,4 (2):65-70.
    [159]Pasuquin JMCA, Timsina J, Witt C, Buresh R J, Dobermann A, Dixon J. The expansion of rice-maize systems in Bangladesh:anticipated impact on fertilizer demand[J].1FA Crossroads 2007. CD-ROM Proceedings. Bali, Indonesia,18 December,2007, IPNI organizer.
    [160]Sahs W, Lesoing G. Crop Rotation and Manure Versus Agricultural Chemicals in Dryland Grain Production [J]. Journal of Soil and Water Conservation,1990, (4.):511-516.
    [161]SAM Fujisaka. Improving productuvity of an upland rice and maize system farmer cropping choices or researcher cropping pattern trapezoids [J]. Expl Agric,1991, (27):,253-261.
    [162]Smolik, James D, Thomas L, Dobbs, Dianc H, Rickerl. The relative sustainability of alternative, conventional, and reduced-till farming System[J]. Am.J.Altern.Agr,1995, (10):25-35.
    [163]Talukder ASMHM, Meisner C A, Baksh M E, Waddington S R.Wheat-maize-rice cropping on permanent raised beds in Bangladesh. Permanent beds and rice-residue management for rice-wheat systems in the Indo-Gangetic Plain[J]. Proceedings of a workshop held in Ludhiana, India,7-9 September 2006. ACIAR Proceedings,2008,127:192.
    [164]Timsina J, Buresh R J, Dobermann A, Dixon J, Tabali J. Strategic assessment of rice-maize systems in Asia[J]. IRRICIMMYT Alliance Project "Intensified Production Systems in Asia (IPSA)", IRRI-CIMMYT Joint Report,IRRI, Los Banos, Philippines,2010.
    [165]Timsina J, Connor D J. Productivity and management of rice-wheat cropping systems:issues and challenges.[J] Field Crops Research,2001,(69):93-132.
    [166]Timsina J, Mangi L, Jat, Majumdar K.. Rice-maize systems of South Asia:current status, future prospects and research priorities for nutrient management[J]. Plant Soil,2010,(335):65-82.
    [167]Tong C L, Charles A.S, Hall, Wang H Q. Land use change in rice, wheat and maize productionin China (1961-1998) [J]. Agriculture, Ecosystems and Environment 2003,(95):523-536.
    [1]毕常锐,白志英,杨耠,等.种植密度对小麦群体光能资源利用的凋控效应[J].华北农学报,2010,25(5):171-176.
    [2]曾希柏,孙楠,高菊生,等.双季稻田改制对作物生长及土壤养分的影响[J].中国农业科学,2007,40(6):1198-1205.
    [3]陈印军,唐华俊,尹昌斌.对我国南方双季稻主产区粮食生产结构调整的思考[J].中国农业科技导报,1999,(1):36-39.
    [4]陈印军,尹昌斌.如何解决我国南方双季稻主产区早稻积压和饲料粮短缺的问题[J].科技导报,1999,(8):48-51.
    [5]崔读吕.中国粮食作物气候资源利用效率及其提高的途径[J].中国农业气象,2001,22(2):25-32.
    [6]戴明宏,陶洪斌,J.Binder,等.春、夏玉米物质生产及其对温光资源利用比较[J].玉米科学,2008,16(4):82-85,9.
    [7]范柯伦H,沃尔夫J.农业生产模型:气候、土壤和作物[M].北京:中国农业科技出版社,1990.
    [8]高菊生,刘更另,秦道珠,等.红壤稻田不同轮作方式对水稻生长发育的影响[J].耕作与栽培,2002,(2):1-2.
    [9]刘巽浩,陈阜.中国农作制[M].北京:中国农业出版社,2005.
    [10]龙云茂.玉米-稻两熟吨粮田栽培综合配套技术[J].耕作与栽培,1993,(6):20-22.
    [11]钱锦霞,胡良温.山西省玉米气候资源利用效率分析[J].玉米科学,2008,16(4):192-195.
    [12]沈明星,王高武,蔡永海.麦/玉米-稻对土壤生产力和理化性状的影响[J].江苏农业科学,1998,(2):50-52.
    [13]汤文光,肖小平,唐海明,等.湖南农作制高效种植模式及其发展策略[J].湖南农业科学,2009,(1):36-39.
    [14]唐前进,杨为芳,罗培敏.实行玉米水稻轮作促进我区粮食增产[J].广西农学报,1998,(1):38-42.
