铝硅矿物的叔胺类捕收剂的合成、性能及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以铝硅矿物的晶体结构和浮选药剂分子设计理论为基础,设计并合成了六种叔胺捕收剂;通过单矿物浮选试验,查明了合成药剂对一水硬铝石和高岭石的捕收行为;通过动电位测试、红外光谱测试、溶液化学计算、量子化学计算和分子动力学模拟等,探讨了十二系列叔胺与一水硬铝石和高岭石的作用机理,分析确定了叔胺分子中取代基的取代基效应与其浮选性能之间的关系。主要内容如下:
     (1)破碎时,一水硬铝石主要沿(001)晶面解离,亲水性较强;高岭石沿(001)晶面完全解理,沿(110)与(010)晶面不完全解理,也有较强亲水性。一水硬铝石和高岭石的荷电机理相似,主要由断裂晶面对H+的吸附或解离引起,且电荷随pH不断变化;此外金属离子的晶格取代使高岭石的层面荷永久负电。捕收剂的极性基团设计以N为主体;选定捕收剂的极性基为取代叔胺型,即-NR2型,取代基选用CH3、C2H5、C3H7、C7H7。
     (2)以脂肪胺、醛、甲酸为原料,采用还原烷基法,制备合成出两个系列6种叔胺化合物,合成产率较高,纯度在80%以上。
     (3)叔胺捕收剂对一水硬铝石和高岭石的浮选性能如下:当浮选一水硬铝石时,六种叔胺捕收能力普遍不高,DRN12、DPN12、DBN12和DRN16的回收率最大值分别只有:52%、61%、6%和62%。当增大叔胺用量时,一水硬铝石的回收率呈增长趋势。当浮选高岭石时,除了取代苄基叔胺(DBN12)以外,其他五种叔胺的捕收能力普遍较好,pH=2-3.5时,高岭石的回收率都在85%以上,当增大叔胺用量时,回收率会逐渐增加。十二系列叔胺对高岭石具有更好的选择性捕收能力,其中DRN12、DEN12和DPN12捕收高岭石和一水硬铝石的最大回收率差(Rkaolinite-Rdiaspore)分别可达42%、41%和42%。十二系列叔胺对一水硬铝石和高岭石的浮选性能表现出相同的规律性:DEN12>DPN12>DRN12>DBN12。
     (4)十二系列叔胺与铝硅矿物表面的作用机理研究表明:十二系列叔胺与铝硅矿物表面的作用形式为物理吸附,且无力吸附是由静电作用引起的,与铝硅矿物表面作用后,叔胺能显著增加它们的表面电位;同时十二系列叔胺改变铝硅矿物的表面电位的大小顺序为:DEN12>DPN12>DRN12>DBN12。酸性条件下,一水硬铝石表面主要是Al-OH,阳离子态的叔胺难以与其发生静电作用;高岭石表面主要是Al-OH和Si-OH,但由于高岭石颗粒带永久负电,因此阳离子态的叔胺可以与其产生静电作用。碱性条件下,一水硬铝石表面主要是Al-O,叔胺阳离子易与其产生静电作用,当pH>pHs以后,静电作用开始逐渐减弱;高岭石表面主要是Al-O和Si-O,叔胺阳离子易与高岭石产生静电作用,但由于高岭石颗粒荷电较多而使溶液中颗粒极度分散,以及叔胺的疏水碳链可能发生的疏水缔合,使浮选效果反而变差。
     (5)十二系列叔胺的取代基效应与其浮选性能的关系研究表明:四种十二叔胺中取代基的诱导效应对叔胺的EHOMO及N原子上的净电荷的影响大小顺序为:DPN12>DEN12>DRN12>DBN12;取代基的诱导效应对叔胺的阳离子的头基端的正电荷的影响大小顺序为:DPN12>DEN12>DRN12>DBN12。四种叔胺中取代基的空间效应大小顺序为:DBN12>DPN12>DEN12>DRN12。叔胺阳离子与高岭石(001)面发生静电作用,叔胺阳离子逐步靠近(001)面,并最终吸附于(001)面;在靠近(001)面的过程中,叔胺阳离子中的取代基会因空间位阻效应而发生偏转扭曲,其中某些键间的键角发生变化。模拟过程稳定后,DRN12H+、DEN12H+和DPN12H+中N原子距(001)面的距离分别为:2.99A、2.94A和3.001A。四种叔胺与高岭石之间的静电相互作用强弱顺序为:DEN12>DPN12>DRN12>DBN12;叔胺中的取代基的诱导效应和空间效应的综合效果,使其浮选性能表现应有的规律:DEN12>DPN12>DRN12>DBN12。
In this paper, based on the crystal structure of diaspore and kaolinite, as well as the designing theory of flotation reagents, six tertiary amines collectors were designed and synthesized. By means of micro-flotation tests of pure minerals, the flotation performances of six tertiary amines on diaspore and kaolinite were investigated and figured out. Using the measurements of zeta-potential and FT-IR, the calculations of solution chemistry and quantum chemistry, and the simulations of molecular dynamics, the interaction mechanisms between tertiary amines and minerals, as well as the relationship between performances of collectors and substituent groups in the molecule of amines, were studied and discussed. The main contents were briefly summarized as follow.
