菲油果花发育解剖观测及相关基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菲油果Feijoa sellowiana Berg系桃金娘科、菲油果属植物,是我国新近引进的世界新兴水果树种,兼具食用、观赏、绿化等用途,经济价值高。本学位论文开展了开花相关生物学特性研究,具有重要的科学意义和应用前景。论文首次对菲油果花器官发育进程进行了解剖观测、构建了菲油果花蕾cDNA文库和EST文库,克隆了菲油果FsLFY基因和MADS-box (FsPI、FsSEP1)基因,并进行了表达特征和生物信息学分析,获得了一系列开创性的研究结果,丰富了菲油果花发育的生物学理论,为进一步研究菲油果开花调控和开发利用菲油果提供了重要的科学依据。
     主要研究结果如下:
     1.菲油果花发育解剖学研究。菲油果的花芽分化可以划分为6个时期:即未分化期、前分化期、萼片形成期、花瓣形成期、雌雄蕊形成期和子房花药形成期。菲油果花药为4室:花药壁发育属基本型;腺质绒毡层;小孢子母细胞减数分裂中胞质分裂为同时型,四分体排列多为正四面体;开花前2-3天花粉成熟,成熟花粉为2-细胞型。大孢子母细胞减数分裂形成的4个大孢子呈直线排列,其中合点端的大孢子具功能,经过3次有丝分裂后,于开花当天形成成熟八核胚囊,胚囊发育属蓼型。在发育过程中,雌雄配子体与花形态特征之间有着相对稳定的关系。
     2.菲油果花器官cDNA文库构建。以6个不同发育阶段的混合菲油果花蕾为材料,提取总RNA,分离纯化mRNA,在SuperSciptTM Ⅱ RnaseH-Reverse Transcriptase等的作用下合成cDNA,与pBluescript Ⅱ SK(+)XR载体连接重组并转化感受态细胞DH10B,成功地构建了菲油果花器官发育时期的高质量cDNA文库。经检测,cDNA文库库容量2.02x106克隆子,重组率高达92.32%,插入片段长度在600bp-2000bp,平均长度超过800bp。该文库的构建为建立菲油果花器官EST文库、开展基因分离鉴定、制作菲油果基因芯片和基因表达检测等奠定了良好基础。
     3.菲油果花器官EST文库构建。对已构建的cDNA文库随机挑取3500个克隆进行5’端测序,获得了高代表性的表达序列标签EST文库。获得原始序列2856个,测序成功率81.6%,获得了2840条大于100bp的高质量EST序列,其中500bp-700bp的EST序列2520条,占88.73%。对2840条有效ESTs进行组装拼接,共获得1682个非重复序列,平均长度为698.76bp,其中重叠群为438个,单拷贝ESTs为1244个。从1682条非重复序列中预测得到1379个开放阅读框,其中1244条单拷贝ESTs中包含1120个开放阅读框,占总数的81.22%,438个重叠群有259个ORF,占18.78%。
     4.菲油果花器官EST生物信息学分析。1682条非重复序列在核苷酸数据库中进行同源性Blast,结果有637条能找到同源序列,占总数的49.53%,其中为推测功能基因的有367条;与非冗余核酸库中Blast结果有851条非重复序列找到同源序列,占总数的66.17%,其中612条序列为推测功能基因;与SWISSPROT蛋白库Blast结果有547条序列找到同源序列,占总数的42.53%。将非重复序列与COG库进行Blast分析,获到有注释的序列236条,按功能分为18类。其中,翻译、核糖体结构与生物发生,糖类转运与新陈代谢,转译后修饰与蛋白转换、脂类转运与新陈代谢等4类中注释的序列最多,数量分别为50、38、34、24,所占比例分别为21.19%、16.1%、14.41%、10.17%。
     5.菲油果FsLFY基因的克隆与生物信息学分析。根据已知菲油果LFY基因588bp EST序列信息,设计特异引物,分别通过5'RACE和3'RACE技术获得了FsLFY基因的5’和3’末端序列,通过拼接,获得FsLFY基因的全长cDNA克隆,再通过基因组PCR获得了FsLFY基因的基因组序列,将FsLFY基因cDNA和基因组序列提交至GenBank,接受号为JN562738。菲油果FsLFY基因cDNA全长1336bp,5’非转录区91bp和3’非转录区174bp,全部CDS1071bp,编码356个氨基酸。FsLFY基因含2个内含子,长度分别为63bp、109bp。FsLFY氨基酸序列含2个可变区和2个保守区。在DNA序列水平上,FsLFY基因与菊花ClLFY的相似性最低,为59.4%,与蓝桉EglLFY的相似性最高,为94.4%;在氨基酸水平上,FsLFY基因与兰花OiLFY基因的相似性最低,为60.3%,与蓝桉EglLFY的相似性最高,为95.2%。FsLFY蛋白预测分子量为40631.8Da,等电点为8.59,属于较不稳定蛋白质。FsLFY蛋白疏水指数从-3.933到1.456,整个蛋白质基本上是表现出亲水性。FsLFY蛋白不含信号肽,含31个α螺旋,30个β折叠链和34个卷曲。
     6.菲油果FsPI基因的cDNA克隆与生物信息学分析。根据已知菲油果PI基因626bp的EST序列信息,设计特异引物,分别通过5'RACE和3'RACE技术获得了FsLFY基因的5’和3’末端序列,通过拼接,获得FsPI基因的全长cDNA克隆,将其提交至GenBank,接受号为JN562739。菲油果FsPI的cDNA全长891bp,获得了部分5’非转录区6bp和完整的3’非转录区258bp,全部CDS为627bp,编码208个氨基酸。菲油果FsPI基因具有MADS-box B类PI基因的典型特征,含MADS结构域、K结构域以及PI结构域。在DNA序列水平上,菲油果FsPI与长春花CrGLO1的相似性最低,为66.7%,与白千层MqPI的相似性最高,为93.0%;在氨基酸水平上,与辣椒CaPI基因的相似性最低,为62.0%,与白千层MqPI基因相似性最高,为91.8%。菲油果FsPI蛋白预测分子量为24286.4Da,等电点为8.83,是一种弱碱性较不稳定蛋白。菲油果FsPI蛋白疏水指数位于-2.956到1.933之间,整个蛋白质基本上表现出亲水性。菲油果FsPI不含信号肽,属于非分泌性蛋白,其含25个α螺旋,21个β折叠链和20个卷曲。
     7.菲油果FsSEP1基因的cDNA克隆与生物信息学分析。根据已知菲油果SEP1基因338bp的EST序列信息,设计特异引物,分别通过5'RACE和3'RACE技术获得了FsSEP1基因的5’和3’末端序列,通过拼接,获得FsSEP1基因的全长cDNA克隆,将其提交至GenBank,接受号为JN562740。菲油果FsSEP1的cDNA全长1120bp,5’非转录区83bp和3’非转录区299bp,全部CDS为738bp,编码245个氨基酸。菲油果FsSEP1基因具有MADS-box E类SEP基因的典型特征,含MADS结构域、K结构域和SEP结构域。在DNA和氨基酸序列水平上,菲油果FsSEP1基因都是与拟南芥AthSEP1的相似性最低,分别为69.1%,66.7%,,与巨桉EgM3的相似性最高,为92.4%,为91.4%。菲油果FsSEP1蛋白预测分子量为28009.8Da,等电点为8.80,是一种弱碱性蛋白,属于较不稳定蛋白质。菲油果FsSEP1蛋白的疏水指数从-2.411到2.089,整个蛋白质基本上表现出亲水性。菲油果FsSEP1不含信号肽,属于非分泌性蛋白,其含23个α螺旋,25个β折叠链和26个卷曲。
     8.菲油果FsLFY基因的表达模式。通过RT-PCR扩增出菲油果钙调素基因Fscalm,以此为内参基因。半定量RT-PCR检测结果表明,菲油果FsLFY基因在生殖器官和营养器官中均有表达。总体上在整个花蕾发育期间的表达强烈,表达量要明显高于结果枝、营养枝、顶端嫩叶、嫩茎和腋芽等营养器官。在花蕾中,FsLFY基因在4月10日至4月22间的4个阶段表达量均非常强烈,表达量无明显差别,从26日开始,表达量逐渐呈下降趋势。FsLFY基因在结果枝、营养枝、顶端嫩叶、嫩茎和腋芽中表达量均较低,但相对而言,在结果枝和顶端嫩叶中的表达量稍高于营养枝、嫩茎和腋芽中。FsLFY基因的表达模式表明该基因无论在菲油果的生殖生长还是营养生长阶段均行使其功能,但与生殖生长间的关系更密切。
Feijoa sellowiana Berg., a new kind of fruit tree species of Myrtaceae family, has edible and ornamental value. It has a relatively long juvenile phase, and the seedlings blossom and bear fruits after four to five years. Therefore, elucidation of flowering mechanism of F. sellowiana is of great significance to shortening and adjusting the juvenile phase, genetical modification, and new cultivars breeding. In this paper, systematic studies on the development of F. sellowiana floral organs and related expressed genes via comparative anatomy experiment, cDNA and EST libraries construction, cloning and expression pattern detection of floral organs-related genes, and bioinformatics analysis etc. The main results are as follows:
     1. Studies on comparative anatomy of F. sellowiana floral organs. The development of F. sellowiana's flower bud differentiation was divided into six stages: predifferentiation, sepal formation, petal formation, stamen and pistil formation, ovary and anther formation and stamen and pistil maturation. F. sellowiana had four ventricles in each anther; the development of the anther wall was basic type; glandular tapetum; the meiosis in the microspore mother cells were belonged to a simultaneous type and the microspores were arranged in a tetrahedron shape in the tetrads; the pollen was matured in two or three days before blooming; The ripened pollen was of2-cell type. Megaspore mother cell meiosis to the formation of four spores were linear arrangement, which the chalazal megaspore had function. After three mitosis, the formation of mature eight-nucleate embryo sac was in the blossoming day. The embryo sac was a Polygonum type. Between male and female gametophyte and flower morphology had stably relationship in the developmental process.
     2. Construction of cDNA library of F. sellowiana floral organs. Total RNA was isolated from mixed floral buds of'Coolidge'in six different developmental stages. Then message RNA (mRNA) was purified from total RNA and was reverse transcribed to cDNA with SuperSciptTM II RnaseH-Reverse Transcriptase. The cDNA was ligated to pBluescript Ⅱ SK(+)XR vector and co-transformed into competent Escherichia coli cells DH10B. Eventually, a high-quality cDNA library of developing floral organs of F. sellowiana was successfully constructed. After the examination, the cDNA library aggregate the capacity of2.02×106clones, the recombination rate is92.32%, and the size of insertion segment range from600bp to2000bp. The cDNA library provieds a basis for EST library construction, isolation and identification of floral organs-related genes, gene miccroarry construction, and gene expression detection for F. sellowiana.
     3. Construction of EST library of F. sellowiana floral organs. Using the cDNA library of F. sellowiana floral organs as the material,3500positive clones was selected at random for DNA sequencing at the5'end, accordingly the EST library of F. sellowiana floral organs was constructed. After analysis and classification,2856original sequences were obtained with the sequencing seccess rate of81.6%.2840high-quality ESTs with the size of more than100bp were obtained, of which numbers of ESTs ranging from500bp to700bp were2520, accounting for88.73%. Assembling of the total of2840ESTs resulted in1682Unigenes that include438contigs and1244Singletons with the average size of698.76bp.1379ORFs (open reading frame) were predicted from1682Unigenes, of which1120ORFs were from1244Singletons accounting for81.22%, and259were from Contigs accounting for18.78%.
     4. Informatics analysis of EST sequences of F. sellowiana floral organs. Using EST sequences of1682Unigenes as queries for Blast analysis in Nucleotide Database,637could search out homologous sequences accounting for49.53%, of which367represented putative functional genes. Blast analysis in Non-redundant Database revealed that851Unigenes could search out homologous sequences accounting for66.17%, of which612represented putative functional genes. Blast analysis in SWISSPROT revealed that547Unigenes could search out homologous sequences accounting for42.53%. Blast analysis in COG database showed that236annotated sequences were obtained and were classified into18groups. Most of annotated sequences were found in four groups including Translation, ribosomal structure and biogenesis, Carbohydrate transport and metabolism, Posttranslational modification, protein turnover, and chaperones, and Lipid transport and metabolism. The numbers of the annotated sequences were50,38,34, and24, accounting for21.19%,16.1%,14.41%, and10.17%, respectively.
