徐州市森林植被碳储量及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据2009年的徐州市森林资源二类清查数据,分别运用生物量换算因子连续函数法和非蓄积换算法估算徐州市森林植被生物量,研究了徐州市森林植被碳储量和碳密度分布规律;分析了林分密度、林龄、间伐等因素对徐州市侧柏人工林碳储量的影响程度;从细根生物量和形态角度,初步探讨了侧柏人工林生态系统碳储量变化的机理。结果表明:
     (1)2009年徐州市森林植被碳储量6.45Tg,乔木林碳储量最高,为5.45Tg;其次是灌木林、四旁树和经济林,分别为0.34Tg、0.34Tg和0.31Tg,四者分别占植被总碳储量的84.46%、5.32%、5.30%和4.75%。乔木林是植被碳储量的最主要贡献者。
     (2)2005~2009年间徐州市森林植被碳储量共增加0.51Tg,年均增加0.13Tg,年均增长率2.54%;4年间森林植被平均碳密度由2005年的25.85Mg·hm-2增加到了2009年的27.37Mg·hm-2。这表明2005~2009年,徐州市森林是CO_2的一个“汇”,随着时间的变化,徐州市森林将发挥越来越大的固碳功能。
     (3)徐州市的森林植被乔木林生物量和碳储量大致呈现从市区—近郊—远郊方向逐渐增加的趋势;碳密度呈现从市区向远郊逐渐降低的趋势。徐州市各优势树种面积、蓄积分布不均,造成碳储量有所差异。杨树和柏类的碳储量之和达5.35Tg,所占比例之和占全市总碳储量的98.16%,显示了这两种优势树种碳储量对徐州市森林植被碳储量有极大贡献。
     (4)徐州市森林植被乔木林碳储量分布规律:阔叶林>针叶林>针阔混交林;中龄林>近熟林>幼龄林>成熟林>过熟林;高郁闭度>中郁闭度>低郁闭度。碳密度分布规律:针叶林>针阔混交林>阔叶林;过龄林>成熟林>近龄林>中龄林>幼龄林;中郁闭度>高郁闭度>低郁闭度。
     (5)2009年徐州市能源消耗、交通运输、建筑施工、农田利用、居民生活和人口呼吸六个方面的碳排放量共计4652.11万t,人均4.86t/人。森林植被碳储量年均增加0.13Tg,相当于同期碳排放量的1.00%,即减排贡献率也为1.00%,说明森林植被对城市碳排放有一定的消弱作用。
     (6)3种林分密度单位面积平均碳储量分别为:94.11t/hm~2(1679株/hm~2)、79.06t/hm~2(2250株/hm~2)和73.32t/hm~2(3074株/hm~2)。其中,乔木层、林下灌草层和枯落物层的碳储量随着林分密度增加在系统中所占比重逐渐减小,土壤层碳储量随林分密度增加在系统中所占比重呈增加趋势。
     (7)3种林龄的侧柏人工林生态系统其单位面积平均碳储量分别为:40年生侧柏林碳储量为90.67t/hm~2,48年生为82.60t/hm~2和55年生为109.54t/hm~2。侧柏单株生物量随林龄增加呈明显上升趋势,乔木层碳储量在系统碳储量中所占比重随林龄增加呈明显上升趋势,乔木层各器官生物量随林龄增加而增加。不同林龄侧柏人工林土壤有机碳储量结果为:40年生侧柏林为60.67t/hm~2,48年生侧柏林为48.12t/hm~2,55年生侧柏林为56.00t/hm~2。
     (8)间伐两次侧柏林碳储量(76.36t/hm~2)>间伐一次侧柏林碳储量(73.30t/hm~2)>未间伐侧柏林碳储量(68.54t/hm~2),其中乔木层碳储量为:间伐一次(37.35t/hm~2)>间伐两次(30.42t/hm~2)>未间伐(28.13t/hm~2),土壤层碳储量为间伐两次(39.38t/hm~2)明显高于未间伐(36.09t/hm~2)和间伐一次(32.47t/hm~2)。可见,适度的间伐可以增加系统碳储量。
     (9)不同林分密度细根生物量的变化与不同林分密度下的乔木层、土壤层以及生态系统碳储量变化规律一致,均为低林分密度下最大,高林分密度下最小。细根形态随林分密度的降低表现为低级根中的1、2级根直径变小,根长先变长后变短;而高级根中的5级根直径变粗。
     (10)1次间伐细根生物量与土壤层和生态系统碳储量的变化规律一致,均表现为间伐后明显减少,但乔木层碳储量在一次间伐后略有增加;细根生物量在两次间伐后减少,这与乔木层碳储量有相似规律,但两次间伐后土壤层和生态系统碳储量却有所增加。两次间伐后,3、4级根直径变粗,5级根直径变小;4、5级根平均根长变长,吸收、运输和延伸能力均增强,5级根寿命缩短,归还到土壤中碳增多。因此,适度间伐不但不会减少细根生物量反而有利于整个生态系统碳储量的增加。
     (11)细根生物量随林龄的增加明显减少与不同林龄下土壤层碳储量的变化规律类似,乔木层和生态系统碳储量随林龄的增加而增加。细根形态随林龄的增加表现为2级根直径先变粗后变细,4、5级根直径和根长均先变小后变大。
     综上所述,城市是大气中CO_2的主要来源,城市植被是较大的“汇”。徐州市城市森林植被对固定城市中排放的CO_2有较大贡献,但不同类型森林植被的碳储量有所差异;适度间伐等经营措施可以提高城市人工林生态系统的碳储量;侧柏人工林细根的结构和功能变化与系统碳储量变化具有较高一致性,这可能是导致系统碳储量变化的主要因素之一。
Based on the data of Forest Management Inventory in2009, Biomass expansion factor andaverage biomass methods are used to estimate the total biomass, presenting the distribution trendof carbon storage and density of forest vegetation in Xuzhou. Analysis the influence degree ofcarbon storage in different factors, including the forest age, stand density, thinning and otherfacters on the Platyclatdus orientalis plantation in Xuzhou city. A preliminarily discussed thechange mechanism on carbon storage of the Platyclatdus orientalis Plantation.The results showedthat:
     (1) In2009, Xuzhou forest vegetation carbon storage is6.45Tg, carbon storage of arborforest is the highest, about5.45Tg; Secondly is the shrub, odd tree and economic forest, arerespectively0.34Tg,0.31Tg and0.34Tg, the above four respectively84.46%,5.32%,5.30%and4.75%account for the total vegetation carbon storage.