     (1) When being ground to particles, the liberation of diaspore takes place mainly along the (001) crystal planes, breaking Al-O bonds with high energy and stronger hydrophilicity. The liberation of kaolinite takes place along (001) completly, and along (110) and (010) planes incompletely. Besindes the Al-O bonds whit high energy, there are also the Si-O bonds on these liberation surfaces, which also exhibited the strong hydrophilicity. The surface charging mechanism of diaspore and kaolinite is similarly controlled mainly by the ionization of the surface O-H groups, and this part of charge is dominated by the pH of the pulp. In addition, the isomorphic exchange of kaolinite surface ions is responsible for the permanent negative charge of (001) planes. Under the aim of enhancing the collecting power and selectivity of new collecters on kaolinite, based on the basic structure of flotation reagents and surface characteristics of diaspore and kaolinite, N atom was determined to be the bonding atom of the polar group of new collectors; meanwhile, in order to enlarging the inductive effect of N atom, using the dodecyl amine as the matrix, the polar group was determined to be the tertiary amine group (-NR2), and the substituent groups included CH3, C2H5, C3H7 and C7H7.
     (2) By using aliphatic amines, aldehyde and formic acid as raw materials, two series and six tertiary amines including DRN12, DEN12, DPN12, DBN12, DRN16 and DEN16 were synthesized and prepared in lab by means of reduction and alkylation to primary amine. The synthetic yield of tertiary amines is considerable high, and near all these amines have the purity of more than 80%.
     (3) Flotation performances of tertiary amines on diaspore and kaolinite showed that the collecting powers of six tertiary amines on diaspore were weak, the recovery maximum were 52%,61%,6% and 62% respectively, when using DRN12, DPN12, DBN12 and DRN16, and were about 78% when using DEN12 and DEN16.When increasing the dosage of tertiary amines, recoveries of diaspore increased a little. Except for the DBN12, the collecting abilities of other tertiary amines on kaolinite were commonly better. The recoveries of kaolinite were almost more than 85% when using these collectors at pH=2-3.5. After increasing the dosage of these amines, recoveries of kaolinite increased gradually; when the concentration of amines was added up to 4×10-4mol/L, the recoveries of kaolinite were almost more than 95% except the DBN12. DRN12, DEN12 and DPN12 have the stronger selectively collecting power on kaolinite than diaspore, the differences of maximum recovery of kaolinite and diaspore(Rkaolinite-Rdiaspore) were 42%、41%和42%. The flotation performances of sery-12 tertiary amines on diaspore and kaolinite follow the same order of DEN12> DPN12> DRN12> DBN12.