    [15]同小娟,李俊,王玲.农田光能利用效率研究进展[J].生态学杂志,2008,27(6):1021-1028.
    [16]王乐.湖南省稻田典型种植模式的经济效益分析[J]湖北农业科学,2010,49(2):509-512.
    [17]王美云,任天志,赵明,等.双季青贮玉米模式物质生产及资源利用效率研究[J].作物学报,2007,33(8):1316-1323.
    [18]王美云,赵明,任天志,等.早春地膜双季青贮玉米物质生产及其资源生产效率的研究[J].玉米科学,2008,16(4):127-129,134.
    [19]吴泽军.湖南省稻田玉米复种制研究与推广综述[J].耕作与栽培,1989,(4):4-8.
    [20]辛吉武,蒲金涌,马鹏里.西北旱作区不同种植方式气候资源利用效率的定量评价[J].华北农学报,2007,22(增刊):156-159.
    [21]熊云明,黄国勤,王淑彬,等.稻田轮作对土壤理化性状和作物产量的影响[J].中国农业科技导报,2004,(4):42-45.
    [22]徐华山,李培德.长江中下游双季稻发展面临的问题与建议[J].安徽农学通报,2010,16(19):72-73.
    [23]于沪宁,李伟光.农业气候资源分析和利用[M].北京:气象出版社,1985.
    [24]张铭,陈庆明,邱,枫,等.玉米-水稻集约型农作制的春玉米超高产栽培技术开发研究[J].江苏农业科学,1997,(4):32-35,12.
    [25]赵强基,郑建初,袁从玮,等.中国南方稻区玉米-稻种植模式的建立和实践[J].江苏农业学报,1997,13(4):215-219.
    [26]周贤君.湖南省稻田主要种植模式功能效应比较研究[D].长沙:湖南农业大学,2003.
    [27]朱雪志,邓小华.永州市稻田种植模式经济效益评价[J].安徽农业科学,2009,37(11):4927-4928.
    [28]Talukder ASMHM, Meisner C A, Baksh M E, Waddington S R.Wheat-maize-rice cropping on permanent raised beds in Bangladesh. Permanent beds and rice-residue management for rice-wheat systems in the Indo-Gangetic Plain[J]. Proceedings of a workshop held in Ludhiana, India,7-9 September 2006. ACIAR Proceedings,2008,127:192.
    [29]Timsina J, Buresh R J, Dobermann A, Dixon J, Tabali J. Strategic assessment of rice-maize systems in Asia[J]. IRRICIMMYT Alliance Project "Intensified Production Systems in Asia (IPSA)", IRRI-CIMMYT Joint Report, IRRI, Los Banos, Philippines,2010
    [30]Timsina J, Mangi L, Jat, Majumdar K.. Rice-maize systems of South Asia:current status, future prospects and research priorities for nutrient management[J]. Plant Soil,2010,(335):65-82.
    [1]蔡祖聪,饮绳武.华北潮土长期试验中的作物产量、氮肥利用率及其环境效应[J].土壤学报,2006,43(6):885-891.
    [2]单玉华,王余龙,山本由德,等.不同类型水稻在氮素吸收及利用上的差异[J].扬州大学学报,2001,4(3):42-45.
    [3]范明生.水旱轮作系统养分资源综合管理研究[D].2005中国农业大学博士学位论文.
    [4]高亚军,黄东迈,朱培立,等.稻麦轮作条件下长期不同土壤管理对氮素肥力的影响[J].土壤学报,2000.37(4):456-463.
    [5]贺帆,黄见良,崔克辉,等.实时实地氮肥管理对不同杂交水稻氮肥利用率的影响[J].中国农业科学,2008,41(2):470-479.
    [6]霍中洋,葛鑫,张洪程,等.施氮方式对不同专用小麦氮素吸收及氮肥利用率的影响[J].作物学报,2004,30(5):449-454.
    [7]刘立军,徐伟,唐成,等.土壤背景氮供应对水稻产量和氮肥利用率的影响[J].中国水稻科学,2005,19(4):343-349.
    [8]吕丽华,陶洪斌,王璞,等.施氮量对夏玉米碳、氮代谢和氮利用效率的影响[J].植物营养与肥料学报,2008,14(4):630-634.
    [9]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [10]沈阿林,王永歧,张学斌,等.沿黄稻麦区水稻生长和氮素利用与土壤透水性的关系[J]。华北农学报,2003,18(1):90-93
    [11]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,2003,36(1):71-76.