     (2) The carbon storage of forest vegetation in Xuzhou increases0.51Tg between2005and2009, with an average annual increase by0.13Tg and an average annual growth rate of2.54%;The average density of forest vegetation carbon increases from25.85Mg· hm-2in2005to27.37Mg· hm-2in2009. This result suggests that, Xuzhou forest is "carbon sink" from2005to2009,and it will play a more and more important role of carbon sequestration in the future.
     (3) The arbor forest biomass and carbon storage of different counties’ forest vegetationgenerally present a gradual increasing trend from city to suburb and to exurb in Xuzhou. But thecarbon density decreases gradually from the city to the exurb. The uneven distribution of acreageand volume of dominant species is a common phenomenon, resulting in the differencedistribution of carbon storage in Xuzhou. The sum of poplar and cypress carbon storage is5.35Tg, accounts for98.16%of the total forest vegetation carbon storage in Xuzhou, showing thetwo dominant species have great contribution to the carbon storage of forest vegetation inXuzhou.
     (4) The distribution rule of arbor forest carbon storage of forest vegetation in Xuzhou is:broad-leaved forest>coniferous forest>coniferous and broad-leaved mixed forest; andmiddle-age forest>per-matured forest>young growth forest>matured forest>over-matureforest; and high canopy density>middle canopy density>low canopy density. The distributionrule of arbor forest carbon density of forest vegetation in Xuzhou is: coniferous forest>coniferous and broad-leaved mixed forest>broad-leaved forest; and over-mature forest>matured forest>per-matured forest>middle-age forest>young growth forest; and middlecanopy density>high canopy density>low canopy density.
     (5) In2009, the carbon emission including energy consumption, transportation,construction, farmland utilization, residents living and population breathing, amounts to46.52million t, per capita4.86t in Xuzhou. The forest vegetation reducts CO_2accounted for1.00%bycarbon emission. It showed that the forest vegetation has some effect on the carbon emission inXuzhou.
     (6)Three different stands density of P. orientalis plantation unit area average carbonstorage were as follow:94.11t/hm~2and (1679individual/hm~2),79.06t/hm~2and (2250individual/hm~2),73.32t/hm~2and (3074individual/hm~2), in which the carbon stocks of treelayer, understory shrub, herb layer and litter layer are decreased with the stand density increasing,the proportion of Carbon reserves in the soil layer in the system was increased with the increasein stand density.
     (7)Three different age of P. orientalis forest plantation ecosystems per unit area averagecarbon stocks were as follows: the40a P. orientalis forest plantation is90.67t/hm~2,48a P.orientalis forest plantation is82.60t/hm~2and55a P. orientalis forest plantation is109.54t/hm~2,the individual of P. orientalis plant biomass showing a rising trend with the stand ageincreased, the proportion of Tree layer of carbon reserves in the total ecosystem carbon storageshowing a clear upward trend with the ages increase, the biomass of Various organs of the treelayer with the increase of forest age increase. The results of soil organic carbon storage indifferent ages of P. orientalis Plantation as follow: the40a P. orientalis Plantation is60.67t/hm~2,48a is48.12t/hm~2,55a is56.00t/hm~2.
     (8)The secondary thinning plots (76.36t/hm~2)>the carbon reserves in first thinningplots(73.30t/hm~2)> the carbon reserves of original thinned plots(68.54t/hm~2), in which the treelayer of carbon reserves is as follow: the first thinning plots(37.35t/hm~2)> the secondarythinning plots (30.42t/hm~2)> the original thinned plots(28.13t/hm~2), in the secondary thinningplot the carbon reserves tree layer was significantly reduced, the individual biomass wassignificantly increased. The carbon stocks of soil layer showed that: the layer of soil carbon stockchanges for thinning secondary (39.38t/hm~2)> original thinning (36.09t/hm~2)> first thinning(32.47t/hm~2). The prediction conclusions is moderate thinning can increase the carbon storage inP. orientalis Plantation ecosystems.
     (9)Response of fine root biomass to stand density was in conformity with the changeregularity of arbor layer, soil profile and ecosystem carbon reserves under different stand density.The change regularity showed the reponse was the most obvious under low density, while lestobvious under the high density. The fine root morphology represented that the diameter of lever1st and2nd root decreased, root length shortened after getting longer, while the diameter of the fifth root increased with decreased stand density.
     (10)The response of fine root biomass to the first thinning was concordant with the law ofecosystem carbon reserves, they were both noticeably decreasing after thinning, except the slightincreasing of carbon reserves after the first thinning; fine root biomass were decreasing afterthe second thinning, having the similar tendency with carbon reserves in arbor layer. But carbonreserves in soil profile and ecosystem were increasing. Carbon backing to the soil profile alsodecreased. After the second thinning, diameter of lever3and4fine lever has become largerwhile that of lever5were decreased. Root length of lever4and5were increasing, capacity ofuptaking, transportation and extending to the soil were greatly improved.
     (11) Fine root biomass was obviously decreasing with the increasing age of the stand.Similar to the changes in soil profile of different tree ages, carbon reserves in arbor layer andecosystem increased as the the tree ages increased. Fine root shape showed that the diameter oflever2root got small after getting larger. Diameter and length of lever4and5fine root weredecreased firstly, and then increased.
引文
[1]曹子林,王晓丽,郭盘江,等.两种郁闭度华山松成熟林植物物种结构特征[J].西南林学院学报,2009,29(2):1–5.
    [2]常文静,郭大立.中国温带、亚热带和热带森林45个常见树种细根直径变异[J].植物生态学报,2008,32(6)1248–1257.
    [3]陈灵芝,任继凯,鲍显诚.北京西山人工油松林群落学特征及生物量的研究[J].植物生态学与地植物学报,1984,8(3):173–181.
    [4]陈光水,何宗明,谢锦升,等.福建柏和杉木人工林细根生产力、分布及周转的比较[J].林业科学,2004,40(4):15–21.
    [5]陈佳瀛.城市森林小气候效应的研究——以上海市浦东外环林带为例[D].博士学位论文:华东师范大学,2006,5.
    [6]陈伟珂,罗方,基于全生命周期理论的建筑能耗问题研究[J].建筑科学,2008(10):23–27.
    [7]党承林,吴兆录.季风长绿阔叶林短刺栲群落的生物量研究[J].云南大学学报(自然科学版),1992,14(2):95–107.