     5. Cloning and informatics analysis of FsLFY. Based on known588bp EST sequence for FsLFY gene, specific primers were designed for3'RACE (Rapid amplification of cDNA ends) and5'RACE PCRs. Accoringly, the full-length cDNA were obtained by assembling3'and5'teminal sequences. Genomic DNA sequences for FsLFY were also successfully amplified by genomic PCR and DNA sequencing. The FsLFY sequences were subbmited to GenBank and the Accession No. was JN562738. The full-length cDNA of FsLFY was1336bp with5'non-transcription region of91bp,3'non-transcription region of174bp and complete CDS of1071bp, encoding356amino acids. FsLFY gene contained two introns, the size of which was63bp and109bp, respectively. The amino acid sequence of FsLFY contained two viable regions and two conserved regions. At DNA sequence level, the FsLFY showed the lowest similarity with ClLFY (59.4%), the highest with EglLFY (94.4%). At amino acid sequence level, the FsLFY showed the lowest similarity with OiLFY (60.3%), the highest with EglLFY (95.2%). The predicted molecular weight and isoelectric points of FsLFY were40631.8Da and8.59, respectively, and belonged to unstable protein. Hydrophobicity index of the FsLFY varied from-3.933to1.456, exhibiting hydrophilicity in general. The FsLFY did not contain signal peptide. Secondary structure prediction showed that the FsLFY contained31Helixs,30Strands, and34Coils.
     6. Cloning and informatics analysis of FsPI. Based on known626bp EST sequence for FsPI gene, specific primers were designed for3'RACE and5'RACE PCRs. Accoringly, the full-length cDNA of FsPI were obtained by assembling3'and5'teminal sequences. The FsPI sequences were subbmited to GenBank and the Accession No. was JN562739. The full-length cDNA of FsPI was891bp with5' non-transcription region of6bp,3'non-transcription region of258bp and complete CDS of627bp, encoding208amino acids. FsPI exhibited characteristic structual of B type, MADS-box, ie., contained MADS domain, K domain, and PI domain. At DNA sequence level, the FsPI showed the lowest similarity with CrGLO1(66.7%), the highest with MqPI (93.0%). At amino acid sequence level, the FsPI showed the lowest similarity with CaPI (62.0%), the highest with MqPI (91.8%). The predicted molecular weight and isoelectric points of FsPI were24286.4Da and8.83, respectively, and belonged to unstable protein. Hydrophobicity index of the FsPI varied from-2.956to1.933, exhibiting hydrophilicity in general. The FsPI did not contain signal peptide. Secondary structure prediction showed that the FsPI contained25Helixs,21Strands, and20Coils.
     7. Cloning and informatics analysis of FsSEP1. Based on known338bp EST sequence for FsSEP1gene, specific primers were designed for3'RACE and5'RACE PCRs. Accoringly, the full-length cDNA of FsSEP1were obtained by assembling3' and5'teminal sequences. The FsSEP1sequences were subbmited to GenBank and the Accession No. was JN562740. The full-length cDNA of FsSEP1was1120bp with5' non-transcription region of83bp,3'non-transcription region of299bp and complete CDS of738bp, encoding245amino acids. FsSEP1exhibited characteristic structual of E type, MADS-box, ie., contained MADS domain, K domain, and SEP domain. At DNA sequence level,the FsSEP1showed the lowest similarity with AthSEPl (69.1%), the highest with EgM3(92.4%). At amino acid sequence level, the FsSEP1also showed the lowest similarity with AthSEPl (66.7%), the highest with EgM3(91.4%). The predicted molecular weight and isoelectric points of FsSEP1were28009.8Da and8.80, respectively, and belonged to unstable protein. Hydrophobicity index of the FsSEP1varied from-2.411to2.089, exhibiting hydrophilicity in general. The FsSEP1did not contain signal peptide. Secondary structure prediction showed that the FsSEP1contained23Helixs,25Strands, and26Coils.
     8. Expression pattern analysis of FsLFY. Fscalm (F. sellowiana Calmodulin) gene was isolated by RT-PCR and used as a reference gene for expression analysis of FsLFY gene. Semiquantitative RT-PCR analysis revealed that FsLFY gene was expressed in both reproductive organs and vegetative organs. In general, the FsLFY gene was strongly expressed in reproductive organs with significantly higher expression level was than in vegetative organs including fruit-bearing shoots, vegetative shoots, stems, tender leaves, and axillary buds. A stable high expression level was detected from April10to April22, whereas the expression level began to decrease with floral buds approaching to maturity after April26. In addition, FsLFY mRNA accumulation was slightly higher in fruit-bearing shoots and tender leaves than in the other three organs. The expession pattern of FsLFY suggests that it should play a role in both vegetative and reproductive development in F. sellowiana, but appears to be more closely related to reproductive development.
引文
[1]段艳欣,郭文武.木本植物开花调节基因的分离克隆及其幼年期控制[J].中国生物工程杂志.2004,10:22-26.
    [2]张猛,汤浩茹,王丹,等.费约果果实香气成分的GC-MS分析[J].食品科学.2008,29(8):489-491.
    [3]周丽娟,王丹,黄海涛,等.费约档外植体火菌及愈伤组织的诱导[J].热带亚热带植物学报.2008,16(2):179-183.
    [4]向盛萍,袁德义,赵思东,等.菲油果光合特性的日变化[J].湖南农业大学学报.2009,35(3):284-287.
    [5]Evans, Matthew M. S.; Barton, M. Kathryn. Genetics of angiosperm shoot apical meristem development[J]. Annu Rev Plant Physiol Plant Mol Biol.1997,48:673-701.
    [6]刘穆.种子植物形态解剖学导论[M].科学出版社,2001.
    [7]Krizek, Beth A.; Fletcher, Jennifer C. Molecular mechanisms of flower development:an armchair guide[J]. Nature reviews genetics.2005,6:688-698.
    [8]桂建芳,易梅生.发育生物学[M].北京:科学出版社,2002.
    [9]X. Wang; Y. Zhang; Q. B. Ma; et al. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis[J]. The EMBO Journal.2007,26:1934-1941.
    [10]雍伟东,种康,许智宏,等.高等植物开花时间决定的基因调控研究[J].科学通报.2000,45(5):455-466.
    [11]Khanna, Rajnish; Yu Shen; Toledo-Ortiz, Gabriela; et al. Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation[J]. The Plant Cell.2006,18(9):2157-2171.
    [12]Zhang, Q. Z.; Li, H. Y.; Li, R. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean[J]. Proc Acad Natl Sci.2008,105: 21028-21033.
    [13]Cashmore, Anthony R.; Jarillo, Jose A.; Wu, Ying-Jie; et al. Cryptochromes:blue light receptors for plants and animals[J]. Science.1999,284:760-765.