     (4) Based on the calculation of solution chemistry and measurements of FT-IR and zeta potentials, the interaction mechanisms between tertiary amines and diaspore and kaolinite were investigated.The results showed that the interaction mode between collectors and minerals was physics adsorption controlled by electrostatic power. The physics adsorption between collectors and kaolinite was more remarkable, and that between collectors and diaspore was not remarkable enough. After adsorption on minerals, tertiary amines can increase the zeta potentials of diaspore and kaolinite. The changing amounts of potentials from tertiary amines were in the order of DEN>DPN>DRN>DBN. In the acid pulp, the surface of diaspore are mainly the Al-OH, leading to the cation of tertiary amines difficultly to adsorb onto the surface of diaspore; the surface of kaolinite are mainly the Al-OH and Si-OH, but its surface is partly charged negatively because of the isomorphous replacement, leading to the cation of tertiary amines easily to adsorb onto the surface of kaolinite. In the basic pulp, the surface of diaspore are mainly the Al-O, leading to the cation of tertiary amines easily to adsorb on to the surface of diaspore; and the surface of kaolinite are mainly the Al-O and Si-O, leading to the cation of tertiary amines easily to adsorb on the surface of kaolinite; however, because the negative charged kaolinite particles are extremely dispersed in the pulp, and the hydrophobic carbon chain of tertiary amines may be associated together for the hydrophobic power, the flotation recoveries of kaolinite are lower irregularly.
     (5) Based on the quantum chemistry and molecular dynamics simulation, the relationships between substituents effects and flotation performance were investigated. Being Influenced by the inductive effect of substituent groups, the EHOMO and net charge of N atom of tertiary amines follow the intensity sequence of DPN12>DEN12> DRN12>DBN12; and the positive charge of the head group of tertiary amines follow the same order of DPN12>DEN12> DRN12>DBN12. The space steric effects of the substituent groups in four tertiary amines follow the order of DBN12>DPN12>DEN12> DRN12. The electrostatic forces between four collectors and kaolinite (001) surface are in the order of DEN12>DPN12>DRN12>DBN12. In one word, these two aspects account for an increase in collecting power according to: DEN12>DPN12>DRN12>DBN12.
引文
[1]朱训.《金属手册》(第二卷)[M].北京:科学出版社,1998.285-311
    [2]冶金常识编写组.《十种常用有色金属铝》[M].北京:冶金工业出版社,1972.1-6
    [3]姚良均,彭如清.《世界铝工业》[M].北京:科学出版社,1994