    [12]孙传范,曹卫星,戴廷波.土壤-作物系统中氮肥利用率的研究进展[J].土壤,2001,(2):64-69,97.
    [13]孙克刚,和爱玲,李丙奇.控释尿素与普通尿素掺混对小麦和玉米轮作产量及氮肥利用率的影响研究[J].化肥工业,2010,37(5):14-18.
    [14]王兴仁,张福锁,曹一平,等.养分资源管理的理论和技术及其在小麦玉米高产轮作中的应用[J].中国农业大学学报,2003,8(增刊):36-41.
    [15]王秀芹,张洪程,黄银忠,等.施氮量对不同类型水稻品种吸氮特性及氮肥利用率的影响[J].上海交通大学学报(农业科学版),2003,21(4):325-330.
    [16]吴延寿,徐阳春,沈其荣,等.2种稻方式对后茬麦生长及土壤氮素转化和氮肥利用的影响[J].十壤学报,2006,43(1):168-172.
    [17]夏米坤,陶洪斌,朱金城,等.施氮时期对夏玉米碳氮运转及氮肥利用的影响[J].华北农学报,2009,24(3):208-211.
    [18]许仁良,戴其根,王秀芹,等.氮肥施用量、施用时期及运筹对水稻氮素利用率影响研究[J].江苏农业科学,2005,(2):19-22.
    [19]薛亚光,陈婷婷,杨成,等.中粳稻不同栽培模式对产量及其生理特性的影响[J].作物学报,2010,36(3):466-476.
    [20]晏娟,沈其荣,尹斌,等.太湖地区稻麦轮作系统下施氮量对作物产量及氮肥利用率影响的研究[J].土壤,2009,4 1(3):372-37.
    [21]晏娟,沈其荣,尹斌.施氮量对氮高效水稻种质4007的氮素吸收、转运和利用的影响[J].土壤学报,2010,47(1):107-114.
    [22]易琼,张秀芝,何萍,等.氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响[J].植物营养与肥料学报,2010,16(5):1069-1077
    [23]易镇邪,吴小京,张小平,等.施氮量对春玉米产量形成与氮肥利用率的影响[J],作物研究,2010,24(1):22-24.
    [24]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    [25]张福锁等.协调作物高产与环境保护的养分资源综合管理技术研究与应用[M].北京:中国农业大学出版社,2008:40-49.
    [26]赵营,同延安,赵护兵.不同供氮水平对夏玉米养分累积、转运及产量的影响[J].植物营养与肥料学报,2006,12(5):622-627.
    [27]赵萍萍,王宏庭,郭军,等.氮肥用量对夏玉米产量、收益、农学效率及氮肥利用率的影响[J].山西农业科学,2010,38(11):43-46,8.
    [28]Aggarwal G. C, Sidhu A.S, et al. Pudding and N management effect on crop responses in a rice-wheat cropping systems[J]. Soil and Tillage Research,1995, (36):129-139.
    [29]Buresh RJ, Timsina J. Implementing field-specific nutrient management in rice-based cropping systems. Bangladesh J Agric & Environ,2008,4:39-49.
    [30]Dass S, Sekhar JC, Jat M L. Nutrient management studies in maize systems (Monsoon-2008). Salient Achievement of All India Coordinated Research Projecton maize 2008. Directorate of Maize Research, Indian Council of Agricultural Research, New Delhi, p 51,2008.
    [31]Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:Past, present and future Biogeochemi- stry,2004,70(2):153-226.
    [32]Gill MS, Gangwar B, Gangwar K S. Site-specific crop management approach for high yield realisation of cereal based cropping systems. Indian J Fert,2008,4(8):31-56.
    [33]Gill M S, Shukla A K, Pandey P S. Yield, nutrient response and economic analysis of important cropping systems in India. Indian J Fert,2008,4(4):11-48
    [34]Ladha J K, Pathak H, Krupnik T J, et al. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects[J]. Advances in Agronomy,2005,87:86-156.
    [1]曾家玉,熊楚国,吴平,等.稻田免耕水旱轮作对作物产量及土壤生态效应的影响[J].湖南农业科学,2009,(8):34-39.
    [2]曾希柏,孙楠,高菊生,等.双季稻田改制对作物生长及土壤养分的影响[J].中国农业科学,2007,40(6):1198-1205.
    [3]陈温福,徐正进,张步龙.水稻超高超育种生理基础[M].沈阳:辽宁科学技术出版社,2003,11.
    [4]董爱玲,冯跃华,赵田径,等,免耕对移栽杂交水稻生长特性及产量的影响[J].山地农业生物学报,2008,27(6):471-475.