    [14]Quail, Peter H. Phytochrome photosensory signalling networks[J]. Nature Reviews Molecular Cell Biology.2002,3:85-93.
    [15]X. H. Yu; Sayegh, Ricardo; Maymon, Maskit; et al. Formation of Nuclear Bodies of Arabidopsis CRY2 in Response to Blue Light Is Associated with Its Blue Light-Dependent Degradation[J]. Plant Cell.2009,21:118-130.
    [16]Sangho Jeong; Clark, Steven E. Photoperiod regulates flower meristem development in Arabidopsis thaliana[J]. Genetics.2005,169:907-915.
    [17]Guo, H. W.; Yang, H. Y.; Mockler, Todd C.; et al. Regulation of flowering time by Arabidopsis photoreceptors[J]. Science.1998,279:1360-1363.
    [18]H. T. Liu; X. H. Yu; K. W. Li; et al. Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis[J]. Science.2008,322:1535-1539.
    [19]Suarez-Lopez P.; Wheatley K.; Robson F.; et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature.2001,410:1116-1120.
    [20]Putterill J.; Robson F; Lee K; et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors[J]. Cell.1995,80: 847-857.
    [21]Liu L. J.; Zhang Y. C.; Li Q. H.; et al. COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis[J]. Plant Cell.2008,20: 292-306.
    [22]Valverde F; Mouradov A; Soppe W; et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering[J]. Science.2004,303:1003-1006.
    [23]Sibum, Sung; Richard M. Amasino. Remembering Winter:Toward a molecular understanding of vernalization[J]. Plant Biol.2005,56:491-508.
    [24]Yan L.; Loukoianov A; Blechl A; et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization[J]. Science.2004,303:1640-1644.
    [25]Sheldon C. C.; Burn J. E.; Perez P.; et al. The FLF MADS box gene:A repressor of flowering in Arabidopsis regulated by vernalization and methylation[J]. Plant Cell.1999,11:445-458.
    [26]Wollenberg A. C.; Strasser B.; Cerdan P. D.; et al. Acceleration of Flowering during Shade Avoidance in Arabidopsis Alters the Balance between Flowering locus C-Mediated Repression and Photoperiodic Induction of Flowering[J]. Plant Physiology.2008,148:1681-1694.
    [27]Barrero J. M.; Onzalez-Bayon R. G.; Del Pozo J. C.; et al. IncurvaTa2 Encodes the Catalytic Subunit of DNA Polymerase(alpha) and Interacts with Genes Involved in Chromatin-Mediated Cellular Memory in Arabidopsis thaliana[J]. Plant Cell.2007,19(9):2822-2838.
    [28]Johanson U.; West J.; Lister C.; et al. Molecular analysis of FRIGIDA,a major determinant of natural variation in Arabidopsis flowering time[J]. Science.2000,290:344-347.
    [29]Michael T. P.; Mcclung C. R. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis[J]. Plant Physiol.2003,132:629-639.
    [30]Mcclintock B. The origin and behavior of mutable loci in Maize[J]. Proc Natl.Acad.Sci USA. 1950,36:344-355.
    [31]Narlikar G. J.; Fan H. Y.; Kingston R. E. Cooperation between complexes that regulate chromatin structure and transcription[J]. Cell.2002,108:475-487.
    [32]Yan L.; Loukoianov A.; Tranquilli G.; et al. Positional cloning of the wheat vernalization gene VRN1[J]. Proc.Natl.Acad.Sci.USA.2003,100:6263-6268.
    [33]Sung S.; Amasino R. M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3[J]. Nature.2004,427:159-164.
    [34]Michaels S. D.; Amasino R. M. Flowering locus C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. Plant Cell.1999,11:949-956.
    [35]Michaels S. D.; Amasino R. M. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGID A and autonomous pathway mutations but not responsiveness to vernalization[J]. Plant Cell.2001,13:935-941.
    [36]Ilha Lee; Michaels S. D.; Masshardt A. S.; et al. The late-flowering phenotype of FRIGIDA and LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis[J]. Plant Journal.1994,6:903-909.
    [37]Macknight R.; Bancroft I.; Page T.; et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains[J]. Cell.1997,89:737-745.
    [38]Schomburg F. M.; Patton D. A.; Meinke D. W.; et al. FPA, a Gene Involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs[J]. Plant Cell.2001,13: 1427-1436.
    [39]Fawzi; Razem; Ashraf El-Kereamy; et al. The RNA-binding protein FCA is an abscisic acid receptor[J]. Nature.2006,439:290-294.
    [40]Blazquez M. A. Flower development pathways[J]. Cell Science.2000,113:3547-3548.
    [41]Blazquez M.; Green R., Nilsson O, et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter[J]. Plant Cell.1998,10:791-800.
    [42]Ludmila; Tyler Stephen G.; Thomas Jianhong Hu; et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis[J]. Plant Physiology.2004,135:1008-1019.
    [43]Yang C. H.; Chen L. J.; Sung Z. R. Genetic regulation of shoot development in Arabidopsis:Role of the EMF genes[J]. Dev.Biol.1995,169:421-435.
    [44]Auber D, Chen L, Moon Y H, et al. EMF1,a novel protein involved in the control of shoot architecture and flowering in Arabidopsis[J]. Plant Cell.2001,13:1865-1875.
    [45]Moon Y H, Chen L, Pan R L, et al. EMF Genes Maintain Vegetative Development by Repressing the Seed and Flower Development Program[J]. Plant Cell.2003,15:681-693.
    [46]Sessions A, Yanofsky M F, Weige L D. Patterning the floral meristem[J]. Seminars in Cell & Developmental Biology.1998,9(2):221-226.
    [47]Schultz E A, Haughn G W. LEAFY,a homeotic gene that regulates inflorescence development in Arabidopsis[J]. Plant Cell.1991,3(8):771-781.
    [48]Liljegren S J, Gustafson-Brown C, Pinyopich A. Interactions among APETALAl,LEAFY,and TERMINAL FLOWER1 specify meristem fate[J]. Plant Cell.1999,11(6):1007-1018.
    [49]John L. Bowman, John Alvarez, Detlef Weigel, et al. Control of flower development in Arabidopsis thalicma by APETALA1 and interacting genes[J]. Devolopment.1993,119(3): 721-743.