    [8]丁国泉,于立忠,王政权,等.施肥对日本落叶松细根形态的影响[J].东北林业大学学报,2010,38(5):16–19.
    [9]丁贵杰.马尾松人工林生物量和生产力研究I.不同造林密度生物量及密度效应[J].福建林学院学报2003,23(1):34–38
    [10]东北林业大学.森林生态学[M].北京:中国林业出版社,1981:88.
    [11]董鹏.徐州市石灰岩山地侧柏人工林结构特征的研究[D].硕士学位论文:南京林业大学,2011,6.
    [12]方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算.中国科学D辑:地球科学[J],2007,37(6):804–812.
    [13]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497–508.
    [14]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学,2001,43(9):967–973.
    [15]方晰,田大伦,项文化,等.不同密度湿地松人工林中碳的积累与分配[J].浙江林学院学报.2003,20(4):374–379
    [16]冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓[J].生态学报,2006,26(11):3870–3877.
    [17]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127–134.
    [18]韩明臣,李智勇.城市森林生态效益评价及模型研究现状[J].世界林业研究,2011,24(2):42–46.
    [19]何勇.中国气候、陆地生态系统碳循环研究[M].北京:气象出版社,2006.
    [20]侯元兆,张佩昌,王琦,等.中国森林资源核算研究[M].北京:中国林业出版社,1995.
    [21]黄从德,张建,杨万勤,等.四川森林植被碳储量的时空变化[J].应用生态学报,2007,18(12):2687–2692.
    [22]黄从德,张健,杨万勤,等.四川省及重庆地区森林植被碳储量动态[J].生态学报,2008,28(3):966–975.
    [23]黄从德.四川森林生态系统碳储量及其空间分异特征[D].博士学位论文:四川农业大学,2008,7.
    [24]贾淑霞,王政权,梅莉,等.施肥对落叶松和水曲柳人工林土壤呼吸的影响[J].植物生态学报,2007,31(3):372–379.
    [25]贾治邦.生态建设与改革发展:2009年林业重大问题调查研究报告[M].北京:中国林业出版社,2010,10:35.
    [26]蒋延玲,周广胜.兴安落叶松林碳平衡和全球变化影响研究[J].2001,12(4):481–484.
    [27]蒋有绪.世界森林生态系统结构与功能的研究综述[J].林业科学研究.1995,8(3):314–321.
    [28]柯水发,潘晨光,温亚利,等.应对气候变化的林业行动及其对就业的影响[J].中国人口、资源与环境,2010,20(6):6–12.
    [29]李朝.侧柏人工林生物量研究[D].硕士学位论文:南京林业大学,2010,7.
    [30]李春义,马履一,王希群,等.抚育间伐对北京山区侧柏人工林林下植物多样性的短期影响[J].北京林业大学学报,2007,29(3):60–66.
    [31]李春明,杜纪山,张会儒.抚育间伐对森林生长的影响及其模型研究林业科学研究[J].西北林学院学报,2003,16(5):636–641.
    [32]李克让,王绍强,曹明奎.中国森林植被和土壤的碳储量[J].中国科学D辑,2003,33(1):72–80.
    [33]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981.34–50.
    [34]李文华.森林生物生物量的概念及其研究的基本途径[J].自然资源,1978(1):17–92.
    [35]李永宁,张宾兰,秦淑英,等.郁闭度及其测定方法研究与应用[J].世界林业研究,2008,21(1):40–46.
    [36]李鹏,李占斌,赵忠,等.渭北黄土高原不同立地上刺槐根系分布特征研究[J].水土保持通报,2002,22(5):15–19.
    [37]梁波,穆作文,蔡鸿宇,等.徐州杨树人工林存在问题的探讨[J].江苏林业科技,2007,34(4):48–51.
    [38]刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究[J].东北林业大学学报,1990,18(2):40–46.
    [39]刘国华,傅伯杰,方精云.中国森林碳动态及其全球碳平衡的贡献[J].生态学报,2000,20(5):734–739
    [40]刘磊.基于多源数据的森林生物量与生产力估算研究[D].硕士学位论文:南京林业大学,2010.
    [41]林希昊,王真辉等.不同树龄橡胶林细根生物量的垂直分布和年内动态[J].生态学报,2008,28(9):4128–4135.
    [42]林伟宏,张福锁,白克智.大气CO2浓度升高对对植物根际微生物量的影响[J].科学通报,1999,44(16):1690–1696.
    [43]罗云建,张小全,侯振宏,等.我国落叶松林生物量碳计量参数的初步研究[J].植物生态学报,2007,31(6):1111–1118.
    [44]罗云建,张小全,王效科,等.森林生物量的估算方法及其研究进展[J].林业科学,2009,45(8):129–134.
    [45]马履一,李春义,王希群,徐昕.不同强度间伐对北京山区油松生长及其林下植物多样性的影响.林业科学,2007,43(5):1–9.
    [46]马明东,江洪,刘跃建.楠木人工林生态系统生物量、碳含量、碳贮量及其分布[J].林业科学,2008,44(3):34–39.
    [47]潘维俦,李利村,高正衡.不同地域类型杉木林的生物产量和营养元素分布[J].中南林业技,1979(4):12–14.
    [48]佩卿.1983.木材化学.北京:中国林业出版社.
    [49]彭舜磊,王得祥,赵辉.等.我国人工林现状与近自然经营途径探讨[J].西北林学院学报,2008,23(2):184–188
    [50]钱杰.大都市碳源碳汇研究——以上海市为例[D].上海:华东师范大学,博士学位论文,2004.03.
    [51]权伟,徐侠,阮宏华,等.武夷山不同海拔高度植被细根生物量及形态特征[J].生态学杂志,2008,27(7):1095–1103.
    [52]权伟,余少娜,王国兵,等.武夷山不同海拔植被土壤细根比根长季节动态[J].南京林业大学学报:自然科学版,2011,35(6):139–142.
    [53]史建伟,王孟本,陈建文,张国明.柠条细根的分布和动态及其与土壤资源有效性的关系[J].生态学报,2011,31(14):3990–3998.
    [54]施溯筠,李光,张三焕.长白山区森林固定CO2价值的评估[J].延边大学学报(自然科学版),2002,28(2):134–137.
    [55]孙翠玲,朱占学,王珍,等.杨树人工林地力衰退及维护与提高土壤肥力技术的研究[J].林业科学,1995,31(6):506–511.
    [56]孙长忠,沈国舫.对我国人工林生产力评价与提高问题的几点认识[J].世界林业研究,2001,14(1):76–80.