    [5]范明生,江荣风,张福锁,等.水旱轮作系统作物养分管理策略[J].应用生态学报,2008,19(2):424-431.
    [6]黄冲平,丁鼎良.水旱轮作对作物产量和土壤理化性状的影响[J].浙江农业学报,1995,7(6):448-450.
    [7]黄国勤,熊云明,钱海燕,等.稻田轮作系统的生态学分析[J].土壤学报,2006,23:69-78.
    [8]黄小洋,黄国勤,余冬晖,等.免耕栽培对晚稻群体质量及产量的影响[J].江西农业学报,2004,16(3):1-4.
    [9]鞠正春,于振文.追施氮肥时期对冬小麦旗和叶叶绿素荧光特性的影响[J].应用生态学报,2006,17(3):395-398.
    [10]鲁如坤.土壤农业化学分析方法[M].北京:中国农业出版社,2000.
    [11]马吉锋,朱艳,姚霞,等.水稻叶片氮含量与荧光参数的关系[J].中国水稻科学,2007,21(1):65-70.
    [12]莫亚丽,邹应斌.免耕栽培对水稻生理特性及产量的影响[J].作物研究,2007,21(5):583-587.
    [13]汪仁全,马均,童平,等.三角形强化栽培技术对水稻光合生理特性及产量形成的影响[J].杂交水稻,2006,21(6):60-65.
    [14]王卫,谢小立,谢永宏.不同水分管理模式对水稻生长及光合特性的影响[J].长江流域资源与环境,2010,19(7):746-751.
    [15]王人民,陈锦新,丁元树.稻田年内水旱轮作的后效应研究[J].中国水稻科学,1999,13(4);223-228.
    [16]王人民,丁元树,陈锦新.稻田年内水旱轮作对土壤微生物和速效养分的影响[J].浙江农业大学学报,1996a,22(6):561-565.
    [17]王人民,丁元树,陈锦新.稻田年内水旱轮作对晚稻产量及生长发育的影响[J].浙江农业大学学报,1996b,22(4):412-417.
    [18]王人民,丁元树.稻田年内水旱轮作对土壤肥力的影响[J].中国水稻科学,1998,12(2):85-91.
    [19]王淑彬,黄国勤,黄海泉,等.稻田水旱轮作的生态经济效应研究[J].江西农业大学学报,2002a,24(6):757-761.
    [20]王淑彬,黄国勤,李年龙,等.稻田水旱轮作(第3年度)的土壤微生物效应[J].江西农业大学学报(自然科学版),2002b,24(3):320-323.
    [21]王淑彬,黄国勤,刘隆旺.稻田水旱轮作(第二年度)对农田杂草的影响[J].江西农业大学学报,2002c,24(1):20-23.
    [22]王子芳,高明,秦建成,等.稻田长期水旱轮作对土壤肥力的影响研究[J].西南农业大学学报(自然科学版),2003,25(6):514-517.
    [23]熊鸿焰,李廷轩,余海英,等.水旱轮作条件下免耕土壤微生物特性研究[J].植物营养与肥料学报,2009,15(1):145-150.
    [24]熊云明,黄国勤,王淑彬,等.稻田轮作对土壤理化性状和作物产量的影响[J].中国农业科技导报,2004,6(4):42-54.
    [25]杨学明,张小平,方华军,等.北美保护性耕作及对中国的意义[J].应用生态学报,2004,15(2):335-340.
    [26]张炼生.免耕对水稻生长和产量的影响[J].河北农业科学,2006,11(3):11-13.
    [27]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [28]张锡洲,李廷轩,余海英,等.水旱轮作条件下长期自然免耕对土壤理化性质的影响[J].水土保持学报,2006,20(6):145-147.
    [29]张锡洲,周建新,郑子成,等.水旱轮作条件下免耕土壤微生物生物量变化特征及其活性评价[J].四川农业大学学报,2010,28(2):153-158.
    [30]章秀福,王丹英,符冠富,等.南方稻田保护性耕作的研究进展与研究对策[J].土壤通报,2006,37(2):346-351.
    [31]D.L.Smith C.Hamel作物产量-生理学及形成过程[M]北京:中国农业出版社,2001,10.
    [32]Wang D,Li H X,Qin J T,Li D M,Hu F. Growth characteristics and yield of later-season rice under no-tillage and non-flooded cultivation with straw mulching[J].Rice science,2010,17(2):141-148
    [1]敖和军,邹应斌,中建波,等.早稻施氮对连作晚稻产量和氮肥利用率及土壤有效氮含量的影响[J].植物营养与肥料学报,2007,13(5):772-780.