    [50]Kempin S A, Savidge B, Yanofsky M F. Molecular basis of Arabidopsis[J]. Science.1995, 267(5197):522-525.
    [51]Levin J Z, Meyerowitz E M. UFO.an Arabidopsis gene involved in both organ development[J]. Plant Cell.1995,7(5):529-548.
    [52]Wilkinson M D, Haughn G W. UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis [J]. Plant Cell.1995,7(9):1485-1499.
    [53]Shannon S, Meeks-Wagner D R. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development[J]. Plant Cell.1991,3(9):877-892.
    [54]Purugganan M D, Rounsley S D, Schmidt R J, et al. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family[J]. Genetics.1995,140:345-356.
    [55]Kater M M, Dreni L, Colombo L. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis[J]. Exp.Bot.2006,57(13):3433-3444.
    [56]Coen E S, Romero J M, Doyle S. Floricaula:a momeotic gene required for flower development in Antirrhinum majus[J]. Cell.1990,63(6):1311-1322.
    [57]Bowman J L, Smith D R. Genetic interactions among floral homeotic genes of Arabidopsis[J]. Development.1991,112(1):1-20.
    [58]Jofuku K D, Den B B, Van M M. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. Plant Cell.1994,6(9):1211-1225.
    [59]Eckardt N A. A Role for APETALA2 in Maintenance of the Stem Cell Niche[J]. Plant Cell.2006, 18(2):275-277.
    [60]Yang Y, Fanning L, Jack T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins,APETALA3 and PISTILLATA[J]. Plant Journal.2003,33(1):47-59.
    [61]Ito T, Ng K H, Lim Yu T S, et al. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis[J]. Plant Cell.2007, 19(11):3516-3529.
    [62]Davies B, Motte P, Keck E. PLENA and FARINELLI:redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development[J]. EMBO.Journal. 1999,18(14):4023-4034.
    [63]Colombo L, Franken J, Koetje E. The petunia MADS-box gene FBP11 determines ovule identity[J]. Plant Cell.1995,7(11):1859-1868.
    [64]Ferrario S, Shchennikova Av, Franken J, et al. Control of floral meristem determinacy in petunia by MADS-box transcription factors.Control of floral meristem determinacy in petunia by MADS-box transcription factors[J]. Plant Physiol.2006,140(3):890-898.
    [65]Pelaz S, Ditta G S, Baumann E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature.2000,405:200-203.
    [66]Ditta G, Pinyopich A, Robles P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Curr.Biol.2004,14:1935-1940.
    [67]Laura M., Kong Hongzhi, Leebens-Mack James H, et al. The Evolution of the SEPALLATA subfamily of MADS-box genes:A pre-angiosperm origin with multiple duplications throughout angiosperm history [J]. Genetics.2005,10:1-24.
    [68]George S E, Huggins-Clark G, Brooks L R. Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations[J]. Mutat.Res.2001, 490(1):45-56.
    [69]Theissen G. Development of floral organ identity:Stories from the MADS house[J]. Plant Biol. 2001,4:75-85.
    [70]李敏.早实核桃(Juglans regia L)花器官变异及花发育相关基因克隆研究[D].山东农业大学,2009.
    [71]宗成文.葡萄花发育相关基因的克隆与表达特性研究[D].南京农业大学,2007.
    [72]Ma H, Yanolaky M F, Meyerowitz E M. ACL1-ACL6,an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes[J]. Genes.1991,5:484-495.
    [73]Conner J, Liu Z L. Aputative transcriptional corpressor that regulates AGAMOUS expression during flower development[J]. PNAS.2000(97):12902-12907.
    [74]Urbanus S L, De Folter S, Shchennikova A V, et al. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana[J].Plant Biology.2009,9(5): 356-375.
    [75]Gunter T, Annette B, Alexandra D R. A short history of MADS-box genes in plants[J]. Plant Molecular Biology.2000,42:115-149.
    [76]Speulman E, Metz P L J, Van Arkel G, et al. A two-component Enhancer-Inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome[J]. Plant Cell.1999,11: 1853-1866.
    [77]Sundstrom J F, Nakayama N, Glimelius K, et al. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis[J]. Plant Journal.2006, 46(4):593-600.
    [78]Alvarez-Buylla E R, Pelaz S, Liljegren S J, et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals[J]. Proc.Natl.Acad.Sci.USA.2000,97(10): 5328-5333.
    [79]De B S, Raes J, Florquin K, et al. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants[J]. J.Mol.Evol.2003,56(5):573-586.
    [80]De B S, Raes J, Van P Y, et al. And then there were many:MADS goes genomic[J]. Sci.2003, 8(10):475-483.
    [81]Lamb R S, Irish V F. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages[J]. Proc.Natl.Acad.Sci.USA.2003,100(11):6558-6563.
    [82]Egea-Cortines M, Saedler H, Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA,DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus[J]. EMBO J.1999,18(19):5370-5379.
    [83]Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J]. Nature.2001,409(6819):525-529.
    [84]Theissen G, Becker A, Di. Rosa A, et al. A short history of MADS-box genes in plants[J]. Plant Mol.Biol.2000,42:115-149.
    [85]Irish V F. The evolution of floral homeotic gene function[J]. Bioessays.2003,25(7):637-646.
    [86]Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Mol.Phylogenet Evol.2003,29(3):464-489.
    [87]Litt A, Irish V F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage:implications for the evolution of floral development[J]. Genetics.2003, 165(2):821-833.
    [88]Martinez-Castilla L P, Alvarez-Buylla E R. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny[J]. Proc.Natl.Acad.Sci.USA.2003, 100(23):13407-13412.
    [89]Parenicova L, De F S, Kieffer M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world[J]. Plant Cell.2003,15(7):1538-1551.
    [90]Nam J, Kim J, Lee S, et al. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms[J]. Proc.Natl.Acad.Sci.USA.2004, 101(7):1910-1915.
    [91]Causier B, Castillo R, Zhou J, et al. Evolution in action:following function in duplicated floral homeotic genes[J]. Curr.Biol.2005,15(16):1508-1512.
    [92]Irish V F, A. Litt. Flower development and evolution:gene duplication, diversification and redeployment[J]. Curr Opin Genet Dev.2005,15(454-460).
    [93]Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins:structural modularity,protein interactions and network evolution in land plants[J]. Gene.2005,347(2): 183-189.
    [94]Ng M, Yanofsky M F. Function and evolution of the plant MADS-box gene family[J]. Nat.Rev.Genet.2001,2(3):186-195.