    [57]孙祥水.间伐对楠木杉木混交林生长影响的研究[J].亚热带农业研究,2008,4(3),184–187.
    [58]田立新,包森,方国昌.江苏省能源结构情景分析及碳排放研究[J].能源技术与管理,2011,5:1–3.
    [59]童丽丽.南京城市森林群落结构及优化模式研究[D].博士学位论文:南京林业大学,2007,5.
    [60]王兵,李海静,郭泉水,等.大岗山森林生物多样性研究[M].北京:中国林业出版社,2001:89–91
    [61]王良桂,苏世伟.江苏平原林权制度改革思考[J].南京林业大学学报(人文社会科学版),2008,8(4):55–58.
    [62]王磊,丁晶晶,季永华,等.江苏省森林碳储量动态变化及其经济价值评价[J].南京林业大学学报(自然科学版),2010,34(2):1–5.
    [63]王效科,冯宗炜.中国森林生态系统中植被固定大气碳的潜力[J].生态学杂志,2000,19(4):72–74.
    [64]]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13–16.
    [65]王秀云,孙玉军,马炜.不同密度长白落叶松林生物量与碳储量分布特征[J].福建林学院学报2011,31(3):221–226.
    [66]王秀云.不同年龄长白落叶松人工林碳储量分布特征[D].北京:北京林业大学,2011.
    [67]王政权,张彦东.水曲柳落叶松根系之间的相互作用研究[J].植物生态学报,2000,24(3):346–350.
    [68]温全平.城市森林规划理论与方法[D].博士学位论文:同济大学,2008,8.
    [69]卫星,王政权,张国珍,等.水曲柳苗木不同根序对干旱胁迫的生理生化反应[J].林业科学,2009,45(6):16–21.
    [70]魏文俊,王兵,李少宁,等.江西省森林植被乔木层碳储量与碳密度研究[J].江西农业大学学报,2007,29(5):767–772.
    [71]尉海东,马祥庆.不同发育阶段马尾松人工林生态系统碳贮置研究[J].西北农林科技大学学报(自然科学版),2007,35(1):171–174.
    [72]吴鹏飞,朱波,刘世荣,王小国.不同林龄桤-柏混交林生态系统的碳储量及其分配[J].应用生态学报,2008,19(7):1419–1424.
    [73]谢高地,李士美,肖玉,等.碳汇价值的形成和评价[J].自然资源学报,2011,26(1):1–10.
    [74]刑艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型[J].应用生态学报,2007,18(1):1–8.
    [75]徐州统计局.《徐州统计年鉴2010》[M].北京:中国统计出版社,2010.
    [76]闫家锋,关庆伟,邓送求,等.徐州云龙山侧柏林生物量和生产力研究[J].林业科技开发,2009,23(2):48–50.
    [77]杨秀云,韩有志等.华北落叶松人工林细根生物量及季节动态[J].山西农业大学学报(自然科学版)2007,27(2):116–119,152.
    [78]杨秀云,韩有志,张芸香.距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化[J].植物生态学报,2008,32(6):1277–1284.
    [79]于立忠,丁国泉,朱教君,等.施肥对日本落叶松人工林细根生物量的影响[J].应用生态学报,2007,18(4):713–720.
    [80]于海群,刘勇,李国雷,等.油松幼龄人工林土壤质量对间伐强度的响应[J].水土保持通报,2008,28(3):65–70.
    [81]余新晓,秦永胜,陈丽华.北京山地森林生态服务功能及其价值初步研究[J].生态学报,2004,22(5):783–786.
    [82]俞艳霞,张建军,王孟本.山西省森林植被碳储量及其动态变化研究[J].林业资源管理,2008,6:35–39.
    [83]叶金盛,佘光辉.广东省森林植被碳储量动态研究[J].南京林业大学学报(自然科学版),2010,34(4):7–12.
    [84]赵敏.上海碳源碳汇结构变化及其驱动机制研究[D].上海:华东师范大学,博士学位论文.2010.4.
    [85]赵敏,周广胜.中国森林生态系统的植被碳储量及其影响因子分析[J].地理科学,2004,24(1):50–54.
    [86]赵煜,赵千钧,崔胜辉,等.城市森林生态服务价值评估研究进展[J].生态学报,2009,29(12):6723–6732.
    [87]张良德,徐学选,胡伟,等.黄土丘陵区燕沟流域人工刺槐林的细根空间分布特征[J].林业科学,2011,47(11):31–36.
    [88]张小全,吴可红.森林细根生产和周转研究[J].林业科学,2001,37(3:)126–138.
    [89]张永利,等.中国森林生态系统服务功能研究著[M].北京:科学出版社,2010,6:21.
    [90]张杰.城市扩展时空动态模拟及其对陆地生态系统碳吸收的影响研究——以北京都市区为例[D].博士学位论文:南京大学,2006.
    [91]张磊,吴泽民,吴文友.基于GIS技术的城市森林生态效益比较——以合肥、蚌埠、马鞍山市为例[J].东北林业大学学报,2010,38(3):82–86.
    [92]张陶新,周跃云,芦鹏.中国城市低碳建筑的内涵与碳排放量的估算模型[J].湖南工业大学学报,2011,25(1):78–80.
    [93]张雄.湖南主要针叶林类型碳贮量及碳汇经济价值估算[D].硕士学位论文:中南林业科技大学,2009.
    [94]张鹏超,张怡平,杨国平,等.哀牢山亚热带常绿阔叶林乔木碳储量及固碳增量[J].生态学杂志,2010,29(6):1047–1053.
    [95]张国庆,黄从德,郭恒,等.不同密度马尾松人工林生态系统碳储量空间分布格局[J].浙江林业科技,2007,26(6):10–14.
    [96]张茂震,王广兴,刘安兴.基于森林资源连续清查资料估算的浙江省森林生物量及生产力[J].林业科学,2009,45(9):13–17.
    [97]张萍.北京森林碳储量研究[D].博士学位论文:北京林业大学,2009,6.
    [98]周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响[J].北京林业大学学报,2006,28(6):51–55.
    [99]朱建刚,余新晓,张振明.森林生态系统碳循环动态仿真系统的所涉及[J].应用生态学报,2009,20(11):2603–2609.
    [100]《2011全球人类住区报告》关注城市与气候变化问题[Online]. Available:http://www.unmultimedia. org/radio/chinese/detail/150481.html,2011,7.