    [2]毕常锐,白志英,李存东,等.种植密度对小麦群体光能资源利用的调控效应[J].华北农学报,2010,25(5):171-176.
    [3]范明生.水旱轮作系统养分资源综合管理研究[D].2005中国农业大学博士学位论文.
    [4]高阳,段爱旺,刘祖贵,等.单作和间作对玉米和大豆群体辐射利用率及产量的影响[J].中国生态农业学报,2009,17(1):7-12.
    [5]李迪秦,唐启源,秦建权,等.施氮量与氮管理模式对超级稻产量和辐射利用率影响[J].核农学报,2010,24(4):809-814.
    [6]刘建,魏亚凤,徐少安.蘖穗肥氮素配比对水稻产量、品质及氮肥利用率的影响[J].华中农业大学学报,2006,25(3):223-227.
    [7]龙继锐,马国辉,宋春芳,等.不同肥料节氮栽培对超级杂交中稻的生长发育和产量及氮肥效率的影响[J].农业现代化研究,2008,29(1):112-116.
    [8]庞桂斌,彭世彰.中国稻田施氮技术研究进展[J].土壤,2010,42(3):329-335.
    [9]彭建伟,丁哲利,刘强,等.施氮模式对早稻农艺性状及氮肥利用率的影响[J]湖南农业大学学报(自然科学版).2010,36(2):224-228.
    [10]彭显龙,刘元英,罗盛国,等.实地氮肥管理对寒地水稻干物质积累和产量的影响[J].中国农业科学,2006,39(11):2286-2293.
    [11]史泽艳,高晓飞,谢云.SUNSCAN冠层分析系统在农田生态系统观测中的应用[J].干旱地区农业研究,2005,23(4):78-82.
    [12]索东让.土壤氮素养分对土壤供氮能力及氮肥效应的影响[J].磷肥与复肥,2000,15(6):66-68.
    [13]王璐,肖健.稻麦轮作体系下氮素的优化管理[J].安徽农学通报,2010,16(17):78-80.
    [14]王丽萍,刘华招,杜金岭,等.氮肥基追不同分施比例对寒地粳稻产量及氮肥利用率的影响[J].中国农学通报,2010,26(13):235-238.
    [15]王之杰,郭天财,朱云集,等.超高产小麦冠层光辐射特征的研究[J].西北植物学报,2003,23(10):1657-1662.
    [16]吴巍,赵军.植物对氮素吸收利用的研究进展[J].中国农学通报,2010,26(13):75-78.
    [17]张福锁,干激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径术[J].土壤学报,2008,45(5):915-923.
    [18]张满利,陈盈,隋国民,等.氮肥对水稻产量和氮肥利用率的影响[J].中国农学通报,2010,26(13):230-234.
    [19]钟旭华,黄农荣,郑海波,等.不同时期施氮对华南双季杂交稻产量及氮素吸收和氮肥利用率的影响[J].杂交水稻,2007,22(4):62-66.
    [20]Albfizio R, Steduto P. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea[J]. I. Radiation use efficiency. Agricultural and Forest Meteorology,2005,130:254-68.
    [21]Muchow R C, Davids R. Effect of nitrogen supply of the comparative productivity of maize and sorghum in semi-arid tropical environment Ⅱ. Radiation interception and biomass accumulation [J]. Field Crops Research,1988,18:17-30.
    [22]Peterson A G,, Field C B, Ball J T, el al. Reconciling the apparent difference between-mass and area-based expressions of the photosynthesis-nitrogen relationship[J]. ecology,1999, 118:144-150.
    [23]Sinclair T R, Horie T. Leaf nitrogen,photosynthesis,and crop radiation use efficiency[J]. A review. Crop Science,1989,29:90-98.
    [24]Sinclair T R, Muchow R C. Radiation use efficiency[J]. Advances in Agronomy,1999, 65:215-265.
    [25]Wajid A, Hussain A, Ahmad A. Effect of sowing date and plant density on growth,light interception and yield of wheat under semi arid conditions[J]. International Journal of Agriculture & Biology,2004,6(6):1119-1123.
    [1]敖和军,邹应斌,中建波,等.早稻施氮对连作晚稻产量和氮肥利用率及土壤有效氮含量的影响[J].植物营养与肥料学报,2007,13(5):772-780.