    [4]马善理.铝土矿品位下降对氧化铝生产的影响及其对策研究.世界有色金属[J],1997,2:13-16
    [5]沈阳铝镁设计研究院.选矿——拜耳法生产氧化铝新技术研究技术经济论证报告.1998.11
    [6]陈远望.当前世界铝土矿和氧化铝的供应形势.金属世界[J],2005,4:6-8
    [7]王志光.我国铝矿业资源现状与可持续发展.中国矿业,2002,11(5):28-30
    [8]胡岳华,刘晓文,邱冠周.一水硬铝石型铝土矿铝硅浮选分离溶液化学Ⅰ-晶体结构与可浮性.矿冶工程,2000,20(2):11-14
    [9]于之春.我国氧化铝生产技术及其发展趋势.轻金属,1997(4):4-6
    [10]毕诗文编著.铝土矿的拜耳法溶出.北京:冶金工业出版社,1997
    [11]钮因健.对我国铝土矿资源和氧化铝工业发展的认识.轻金属,2003,3:3-8
    [12]杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1993.55
    [13]陈万坤,彭关才.一水硬铝石型铝土矿的强化溶出技术.北京:冶金工业出版社,1997.21
    [14]邵志博.中国氧化铝工业的发展方向.世界有色技术,1999,3:8-12
    [15]郎大展.中国铝工业发展形势.中国金属通报,2008,3:34-37
    [16](美)Errol D.Sehnke,王向丽译.二十世纪九十年代中期世界铝土矿和氧化铝生产能力.见:氧化铝生产文集,中国长城铝业公司科技部.1997.1-9
    [17]李章存.铝的能耗分析.轻金属,1998,5:3-5
    [18]黄茜蕊,黄仲权.我国铝土矿、铝工业现状问题与发展.矿产保护与利用,2007(6):10-16
    [19]陶英君,杨玉华.我国氧化铝工业现状与发展建议(第三次全国工业普查资料分析).轻金属,1998,7:3-9
    [20]谢珉.铝土矿选矿试验研究.有色金属(选矿部分),1995(6):12-16
    [21]王恩孚,马朝建,陆钦芳.选矿-拜耳法处理中国高硅铝土矿生产氧化铝的 探讨.轻金属,1998,(7):3-9
    [22]杨彩云.中低品位铝土矿选冶工艺研究.矿产综合利用,1989,(6):6-11
    [23]刘振中,赵万来.对铝土矿选矿可能性的看法.有色金属(选矿部分),1984,(2):47-53
    [24]贺飞丽.采用重选——浮选流程提高铝硅比的试验研究.有色金属(选矿部分),1995,(5):8-10
    [25]Lyushnya L M. Beneficiation of Low-Grade Ukrainian Bauxites. Obogashch. Bednykh Run,1973:101-104
    [26]Murashkin I A. Pilot-plant tests of the technology for magnetic roasting of highly ferrous Kazakhstan bauxites in the furnace for roasting ores in the stepwise suspended states. Obogashch. Rud (Leningrad),1980,25, (1):29-32
    [27]Folcy E and Tittle K. Removal of iron oxides from bauxite ores, Inst. Mining. Met. Proc. Sept.1971.239:59-65
    [28]刘今.低铝硅比铝土矿预脱硅研究.中南工业大学学报,1996,6:666-670
    [29]罗琳.一水硬铝石型铝土矿化学选矿脱硅与综合利用:博士学位论文.长沙:中南工业大学,1997
    [30]刘永康.一水硬铝石型铝土矿化学选矿脱硅中焙烧过程的研究:博士学位论文.长沙:中南工业大学,1997
    [31]仇振琢.铝土矿预脱硅工艺的改进.轻金属,1985,(9):9-12
    [32]Vasan S S,Modak J M, Natarajan K A. Some recent advances in the bio-processing of bauxite. Inter. J. Min. Process.,2001, (62):173-186
    [33]AHe(?)peeB.高硅铝土矿微生物脱硅法.轻金属,1992,(3):12-14
    [34]李聆值.采用生物技术提高铝土矿质量.中国有色金属学报,1998,18(增刊2):361-364
    [35]Grondeva V.I. Microbiological beneficiation of bauxite minerals. Metallic Ore Dressing Abroad,1989, (11):9-11
    [36]谢琅.论铝土矿选矿的必要性和可行性.国外金属矿选矿,1991,(7-8):69-76
    [37]王毓华,胡岳华,何平波.铝土矿选择性脱泥试验研究.金属矿山,2004,04:38-40
    [38]梁爱珍.选别铝土矿合理工艺流程探讨.有色金属(选矿部分),1982,11
    [39]关明久.国外铝土矿选矿实验及生产实践概况.轻金属,1991,(6):1-5
    [40]Eygeles M A. Selective flotation of kaolinite-hydrargillite. Tsvetnye Met. Jan., 1970,1:84-86
    [41]Kuznetsov V P. Flotation of lean porous hydragillite-kaolinite bauxites. Leningrad,1972:143-145