    [101] Alam A, Kilpel inen A, Kellom ki S. Impacts of thinning on growth, timber production and carbon stocks in Finland underchanging climate Scandinavian[J]. Journal of Forest Research,2009,23(6):501–512.
    [102] Bauer G, Bazzaz F, Minocha R, et al. N additions on tissue chemistry, photosynthetic capacity, and carbon sequestrationpotential of ared pine (Pinusresinosa Ait.)stand in the NE United States[J]. Forest Ecology and Management,2004,196:173–186.
    [103] Berg B, Laskowski R. Litter decomposition: a guide to carbon and nutrient turnover [J].Adv.Ecol.Res,2006,38:0–428.
    [104] Black TA, Harden JW. Effect of timber harvest on soil carbon storage at Blodgett experimental forest[J]. CaliforniaCanadian Journal of Forest Research,1995,25(8):1385–1396.
    [105] Boysen Jensen P. Studier over skovtraernes forhold til lyset Tidsskr[J]. F.Skorvaessen,1910,22:11–16.
    [106] Boxmna A.W.,K.Blanck,.T.E. Brandrud, etal.Vegetation and Soil Biota Response to Experimentally-enchanged NitorgenInputs in Coniferous Forest Ecosystems of the NITREX Porjeet. For.Eoc.Mngmt.1998,101:65–80.
    [107] Brown S, Lugo A E. Biomass of tropical forests: a new estimate based on forest volumes[J].Science,1984,233:1290-1293.
    [108] Boerner REJ, Huang JJ, Hart SC. Fire, thinning, and the carbon economy: Effects of fire and fire surrogate treatments onestimated carbon storage and sequestration rate[J]. Forest Ecology and Management,2008,255(8-9):3081–3097.
    [109] Busse MD, Sanchez FG, Ratcliff AW, et al. Soil carbon sequestration and changes in fungal and bacterial biomass followingincorporation of forest residues[J].Soil Biology and Biochemistry,2009,41(2):220–227.
    [110] Burger H. Holz, Blattmenge, Zuwachs.12Fichten im Plenterwald Mitteil, Schweiz, Anst. Forttl[J]. Versuchew,1952,28:109–156.
    [111] Brown S L, Schroeder P E. Spatial pattems of aboveground production and mortality of woody biomass for eastern U.S.forests [J].Ecological Applications,1999,9:968–980.
    [112] Brown S, Iverson L R. Biomass estimates for tropical forests[J].World Resource Review,1992,4:366–384.
    [113] C. Jourdan, E V Silva, J L M Gon alves, et al. Fine root production and turnover in Brazilian Eucalyptus plantations undercontrasting nitrogen fertilization regimes[J]. For Eco Manag,2008,256(3):396–404.
    [114] Canary JD.Additional carbon sequestration following repeated urea fertilization of second-growth Douglas-fir stands inwestern Washington[J]. For: Ecol. Manage,2000,138(1-3):225–232.
    [115] Campbell J, Alberti G, Martin J, et al. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in thenorthern Sierra Nevada[J]. Forest Ecology and Management,2009,257(2):453–463.
    [116] Canadell, J, RB Jackson, JR Ehleringer, HA Mooney, OE Sala, E-D Schulze. Maximum rooting depth of vegetation types atthe global scale[J]. Oecologia,1996,108:583–595.
    [117] Chiang JM, McEwan RW, Yaussy DA, et al. The effects of prescribed fire and silvicultural thinning on the abovegroundcarbon stocks and net primary production of overstory trees in an oak-hickory ecosystem in southern Ohio[J].Forest Ecologyand Management,2008,255(5-6):1584–1594.
    [118] Chatterjee A, Vance GF, Pendall E, et al. Timber harvesting alters soil carbon mineralization and microbial communitystructure in coniferous forests[J]. Soil Biology and Biochemistry,2008,40(7):1901–1907.
    [119] Covington WW. Changes in forest floor organic matter and nutrient content following clearcutting in northern hardwoods[J].Ecology,1981,62(1):41–48.
    [120] Cohen WB, Harmon ME, Wallin DO. Two decades of carbon flux from forests of the Pacific Northwest[J]. Bioscience,1996,46(11):836–844.
    [121] Colleen M. Iversen, Joanne Ledford and Richard J. Norby.CO2enrichment increases carbon and nitrogen input from fineroots in a deciduous forest[J]. New Phytologist,2008,179:837–847.
    [122] Comas L H., Eissenstat D M.,2004. Linking fine root traits to maximum potential growth rate among11mature temperatetree species[J]. Functional Ecology18,388–397.
    [123] Chigineva, NI, Aleksandrova, AV, Tiunov, AV.The addition of labile carbon alters litter fungal communities and decreaseslitter decomposition rates[J]. Applied Soil Ecology,2009,42(3):264–270.
    [124] Davis J.P, B.Haines, D.Colemna, R.Hendrick. Fine Root Dynamics Along an Elevational Gradient in the SouthernAppalachin Mountains, USA[J]. Forest Ecology and Management,2004,187:19–34.
    [125] Day F.P.,E.P.Weber,C. Ross Hinkle,B.Darke. Eeffcts of Elevated Atmospheric CO2on Fine Root length and Distribution inan Oak-palmetto Scrub Ecosystem in Central Florida[J]. Global Change Biology,1996,2:143–148.
    [126] Dixon R X,Brown S B,Houghton R A,et al. Carbon pools and flux of global forest ecosystem[J]. Science,1994,263:185–190.
    [127] Diochon A, Kellman L, Beltrami H. Looking deeper: An investigation of soil carbon losses following harvesting from amanaged northeastern red spruce (Picea rubens Sarg.) forest chronosequence[J]. Forest Ecology and Management,2009,257(2):413–420.
    [128] Ebermeyer E. Die gesamte Lehre der Waldstreu mit Rucksicht auf chemische static des Waldbaues[M]. Belin:J.Springer,1876,116.
    [129] Eissenstat D M., Yanai R D. The ecology of root lifespan[J]. Advances in Ecological Research,1997,27:1-60.
    [130] Fang J Y,Chen A P,Peng C H,et al.Changes in forest biomass carbon storage in China between1949and1998[J].Science,2001,292:2320–2322.
    [131] Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between1949and1998[J]. Science,2001,291:2320–2322.
    [132] Fang J Y, Wang G G, Liu G H, et al. Forest biomass of China: an estimate based on the biomass-volume relationship [J].Ecological Applications,1998,8(4):1084–1091.