    [2]鲍土旦.土壤农化分析(第三版)[M].北京:中国农业出版社.2000.
    [3]曾希柏,孙楠,高菊生,等.双季稻田改制对作物生长及土壤养分的影响[J].中国农业科学2007,40(6):1198-1205.
    [4]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻氮肥利用率及氮肥淋洗量研究[J].中国农业大学学报,1998,3(5);51-54.
    [5]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报,2000,(4):659-662.
    [6]范明生,樊红柱,吕世华.西南地区水旱轮作系统养分管理存在问题分析与管理策略建议[J].西南农业学报,2008,21(6):1564-1568.
    [7]范明生,江荣风,张福锁,等.水旱轮作系统作物养分管理策略[J].应用生态学报,2008,19(2):424-432.
    [8]黄冲平,丁鼎.水旱轮作对作物产量和土壤理化性状的影响[J].浙江农业学报,1995,7(6):448-450.
    [9]李萍萍,卞新民,章熙谷,等.长江三角洲麦玉米-稻新种植制度高产稳产的生态学原理研究[J].应用生态学报,1998,9(1):41-46.
    [10]李萍萍,陆建飞,章熙谷,等.麦玉米稻三熟制高产高效同步性分析[J].农业技术经济,1994,(2):18-20.
    [11]李荣刚,翟云忠.江苏省武进市高产水稻田氮素渗漏研究[J].农村生态环境,2000,16(3):19-22.
    [12]刘立军,徐伟,唐成,等.土壤背景氮供应对水稻产量和氮肥利用率的影响[J].中国水稻科学,2005,19(4):343-349.
    [13]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1110.
    [14]秦鱼生,涂仕华,冯文强,等.成都平原水旱轮作种植下土壤养分特性空间变异研究[J].土壤学报,2008,45(2):355-359.
    [15]王定勇,石孝君,毛知耘.长期水旱轮作条件下紫色土养分供应能力的研究[J].植物营养与肥料学报,2004,10(2):120-126.
    [16]王国法,陆龙泉,吴柏荣,等.红壤稻田多元复合种植模式研究[J].浙江农业学报,1995,7(5):343-346.
    [17]王人民,丁元树,陈锦新.稻田年内水旱轮作对土壤微生物和速效养分的影响[J].浙江农业大学学报,1996,22(6);561-565.
    [18]王人长,丁元树.稻田年内水旱轮作对土壤肥力的影响[J].中国水稻科学,1998,12(2):85-91.
    [19]王淑彬,黄国勤,黄海泉,等.稻田水旱轮作的生态经济效应研究[J].江西农业大学学报(自然科学版),2002,24(6):757-761.
    [20]王子芳,高明,秦建成,等.稻田长期水旱轮作对土壤肥力的影响研究[J].西南农业大学学报(自 然科学版),2003,25(6):514-517.
    [21]熊鸿焰,李廷轩,余海英.水旱轮作条件下不同免耕年限土壤微生物数量及影响因素[J].武汉大学学报(理学版),2008,54(2):244-248.
    [22]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008.45(5):915-925.
    [23]赵强基,郑建初,袁从玮,等.中国南方稻区玉米-稻种植模式的建立和实践[J].江苏农业学报,1997,13(4):215-219.
    [24]郑克武,邹江石,吕川根,等.氮肥和密度对两系亚种间杂交稻“两优培九”产量及产量结构的影响[J].江苏农业学报,2001,17-22.
    [25]Fan M S, Liu X J, Jiang R F, et al. Crop yields,internal nutrient use efficiency,and changes in soil properties in rice-wheat rotations under non-floded mulching cultivation[J]. Plant and Soil,,2005, 277(1/2):265-276.
    [26]Fan M S, Lu S H, Jiang R F, et al. Nitrogen input N balance and mineral N dynamics in a rice-wheat rotation in southwest China[J]. Nutrient Cycling in Agro ecosystems,2007, 79:255-265.
    [27]Peng S B, Buresh R, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field Crops Research,2006,96:37-47.
    [28]Witt C, Cassman K G, Olk D C, et al. Crop rotation and residue management effects on carbon sequestration nitrogen cycling and productivity of irrigated rice systems[J]. Plant and Soil,2000, 225:263-278.
    [29]Xu Y C, Shen Q R, Lei B K, et al. Effect of long-term no tillage and application of organic manure on some properties of soil fertility in rice-wheat rotation[J]. Chinese Journal of Applied, 2000,11(4):549-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700