    [95]Theissen G, Kim J T, Saedler H. Classification and hylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes [J]. J.Mol.Evol.1996,43(5):484-516.
    [96]Zahn L M, Kong H, Leebens-Mack J H, et al. The evolution of the SEPALLATA subfamily of MADS-box genes:a preangiosperm origin with multiple duplications throughout an giosperm history[J]. Genetics.2005,169(4):2209-2223.
    [97]Zahn L M. Leebens-Mack.J H. Arrington J M, et al. Conservation and divergence in the AGAMOUS subfamily of MADS-box genes:evidence of independent sub-and events[J]. Evol.Dev.2006,8(1):30-45.
    [98]Gu Q, Ferrandiz C, Yanofsky M F, et al. The FRUITFULL MADS-box gene mediates cell differetiation during Arabidopsis fruit development [J]. Development.1998,125(8):1509-1517.
    [99]Mandel M A, Gustafson-Brown C, Savidge B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1[J]. Nature.1992,360(6401):273-277.
    [100]Haughn G W, Schultz E A, Martimez-Zapater J M. The regulation of flowering in Arabidopsis thaliana meristems,morphogenesis,and mutant[J]. Can.J.Bot.1995,73:959-981.
    [101]Yanofsky M F. Floral meristems to floral organs:Genes controlling early events in Arabidopsis[J]. Plant Physiol.1995,46:167-188.
    [102]Pelaz S, Ustafson-Brown C G, Kohalmi A E, et al. APETALA1 and SEPALLATA3 interact to promote flower development[J]. Plant Journal.2001,26:385-394.
    [103]Ferrandiz C, Liljegren S J, Yanofsky M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development[J]. Science.2000,289(5478):436-438.
    [104]Huijser P, Klein J, Lonning W E, et al. Bracteomania,an inflorescence anomaly,is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus[J]. EMBO J.1992, 11(4):1239-1249.
    [105]Kramer E M, Hall J C. Evolutionary dynamics of genes controlling floral development[J]. Curr.Opin.Plant Biol.2005,8(1):13-18.
    [106]Muller B M, Saedler H, Zachgo S. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development[J]. Plant J.2001,28(2): 169-179.
    [107]Kim S, Yoo M J, Albert V A, et al. Phylogeny and diversification of B-function MADS-box genes in angiosperms:evolutionary and functional implications of a 260-million-year-old duplication[J]. American Journal of Botany.2004,91(12):2102-2118.
    [108]Aoki S, Uehara K, Imafuku M, et al. Phylogeny and divergence of basal angiosperms infered from APETALA3-and PISTILLATA-like MADS-box genes[J]. Plant Res.2004,117(3): 229-244.
    [109]Kramer E M, Dorit R L, Irish V F. Molecular evolution of genes controlling petal and stamen development.duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages[J]. Genetics.1998,149(2):765-783.
    [110]Vandenbussche M, Theissen G, Van P Y, et al. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations[J]. Nucleic Acids Res.2003,31(15):4401-4409.
    [111]Kramer E M, Jaramillo M A, Di S V. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms [J]. Genetics.2004,166(2):1011-1023.
    [112]Jager M, Hassanin A, Manuel M, et al. MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family[J]. Mol.Biol.Evol.2003,20(5):842-854.
    [113]Liljegren S J, Ditta G S, Eshed Y, et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis[J]. Nature.2000,404(6779):766-770.
    [114]Theissen G. Birth.life and death of developmental control genes:new challenges for the homology concept[J]. Theory Biosci.2005,124(2):199-212.
    [115]Kotilainen M, Elomaa P, Uimari A, et al. GRCDl,an AGL2-like MADS box gene,participates in the C function during stamen development in Gerbera hybrida[J]. Plant Cell.2000,12(10): 1893-1902.
    [116]Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-box gene necessary for the tomato ripening-inhibitor(rin)locus [J]. Science.2002,296(5566):343-346.
    [117]石晶,梁婉琪,张大兵.植物花粉壁的发育[J].植物生理学通讯.2007,43(3):588-592.
    [118]刘慧娟,张在宝,高菊芳,等.拟南芥雄性不育突变体EC-157基因的精细定位[J].上海师范大学学报.2005,34(1):58-62.
    [119]Ariizumi T, Hatakeyama K, Hinata K, et al. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen,resulting in male sterility in Arabidopsis thaliana[J]. Plant Journal.2004,39:170-181.
    [120]Pillitter L J, Walling L L, Lovatt C A. Regulation of flowering in the Washington navel orange:floral genes[C]. Florida:2003.
    [121]Brunner A M, Rottmann W H, Sheppard L, et al. Structure and expression of duplicate AGAMOUS ortholoques in poplar[J]. Plant Molecular Biology.2000,44:619-634.
    [122]Liu J, Huang Y, Ding B, et al. cDNA cloning and expression of a sweetgum gene that shows homology with Arabidopsis AGAMOUS[J]. Plant Science.1999,142:73-82.
    [123]Vahala T, Oxelman B, Von Armold S. Two APETALA2-like genes of Picea abies are differentially expressed during development[J]. Journal of Experimental Botany.2001,52: 1111-1115.
    [124]Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity[J]. Cell.1992,71:119-131.
    [125]周丽娟,王丹,黄海涛.食用观赏果树费约果[J].中国果树,2007,04:68;
    [126]韩玉洁,殷丽青,张于卉等.费约果的引种栽培及其应用[J].上海交通大学学报(农业科学版),2009,28(6):631-634.
    [127]王丹,刘仁道,任少雄.食用、观赏兼用果树新种类费约果引种的气候适应性分析[J].中国南方果树,2007,36(6):39-41;
    [128]黄俊轩,魏佳,杨静慧等.北方温室栽培费约果生长特性研究[J].北方园艺,2011,14:51-53.
    [129]袁德义,邹锋,崔明杰等.菲油果果实主要营养成分及游离氨基酸分析[J].江西农业大学学报,2011,33(2):239-242.
    [130]福井正夫,陈石榕.费约果的生物学特性与栽培技术[J].福建热作科技,1985,(02):42-46.