    [133] Finer L, Mannerkoski H, Piirainen S, et al.Carbon and nitrogen pools in an old-growth,Norway spruce mixed forest ineastern Finland and changesassociated with clearcutting[J]. Forest Ecology and Management,2003,174(1-3):51–63.
    [134] Footen PW, Harrison RB, Strahm BD.Long-term effects of nitrogen fertilization on the productivity of subsequent stands ofDouglas-fir in the Pacific Northwest[J]. Forest Ecology and Management,2009,258(10):2194–2198.
    [135] Frey H C, Zheng P. Probabilistic analysis of driving cycle-based highway vehicle emission factors[J].Environmental Scienceand Technology,2001,36(23):5184–5191.
    [136] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist,2000,147:13–31.
    [137] Gray AN, Spies TA, Easter MJ. Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests[J].Canadian Journal of Forest Research,2002,32(2):332–343.
    [138] Guo D L., Mitchell R J., Hendricks J J. Fine root branch orders respond differentially to carbon source-sink manipulations ina longleaf pine forest[J]. Oecologia2004,140:450–457.
    [139] Guo D L., Li H., Mitchell R J.,et al.2008a. Fine root heterogeneity by branch order: exploring the discrepancy in rootturnover estimates between minirhizotron and carbon isotopic methods[J]. New Phytologist,2008a,177:443–456.
    [140] Guo D L., Mitchell R J., Withington J M.,et al.2008b. Endogenous and exogenous controls of root life span, mortality andnitrogen flux in a longleaf pine forest: root branch order predominates[J]. Journal of Ecology,2008b,96:737–745.
    [141] Guo D L., Xia M X., Wei X., et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked toroot branch order in twenty-three Chinese temperate tree species[J]. New Phytologist,2008c,180:673–683.
    [142] Harding RB,Jokela EJ.Long-term effects of forest fertilization on site organic matter and nutrients [J].Soil Sci. Soc. Am. J,1994,58:216–221.
    [143] Hassett JE, Zak DR. Aspen harvest intensity decreases microbial biomass,extracellular enzyme activity,and soil nitrogencycling[J].Soil Science Society of America Journal,2005,69(1):227–235.
    [144] Hendrick R L., Pregitzer K S. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwoodecosystems[J]. Canadian Journal of Forest Research,1993,23:2507–2520.
    [145] Hodge A.2004. The plastic plant: Root responses to heterogeneous supplies of nutrients[J]. New Phytologist,162:9–24.
    [146] Hishi T., Takeda H.2005. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system ofChamaecyparis obtusa[J]. New Phytologist167,509–521.
    [147] Hobbie SE. Nitrogen effects on decomposition: A five-year experiment in eight temperate sites[J]. Ecology,2008,89(9):2633–2644.
    [148] IPCC. Revised1996IPCC Guidelines for National Greenhouse Gas Inventories[M]. Bracknell: IPCC/OECD/IEA, UKMeteorological Office,1996.
    [149] IPCC.Climate Change1990:The IPCC scientific assessment[M].Cambridge,UK: Cambridge University Press,1990.
    [150] IPCC. Summary for Policymakers of Climate Change2007: The Physical Science Basis. Contribution of Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge:Cambridge UniversityPress,2007.
    [151] IPCC. Climate Change200l:The scientific basis [R]. The Third Assessment Report of Working Group Cambridge:Cambridge Univ Press,2001.
    [152] IPCC.Good Practice guidance for landuse.land-use change and forestry.Japan,Hayama,IPCC/IGES,2003, ISBN4-88788-032-041.
    [153] IPCC. Climate Change2007:The physical scientific basis[R].The Fourth Assessment Report of Working Group Cambridge:Cambridge Univ Press,2007.
    [154] Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration?[J].Geoderma,2007,137(3-4):253–268.
    [155] Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, and nutrient contents.Proceedings of the National Academy of Sciences of the United State of America1997,94:7362–7366.
    [156] Jassal RS, Black TA, Cai TB, et al. Impact of nitrogen fertilization on carbon and water balances in a chronosequence ofthree Douglas-fir stands in the Pacific Northwest[J]. Agricultural and Forest Meteorology,2010,150(2):208–218.
    [157] Jandl R,Kopeszki H,Bruckner A, et al.Forest soil chemistry and mesofauna20years after an amelioration fertilization[J].Restoration Ecology,2003,11(2):239–246.
    [158] Jiang H, Apps MJ, Peng CH, et al.Modeling the influence of harvesting on Chinese boreal forest carbon dynamics[J]. ForestEcology andManagement,2002,169(1-2):65–82.
    [159] Johnson W C, Sharpe D M. The ratio of total to merchantable forest biomass and its application to the global carbonbudget[J]. Canadian Journal of Forest Research,1983,13:372–383.
    [160] Johnson K, Scatena FN, Pan Y. Short-and long-term responses of total soil organic carbon to harvesting in a northernhardwood forest[J].Forest Ecology and Management,2009,259(3-4):1262–1267.
    [161] Johnson DW, Curtis PS. Effects of forest management on soil C and N storage: meta analysis[J]. Forest Ecology andManagement,2001,140(2):227–238.
    [162] Jones HS, Garrett LG, Beets PN, et al. Impacts of harvest residue management on soil carbon stocks in a plantation forest[J].Soil Science Society of America,2008,72(6):1621–1627.
    [163] Kaipainen T, Liski J, Pussinen A,et al.Managing carbon sinks by changing rotation length in European forests[J].Environmental Science and Policy,2004(3),7:205–219.
    [164] Kauppi P E, Mielikainen K, Kusela K. Biomass and carbon budget of European forests,1971to1990[J]. Science,1992,256:70–74.
    [165] Kaspari, M, Garcia, M.N, Harms, K.E, et al.. Multiple nutrients limit litterfall and decomposition in a tropical forest[J].Ecology Letters2008,11(1):35–43.
    [166] Kim C. Soil CO2efflux in clear-cut and uncut red pine (Pinus densiflora S. et. Z.) stands in Korea[J].Forest Ecology andManagement,2008,255:3318–3321.
    [167] Kramer P J. Carbon dioxide concentration, photosynthesis, and dry matter production[J]. BioScience,1981,31:29-33.
    [168] Lal R. Forest soils and carbon sequestration[J].Forest Ecology and Management,2005,220(1-3):242–258.
    [169] Laporte MF, Duchesne LC, Morrison IK. Effect of clear cutting, selection cutting, shelter wood cutting and microsites onsoil surface CO2efflux in a tolerant hard wood ecosystem of northern Ontario [J].Forest Ecology and Management,2003,174(1-3):565–575.