    [42]Hinds S A. Beneficiation of bauxite tailings. Light Metals, Feb.1985:24-28
    [43]Lyushnya L M. Beneficiation of unconditioned Ukrainian Bauxites. Obogashch. Polez. Iskop.1973,13:3-9
    [44]Ishchenko V V. Physicochemical interaction of bauxite-forming minerals with flotation reagents. Nauch. Konf. Ural. Politekh. Inst.1973,1:10-11
    [45]Ishchenko V V. Action of sodium hexametaphosphate and sodium oleate upon bauxite minerals. Izv. Vyssh. Uchebn. Zaved. Tsvet Metall.,1972,5:8-12
    [46]富田竖二.非金属矿选矿法.北京:中国建筑工业出版社,1982:306
    [47]Salatic D. Floatability of boehmite and kaolinite with anionic collectors. Trav. Com. Int. Edute Bauxite. Alumine Alum.,1979,15,(3):319-322
    [48]Fuerstenau D W. Adsorption at mineral/water interfaces. Principles of Flotation, 1982:53-71
    [49]黄开国.一水硬铝石型堆积铝土矿的分支浮选.轻金属,1982,2:1-4
    [50]李耀吾.铝土矿选矿试验研究.沈阳铝镁设计研究院,1982
    [51]Long fang L. The beneficiation of accumulative diaspore ore——desilication and elimination of the iron content. J. Central-South Inst. Min. Metall,1980, 4:82-88
    [52]杨诚.铝矾土半工业选矿试验.有色金属(选矿部分),1982,6:1-4
    [53]刘逸超.水云母-一水硬铝石型铝土矿浮选试验.有色金属(选矿部分),1984,1:11-13
    [54]北京矿冶研究总院.铝土矿选矿脱硅新技术的研究小型试验报告.1997,11
    [55]中南工业大学.铝土矿选矿试验研究验收资料汇编.1998,10
    [56]Anishchenko N M. Interaction of cation reagents in the flotation of chamosite-gibbsite bauxites. Izv. Vyssh. Uchyebn. Zaved. Tsvet. Metall.,1972, 4:12-16
    [57]Tikhonov S A. Removing free silica from bauxite-containing rock. Tsvetn Met.,1972,11:43-45
    [58]Ishchenko V V. Flotation of silica from bauxites Izv. Vyssh. Ucheb. Zaved. Tsvet. Metall.,1974,3:7-11
    [59]Csillag Z S. Enrichment of bauxites by selective agglomeration. Trav. ICSOBA, 1976,13:271-284
    [60]Ray D T. Enrichment of bauxite in the Tatun volcanic area. Taiwan, Kuang Yeh Chi Shu.,1980,18:69-81
    [61]梁爱珍.国外铝土矿选矿研究概况.国外金属矿选矿,1983,(1):31-36
    [62]铝土矿选矿试验研究.沈阳:沈阳铝镁设计研究院,1982
    [63]陆维和,刘焦萍.铝土矿选矿脱硅指标的影响因素分析.有色金属(选矿部分),2003,(2):5-8
    [64]张国范,卢毅屏,欧乐明,冯其明.捕收剂RL在铝土矿浮选中的应用.中国有色金属学报,2001,11(4):712-715
    [65]张国范,冯其明,卢毅屏,刘广义,欧乐明.六偏磷酸钠在铝土矿浮选中的作用.中南工业大学学报,2001,32(02):127-130
    [66]刘广义.一水硬铝石型铝土矿浮选脱硅研究:博士学位论文.长沙:中南工业大学,1999
    [67]林样辉,路平,高效新品种捕收剂RA-315的制备和应用.矿冶工程,1993(3):31-35
    [68]张国范,冯其明,卢毅屏,欧乐明.油酸钠对一水硬铝石和高岭石的捕收机理.中国有色金属学报,2001,11,(2):298-301
    [69]关明久.我国冶金级一水硬铝石-高岭石型(或水云母型)铝土矿的选矿试验研究概况[J].矿产综合利用,1989,(4):13-18
    [70]温英,甘怀俊,王巧华.阳泉铝矾土富铝除铁的研究[J].中国锰业,1995(6):26-29
    [71]梁爱珍.腐植酸按在铝土矿浮选中的应用.轻金属,1982,(6):1-4
    [72]杨诚.铝矾土工业选矿试验.有色金属(选矿部分),1982,C6):1-5
    [73]刘逸超,杨彩云,程学忠.水云母-水硬铝石型铝土矿浮选试验[J].有色金属,1984,(1):11-13
    [74]李海普,胡岳华.氧肪酸高分子药剂在铝土矿反浮选中的作用.金属矿山,2004,6:26-28,71