    [131]张猛,王丹,任少雄等.费约果生物学特性及营养与药用价值研究[J].北方园艺,2009,06:128-131:
    [132]丁振柱,黄仁华,王丹等.费约果果实发育过程中抗氧化物质含量与相关酶活性的关系[J].果树学报,2011,28(4):694-698;
    [133]丁振柱,黄仁华,王丹.费约果叶片总黄酮提取工艺优化及其抗氧化活性研究[J].食品与生物技术学报,2011,30(3):371-375
    [134]Thorp G., Bieleski R.. Feijoas:Origins, Cultivation and Uses[M]. Palmerston North, New Zealand HortResearch and David Bateman,2002.p1-13
    [135]Mattos J.R.. A goiabeira serrana Governo do estado Rio Grande do Sul, Secrateria da agriculutura[J]. Publicacao IPRNR,1986,19:84.
    [136]Vogel, R.. The acclimatization in Corsica of certain exotic fruits trees [J]. Fruits,1982, 37:10-11;
    [137]Collin, M.N, J. Marchal, R. Vogel. Etude biochemique de fruits de feijoas recoltes en Corse[J]. Fruits,1989.44:415-426.
    [138]Schroeder, C.A.. Pollination requirements of the feijoa [J]. Proceedings of the American society for Horticultural Science,1947,49:161-162;
    [139]Sharpe, R.H., W.B. Sherman, E.P. Miller. Feijoa history and improvement J]. Proceedings of the Florida State Horticultural Society,1993,106:134-149.
    [140]http://www.hortresearch.co.nz/index/page/405[EB/OL
    [141]任少雄,王丹,张猛等.世界各国菲油果育种进展及主要栽培品种[J].中国南方果树,2008,37(5):30-32.
    [142]张猛.费约果引种适应性及扦插生根机理的研究[D].雅安:四川农业大学,2009.
    [143]向盛萍,袁德义,赵思东等.菲油果光合特性的日变化[J].湖南农业大学学报(自然科学版),2009,35(3):284-287.
    [144]刘洪章,刘艳军,杨恩芹等.费约果外植体消毒处理方法[J].安徽农业科学,2011,39(16)9546-9547.
    [145]Cruz, G.S., J.M. Canhoto, A.V. Abreum. Somatic embryogenesis and plant regeneration form zygotic embryos of Feijoa sellowiana Berg[J]. Plant Science,1990,66 (2):263-270.
    [146]Jorge M. Canhoto and Gil S. Cruz. Induction of pollen callus in anther cultures of Feijoa sellowiana Berg.(Myrtaceae)[J].Plant Cell Reports,1993,13:45-48.
    [147]J.M. Canhoto, and G.S. Cruz. Histodifferentiation of somatic embryos in cotyledons of pineapple guava (Feijoa sellowiana Berg)[J]. Protoplasma,1996,191:34-45.
    [148]Guerra, M.P., R. Pescador, L. L. Dalvesco, et al. In vitro morphgenesis in Feijoa sellowiana: somatic embryogenesia and plant regeneration [J]. ISHS Acta Horticulture 452:International Symposium on Myrtaceae,1997.
    [149]Parra, AI. R., A AI. J.B. Mo-Marco. Secondary somatic embryogenesis and plant regeneration in myrtle(Myrtus communis L.)[J]. Plant Cell Reports,1998,18:325-330.
    [150]Suzana Stefanello, et al. Somatic embryogenesis form flora of Feijoa (Feijoa sellowiana Berg)[J]. Scientia Hortculture,2005,105:117-126.
    [151]Lirio L. Dal Vesco and Miguel P. Guerra. The effectiveness of nitrogen sources in Feijoa somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture,2001,64:19-25.
    [152]Victor M. Jimenez. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis[J]. Plant Growth Regulation,2005,47:91-110.
    [153]E. Reis, M.T. Batista, J.M. Canhoto. Effect and analysis of phenolic compounds during somatic embryogenesis induction in Feijoa sellowiana Berg[J]. Protoplasma,2008,232:193-202.
    [154]Rosete Pescador, Gilberto B. Kerbauy, Jane E. Kraus et al. Changes in soluble carbohydrates and starch amounts during somatic and zygotic embryogenesis of Acca sellowiana (Myrtaceae) [J]. In Vitro Cell Dev. Biol. Plant,2008,44:289-299
    [155]下丹,刘仁道,张冬雪等.食用观赏兼用果树新种类费约果的组织培养技术初探[J].中国南方果树,2007,36(2):21-23.
    [156]周丽娟,王鹤丹,黄海涛等.费约果外植体火菌及愈伤组织的诱导[J].热带亚热带植物学报,2008,16(2):179-183.
    [157]王丹,周丽娟,黄海涛等.费约果不同花器官愈伤组织培养初报[J].北方园艺,2008,12:169-172.
    [158]邓文韬.菲油果苗木繁殖技术研究[D].长沙:中南林业科技大学,2011.
    [159]Verhey, E.W.M. Mintue nursery trees, a breakthrough for the tropics[J]. Chronica Horticulture, 1982,22:1-2.
    [160]Fankhauser, I. Propagating feijoa by bench grafeting[J]. Combined Proceedings, International Plant Propagators'Soceety,1985,34:401-403.
    [161]Gorgoshidze, G.M. Rooting of cuttings of feijoa in relation to biological features of the shoots[J].Subtropicheskie kul'tury,1971,4:116-123
    [162]Babaev, M.M. Vegetative propagation of feijoa in the Lenkora-Astarinski zone[J]. Subtropicheskie kul'tury,1989,6:102-104.
    [163]Kukava, A. Innovation in feijoa propagation from cuttings and the growth characteristics of the cuttings[J]. Subtropicheskie Kul'tury,1989,4:21-24.
    [164]Messeric, Petrccellir, Panicucci M, Pestelli P.Multipliation of some cltivars of feijoa by cuttings through the mist spraying technique[J].Informatore Agrario,1992,48(13):139-140.
    [165]Figureueiredo, S.L.B., E. Kerten and M.W. Schuch. Effects of blanching and of indolbutyric acid(IBA) in the rooting of feijoa sellowiana Berg cuttings[J]. Scientia Agricola, 1995,52(1):167-171.
    [166]张猛,王丹,任少雄等.菲油果母株繁殖方式和插穗成熟度对扦插生根的影响[J].林业科技,2009,34(3):59-61.
    [167]张猛,王丹,任少雄等.不同基质和植物生长调节剂对菲油果嫩枝扦插生根的影响[J].中国南方果树,38(4):47-49.
    [168]张猛,王丹,任少雄等.树龄及扦插时期和采穗部位对菲油果嫩枝扦插生根的影响[J].北方园艺,2010,6:23-34.