    [170] Levy P E, Hale S E, Nicoll B C. Biomass expansion factors and root: shoot ratios for coniferous tree species in GreatBritain[J]. Forestry,2004,77(5):421–430.
    [171] Liu GL, Han S. Long-term forest management and timely transfer of carbon into wood products help reduce atmosphericcarbon [J].Ecological Modelling,2009,220(13):1719–1723.
    [172] López B C, Sabaté S,Gracia C A. Thinning effects on carbon allocation to fine roots in a Quercus ilex forest[J].TreePhysiol,2003,23:1217–1224
    [173] Lugo A E, Brown S. Tropical forests as sinks of atmospheric carbon[J]. Forest Ecology and Management,1992,54:239-255.
    [174] Lal R. Forest soils and carbon sequestration[J].Forest Ecology and Management,2005,220(1-3):242-258.
    [175] Lundstr m U, Bain D, Taylor A, et al. Effects of acidification and its mitigation with lime and wood ash on forest soilprocesses:a review[J].Water,Air,&Soil Pollution: Focus,2003,3(4):5-28.
    [176] Malchair S, Carnol M. Microbial biomass and C and N transformations in forest floors under European beech, sessile oak,Norway spruce and Douglas-fir at four temperate forest sites[J].Soil Biology and Biochemistry,2009,41(4):831–839.
    [177] Moscatelli MC, Lagornarsino A, De Angelis P, et al. Short-and medium-term contrasting effects of nitrogen fertilization onC and N cycling in a poplar plantation soil[J]. Forest Ecology and Management,2008,255(3-4):447–454.
    [178] Munoz F, Rubilar R, Espinosa M, Cancino J, Toro J, Herrera M. The effect of pruning and thinning on above ground aerialbiomass of Eucalyptus nitens (Deane&Maiden) Maiden[J]. Forest Ecology and Management,2008,255:365–373.
    [179] Nave LE, Vance ED, Swanston CW, et al. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, andnet N-mineralization[J]. Geoderma,2009,153(1-2):231–240.
    [180] Nowak D J, Daniel E C, Jack C S. Air pollution removal by urban trees and shrubs in the United States[J]. Urban Forestry&Urban Greening,2006(4):115–123.
    [181] Nowak D J, Crane D E. Carbon storage and sequestration by urban trees in the USA[J]. Environmental Pollution,2002,116(3):381–389.
    [182] Norby R J,Ledford J,Reilly C D.,et al. Fine-root production dominates response of a deciduous forest to atmospheric CO2enrichment[J]. Proceedings of the National Academy of Sciences of the United State of America,2004,101:9689–9693.
    [183] Norby R J,Ledford J,Reilly C D,et al.Fine-root production dominates response of a deciduous forest to atmospheric CO2enrichment[J]. Proceedings of the National Academy of Sciences of the United State of America,2004,101,9689–9693.
    [184] Pan Y D, Luo T X, Birdsey R, et al. New estimates of carbon storage and sequestration in China’s forests: effects ofage-class and method on inventory-based carbon estimation[J].Climatic Change,2004,67:211–236.
    [185] Piao S L, Fang J Y, Ciais P. The carbon balance of terrestrial ecosystems in China[J].Nature,2009,458:1009–1014.
    [186] Piene H,vanCleve K. Weight loss of litter and cellulose bags in a thinned white spruce forest in interior Alaska[J]. CanadianJournal of Forest Research,1978,8:42–46.
    [187] PregitzerK.S.,D.R.Zak,J.Mzaiaasz,J.DeForest,RS.Curtis,J.Lussenhop.Interactive Eeffcts of Atmospherie CO2and Soil NAvailability on Fine Roots of Populus tremuloides[J]. Ecological Applications.2000,10:18–33.
    [188] PregitzerK S, Deforest JL, Burton A J, et a.l Fine root architecture of nine North American trees[J]. Ecological Monographs,2002,72(2):293–309.
    [189] Pregitzer K S, King J S, Burt on A J., et al. Responses of tree fine roots to temperature[J]. New Phy tologist,2000,147:105–115.
    [190] Pregitzer K S., DeForest J L., Burton A J., et al. Fine root architecture of nine North American trees[J]. EcologicalMonographs2002,72:293–309.
    [191] Pregitzer K S, Kubiske M E, Yu C K.,et al. Relationships among root branch order, carbon, and nitrogen in four temperatespecies[J].Oecologia,1997,111:302–308.
    [192] Pretzsch H. Diversity and productivity in forests: evidence from long-term experimental plots[G]//Scherer-Lonrenzen M,Korner C, Schulze E. Forest Diversity and Function: Temperate and Boreal Systems. Berlin Heidelberg: SpringerVerlag,2005.
    [193] Pretzsch H. Diversity and productivity in forests: evidence from long-term experimental plots[C]//Scherer-LorenzenM,K rner C, Schulze E. Forest Diversity and Function: Temperate and Boreal Systems.Springer Berlin Heidelberg,2005.
    [194] Richard J. Norby,Joanne Ledford, Carolyn D. Reilly, Nicole E. Miller and Elizabeth G. O'Neill.Fine-root productiondominates response of a deciduous forest to atmospheric CO2enrichment[J]. PNAS.2004,101(26):9689–9693.
    [195] Ruijiter F J,Veen B W, Oijen M V, et al. A comparison of soil core sampling and minirhzotrons to quantify root developmentof field-grow potatoes[J].Plant and soil,1996,182:301–312.
    [196] Ryu SR, Concilio A, Chen JQ, et al. Prescribed burning and mechanical thinning effects on belowground conditions and soilrespiration in a mixed-conifer forest, California[J]. Forest Ecology and Management,2009,257(4):1324–1332.
    [197] Sathre R, Gustavsson L, Bergh J. Primary energy and greenhouse gas implications of increasing biomass production throughforest fertilization[J]. Biomass&Bioenergy,2010,34(4):572–581.
    [198] Schulp CJE, Nabuurs GJ, Verburg PH, et al. Effect of tree species on carbon stocks in forest floor and mineral soil andimplications for soil carbon inventories[J]. Forest Ecology and Management,2008,256(3):482–490.
    [199] Schulze ED, Lloyd J, Kelliher FM, et al. Productivity of forests in the Eurosibe rian boreal region and their potential to actas a carbon sink—a synthesis[J]. Global Change Biology,1999,5:703–722.