    [75]李海普,胡岳华,王淀佐等.阴离子表面活性剂与高岭石的相互作用机理.中南大学学报(自然科学版),2004,35(2):228-233
    [76]蒋玉仁,胡岳华,曹学锋.新型鳌合捕收剂COBA结构与捕收性能的关系.中国有色金属学报,2001,(4):702-706
    [77]王毓华.物料粒度组成对铝土矿反浮选的影响.金属矿山,2002,总314期,8:29-30,41
    [78]郭键,任爱军,方启学,胡永平.-水硬铝石与高岭石反浮选分离研究.有色金属(选矿部分),2003,3:1-5
    [79]郭键,李明,方启学.粒度对-水硬铝石和高岭石浮选分离的影响.矿产综合利用,2003,5:17-21
    [80]Sillag Z S C. Enrichent of Bauxites by Selec-tive Agglomeration. Trav.ICSOBA, 1976,13:271-284
    [81]Sasaki Hiroshi. Silica Remove from Alumina-containing Ore. JP.0747,30121, Feb.1995
    [82]赵世民,胡岳华,王淀佐.N-(2-氨乙基)-月桂酰胺浮选铝硅酸盐矿物的研究,物理化学学报,2003,6:573-576
    [83]赵世民,胡岳华,王淀佐.N-(3氨丙基)-月桂酰胺对铝硅酸盐矿物的浮选.中国有色金属学报,2003,13(5):1273-1277
    [84]赵世民,王淀佐,胡岳华,徐竟,甲萘胺浮选铝硅酸盐矿研究.非金属矿2003,26(5):34-35,62
    [85]胡岳华,曹学锋,蒋玉仁,李海普,杜平.N-烷基-1,3-丙二胺类捕收剂的结构与浮选铝硅酸盐矿物性能的研究.矿产保护与利用,2002,6:33-37
    [86]杜平,曹学锋,胡岳华,李海普.胺类捕收剂的结构与性能研究.轻金属,2003,1:27-31
    [87]刘广义,卢毅屏,冯其明.阳离子捕收剂反浮选一水硬铝石型铝土矿研究.矿产保护与利用,2001,2:38-42
    [88]付保军,郭爽.铝土矿浮选的抑制剂研究.矿产保护与利用,2004,3:32-36
    [89]李海普.改性高分子药剂对铝硅矿物浮选作用机理及其结构一性能研究:博士学位论文.长沙:中南大学,2002
    [90]胡岳华,王毓华,王淀佐.铝硅矿物浮选化学与铝土矿脱硅.北京:科学出版社.2004
    [91]Min C. Inst. Of Min. and Met. Trans., Processing and Ext. Met., vol.82,1973, 805.207-213
    [92]Pradip. The surface properties and flotation of rare-earth minerals. Ph.D. thesis, University of Coliforniar Berkeley,1981
    [93]Hovot, Joussemet R, Tracez R J and Brouard. International Journal of Mineral Processing,1985 14 (4):245-264
    [94]Pettern H D. Chrysocolla Flotation by the Torrnations of Insoluble surface chalets
    [95]Fuerstenau M C and Miller J D. The Role of the Hydroc-Bond chain in anion flotation of calcite. Trans, AIME.1967, Vol.238, No.2:153-160
    [96]Peck A S, Raby L H and Wadsworth M E. An infrared study of the flotation of hematite with oleic acid and sodium oleate. Trans, AIME,235:301-306
    [97]胡为柏.浮选(第二版).北京:冶金工业出版社,1989
    [98]曹学锋.铝硅酸盐矿物捕收剂的合成及结构性能研究:博士学位论文.长沙:中南大学,2003.11
    [99]胡为柏.浮选.北京:冶金工业出版社,1989.83
    [100]Rodeick J H. Crystal structure refinement and electron density distribution in diaspore. Phys Chem Minerals,1979,5:197-200
    [101]王璞,潘兆橹,翁玲宝.系统矿物学(上册).北京:地质出版社,1982.179-200
    [102]Hazemann J L, Manceau A, Sainctavit Ph et al. Structure of the α-FexAl1-xOOH solid solution. Phys Chem Minerals,1992,19:25-38
    [103]Keller W D. Diaspore recrystallized at low temperature. American Mineralogist, 1978,63:326-329
    [104]胡岳华,刘晓文.一水硬铝石型铝土矿铝硅分离溶液化学——晶体结构与可浮性.矿冶工程,2000,Vol.20,(2):11-14
    [105]顾惕人,表面化学.北京:科学出版社,1994.6
    [106]安德森MA,鲁宾A J.水溶液吸附化学:无机物在固-液界面上的吸附作用.北京:科学出版社,1989:1-5
    [107]刘晓文,胡岳华.硬质和软质高岭石的晶体结构与浮选行为.中国有色金属学报,2001,Vol.11,(4):684-687
    [108]何伯泉.氧化矿的零电点与等电点及其测定方法.有色金属,1983,1:17-22
    [109]王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计.长沙:中南工业大学出版社,1996
    [110]胡岳华,蒋昊.一水硬铝石型铝土矿铝硅分离溶液化学.中国有色金属学报,2001,Vol.11,(1):125-130
    [111]林强.新型浮选剂合成及结构与性能关系研究:博士学位论文.长沙:中南工业大学,1989
    [112]松冈功(日).氧化物的浮选.国外金属矿选矿,1986,2:30
    [113]李述文,范如霖.实用有机化学手册.上海:上海科技出版社,1981:164
    [114]朱广军.新型表面活性剂氧化叔胺的合成.精细化工,1994,11:1-3
    [115]段明峰,梅平,熊洪录.N,N-二甲基-十二烷基叔胺的合成反应研究.化工与生物工程,2005,8:28-30
    [116]PAN Zhaolu. Crystallography and Mineralogy[M]. Beijing, Geology Press,1994:164-182
    [117]王淀佐.浮选药剂作用原理及应用[M].北京:冶金工业出版社,1994
    [118]Farmer, V C. Infrared absorption of hydroxyle groups in kaolinite. Science, New York,1964(145):1189-1190
    [119]Farmer, V C, Russel, J D. The infrared spectra of layer silicates. Spectrochim, Acta,1964,20:1149-1173
    [120]闻辂.矿物红外光谱学.重庆:重庆大学出版社,1989
    [121]Nordstrom D K, Plummcr, Langmuir L N, Buscnbcrg E, May, H M, Jones, B F, Parkhurst, D L. Revised chemical equilibrium data for major water-mineral reactions and their liminations. In:Melchior, D.C., Bassett, R.L. (Eds.),1990, Chemical Modeling of Aqueous System Ⅱ. American Chemical Society Symposium Series, pp:398-413
    [122]Staffan S. Crystalline Solids Silica in aqueous environments. Journal of Non-crystalline solids,1996,196:51-57
    [123]Verdes G., Gout R, Castet S. Thermodynamic properties of the aluminatc European ion and of baycritc, bochmitc, diasporc and gibbsitc, Journal of Mineralogy.1992.4 (4):767-792
    [124]Jordi, Cama, Jiwchar, Ganor. The effects of organic acids on the dissolution of silicate minerals:A case study of oxalate catalysis of kaolinitc dissolution. Gcochimica ct Cosmochimica Acta 2006,70:2191-2209
    [125]Liu G Y, The role of cationic polyacrylamide in the reverse flotation of diasporic bauxigte. Minerials Engineering 20(2007):1191-1199
    [126]Rand B, Melton J E, Oarticle interactions in aqueous kaolinite suspensions. Journal of Colloid and Interface Science,1978,65:79-87
    [127]姚允斌.物理化学手册.上海:上海科学技术出版社,1985.765
    [128]Hu Y H, Sun W. Role of macromolecules in kaolinite flotation. Minerals Engineering,17(2004):1017-1022
    [129]Hu Y H, Sun W. The anomalous behavior of kaolinite flotation with dodecyl amine collector as explained from crystal structure considerations. International Journal of Mineral Processing,76(2005):163-172
    [130]蒋明谦.诱导效应指数及其在分子结构与化学活性间定量关系中的应用.北京:科学出版社,1963
    [131]王淀佐.中南矿业学院学报.1980(4):7-13,1981(1):48-56
    [132]王淀佐.有色冶金(选矿部分).1977(1),103-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700