    [200] Schroeder P E, Brown S, Mo J, et al. Biomass estimation for temperate broadleaf forests of the United States using inventorydata[J]. Forest Science,1997,43(3):424–434.
    [201] Shochat E, Warren PS, Faeth SH. From patterns to emerging processes in mechanistic urban ecology[J]. Trends in Ecologyand Evolution,2006,21(4):186–191.
    [202] Sheriff DW. Respomses of carbon and growth of Pinus radiata stands to thinning and fertilizing[J],Tree Physiology1996,16:527–536.
    [203] Smaill SJ, Clinton PW, Greenfield LG. Nitrogen fertiliser effects on litter fall, FH layer and mineral soil characteristics inNew Zealand Pinus radiata plantations[J]. Forest Ecology and Management,2008,256(4):564–569.
    [204] Somogyi Z, Cienciala E, et al. Indirect methods of large-scale forest biomass estimation [J].European Journal of ForestResearch,2007,126:197–207.
    [205] Spring DA, Kennedy JOS, Mac Nally R. Optimal management of a forested catchment providing timber and carbonsequestration benefits: Climate change effects[J]. Global Environmental Change Part A,2005,15(3):281–292.
    [206] Suchanek TH, Mooney HA, Franklin JF,et al. Carbon dynamics of an old-growth forest[J]. Ecosystems,2004,7:421–426.
    [207] Suzi, K., SG. Liu, R.F. Hughes, et al. Carbon dynamics, land use and choie: building a regional scale multidisciplinarymodel[J]. Motu: Journal of Environmental Management,2001,69(1):25–37.
    [208] Svirejeva-Hopkins A, Schellnhuber H J, Pomaz V L, et al. Urbanised territories as a specific component of the global carboncycle[J]. Ecological Modelling,2004,173(2-3):295–312.
    [209] Tan Z, Liu S, Tieszen LL, et al. Simulated dynamics of carbon stocks driven by changes in land use, management andclimate in a tropical moist ecosystem of Ghana. Agriculture[J]. Ecosystems&Environment,2009,130(3-4):171–176.
    [210] Tang J, Bolstad PV, Martin JG. Soil carbon fluxes and stocks in a Great Lakes forest chronosequence[J]. Global ChangeBiology,2009,15:145–155.
    [211] Tateno R.T.Hishi, H.Takeda. Above-and Belowground Biomass and Net Primary Production in a Cool temperate DeciduousForest in Relation to Topographical Changes in Soil Nitrogen[J]. Foerst Ecology and Management.2004,193:297–306.
    [212] Tateno R, Hishi T, Takeda H. Above-and below ground biomass and net primary production in a cool-temperate deciduousforest in relation to topographical changes in soil nitrogen[J]. For Ecol Manage,2004,193:297–306.
    [213] Taylor AR, Wang JR, Kurz WA. Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picearubens) forests: An exploratory analysis using the CBM-CFS3simulation model[J]. Forest Ecology and Management,2008,255(10):3632–3641.
    [214] Thomas SC, Malczewski G. Wood carbon content of tree species in Eastern China: Interspecific variability and theimportance of the volatile fraction[J]. Journal of Environmental Management,2007,85(3):659–662.
    [215] Thuille A,Schulze ED. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps[J]. GlobalChange Biology,2006,12(2):325-342.
    [216] Turner D P, Koepper G J, Harmon M E,et al. A carbon budget for forests of the conterminous United States[J]. EcologicalApplications,1995,5:421–436.
    [217] Tyrrell ML, Ashton MS, Spalding D, et al.Forests and carbon: a synthesis of science, management, and policy for carbonsequestration in forests[EB/OL].YalePrinting and Publishing Services,2009.[2010-05-21].http://www.yale.edu/gisf/publications.
    [218] Vallet P, Meredieu C, Seynave I, et al. Species substitution for carbon storage: Sessile oak versus Corsican pine in France asa case study[J]..Forest Ecology and Management,2009,257(4):1314–1323.
    [219] Vargas,R., Allen,EB., Allen,MF. Effects of Vegetation Thinning on Above-and Belowground Carbon in a Seasonally DryTropical Forest in Mexico[J]. BIOTROPICA,2009,41(3):302–311.
    [220] Vogt K A, Vogt D J., Palmetto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic foresttype and species[J]. Plant and Soil,1996,187(2):159–219.
    [221] Wan S Q, Norby R J, Pregitzer K S, Ledford J, O’Neill E G. CO2enrichment and warming of the atmosphere enhance bothproductivity and mortality of maple tree fine roots[J]. New Phytologist,2004,162:437–446.
    [222] Wang Z Q., Guo D L., Wang X R., et al. Fine root architecture, morphology, and biomass of different branch orders of twoChinese temperate tree species[J]. Plant and Soil2006,288:155–171.
    [223] West P W. Tree and Forest Measurement [M]. Berlin: Springer Verlag,2004.
    [224] Wells C E., Eissenstat D M. Marked differences in survivorship among apple roots of different diameters[J]. Ecology2001,82,882-892.
    [225] Wells C E., Eissenstat D M. Beyond the roots of young seedlings: The influence of age and order on fine root physiology.Journal of Plant Growth Regulation2002,21:324-334.
    [226] Whittaker R H, Likens G E. Methods of assessing terrestrial productivity [M].New York: Springer Verlag,1975:305-328.
    [227] Xu QF, Xu JM. Changes in s oil carbon pools induced by substitution of plantation for native forest[J]. Pedosphere,2003,133(3):271–278.
    [228] Yanai RD, Currie WS, Goodale CL. Soil carbon dynamics after forest harvest:an ecosystem paradigm reconsidered[J].Ecosystems,2003,6(3):197–212.
    [229] Zeng N, Ding YH, Pan JH, Wang HJ, Gregg J. Climate Change-the Chinese Challenge[J]. Science,2008,319:730–731.
    [230] Zhao M, Zhou G S. Estimation of biomass and net primary productivity of major planted forests in China based on forestinventory data. Forest Ecology and Management,2005,207:295–313.
    [231] Zhao M, Kong ZH, Escobedo FJ. Impacts of urban forests on offsetting carbon emissions from industrial energy use inHangzhou, China[J]. Journal of Environmental Management,2010,91(4):807–813.
    [232] Zhou G S, Wang Y H, Jiang Y L, et al. Estimating biomass and net primary production from forest inventory data: a casestudy of China’s Larix forests[J]. Forest Ecology and Management,2002,169:149–157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700