    [169]邓文韬,张日清,袁德义.植物生长调节剂对菲油果嫩枝扦插生根的影响[J].中南林业科技大学学报,2011,31(3):160-163.
    [170]张猛,汤浩茹,王丹等.菲油果插条生根特征和解剖特性研究[J].果树学报,2009,26(4)498-501;
    [171]张猛,汤浩茹,王丹等.菲油果解剖结构与插条不定根的形成[J].林业科学,2010,46(7)183-187
    [172]Akhund-Zade, I.M, Imamaliev, G.N. The effect of gamma irradiation on feijoa seeds[J]. Radiobiologiya,1971,11(4):636-637.
    [173]Gorgoshidze, G.M. Some problems of propagating feijoa by seed[J]. Subtropicheskie Kultury, 1973,1:118-120.
    [174]张猛,王丹,范理璋,等.种子贮藏方法和播种期对费约果出苗的影响[J].北方园艺,2011(11):48-49.
    [175]高超,袁德义,邓文韬等.菲油果种子萌发试验研究[J].种子,2011,30(9):8-10.
    [176]向盛萍.菲油果光合特性研究[D].长沙:中南林业科技大学,2009.
    [177]崔明杰.菲油果生长发育特性研究[D].长沙:中南林业科技大学,2010.
    [178]张猛,汤浩茹,下丹等.菲油果果实香气成分的GC-MS分析[J].食品科学,2008,29(8)489-491
    [179]马月萍,戴思兰.植物花芽分化机理研究进展[J].分子植物育种,2003,1(4):539-545.
    [180]李和平.植物显微技术(第二版)[M].北京:科学出版社,2009.
    [181]李道高.果树栽培生理讲座第二讲果树的花芽分化与开花[J].中国南方果树,1996,25(2)59-61.
    [182]曹尚银,张秋明,吴顺.果树花芽分化机理研究进展[J].果树学报,2003,20(5):345-350.
    [183]胡适宜.被子植物生殖生物学[M].北京:高等教育出版社,2005.
    [184]张大勇.植物生活史进化与繁殖生态学[M].北京:科学出版社,2004.pp285-301.
    [185]孟金陵等.植物生殖遗传学[M].北京:科学出版社,1997.
    [186]朱昀,王猛.贾志伟,练云.金颖.王国英,一种从富含多糖的玉米幼穂中提取RNA的方法[J].植物学通报,24(5)(2007)624-628.
    [187]骆江伟.梅花花器官cDNA文库的构建及其PmAP3、PmPI、PmAG基因的克隆[D].武汉:华中农业大学,2009,硕士
    [188]缪恒彬.菊花花器官cDNA文库的构建及DgGA20ox基因克隆及表达分析[D].南京:南京农业大学,2009,博十.
    [189]陈大明,金勇丰,张上隆.2001.柑橘LEAFY同源基因片段分离及特性研究.园艺学报,28(4):295-300.
    [190]Oh S H and Potter D. Phylogenetic utility of the second intron of LEAFY in Neillia and Stephanandra (Rosaceae) and implications for the origin of Stephanandra. Molecular Phylogenetzcs and Evolution, 2003,29:203-215.
    [191]Coen E S, R O mero J M, DoyleS,et ai.florieaularahomeotie gene required for flower development Antirrhinm Majus[J].Cell,1990,63(6):1311—1322
    [192]Weigel D, Nilsson O.Adevelo Pmental switch suffieient for fiower initiation in diverse Plants [J]. Nature,1995,377(6549):495—5(X)
    [193]Weigel D, Nilsson O.Adevelo Pmental switch suffieient for flower initiation in diverse Plants [J]. Nature,1995,377(6549):495-5(X)
    [194]Rottmann WH Meilan R,sheppard L.A,et. al.diverse effects of overexpression LEAFY and PTLF a populus homolog of FLORICAULA/LEAFY in transgenic poplar and Arabidopsis CAULA [J].Plant.,2000,22 (3):235-245
    [195]Kyozuka J konishi S, Nemolo K et al.Down-regulation of RFL,the FLO/LFY homolog of rice,accompanied with panicle branch initiation [J].proc.Natl.Acad. Sci.USA;199895(5)1979-1982
    [196]Mellerowicz E J,Hhorgan K,walden A.et.al.PRTLL pinus radiata homologue of FLORICAULA/LEAFY and LEAFY is expressed in buds containing vegetative shoot and undifferentiated. Male cone primordia [j]. Plant.1998,206(4):619-629
    [197]WadaM,Cao QF, KotodaN, et al.Apple has two orthologues of FLORICAULA/LEAFY involved In flowering [J].Plant.Biol.,2002,49(6):567-577
    [198]MouradovA, HamdorfB, Teasdale R D, Kim J T, Winter KU, TheissenG.1999. ADEF/GLO-like MADS-box gene from a gymnosperm:Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Developmental Genetics,25:245-252.
    [199]Lawton-Rauh A L, Buckler E S, Purugganan M D.1999. Patterns of molecular evolution among paralogous floral homeotic genes. Molecular Biology and Evolution,16:1037-1045.
    [200]Martino G D, Pan I, Emmanuel E, Levy A, Irish V F.2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell,18:1833-1845.
    [201]Mondragon-Palomino M, Hiese L, Harte A, Koch M A, Theissen G.2009. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evolutionary Biology,9:81-116.
    [202]Pelaz S, Tapia-Lopez R, Alvarez-Buylla E R, Yanofsky M F.2001. Conversion of leaves into petals in Arabidopsis. Current Biology,11:182-184.
    [203]Jack T, Brockman L L, Meyerowitz E M.1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell,68:683-697.
    [204]Gao X M, Xia Y M, Li Q J.2006. Isolation of two putative homologues of PISTILLATA and AGAMOUS from Alpinia oblongifolia (Zingiberaceae) and characterization of their expression. Plant Science,170:674-684.
    [205]Goto K, Meyerowitz E M.1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes and Development,8:1548-1560.
    [206]Kalivas A, Pasentsis K, Polidoros A N, Tsaftaris A S.2007. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. DNA Sequence,18:2,120-130.
    [207]Riechmann J L, Wamg M, Meyerowitz E M.1996. DNA-binding properties of Arabidopsis MADS homeotic protein APETALA1, APETALA3 PISTILLATA, and AGAMOUS. Nucleic Acids Res,24:3134-3141.
    [208]Riechmann J L, Meyerowitz E M.1997. MADS domain proteins in plant development. Biol Chem, 378:1097-1101.
    [209]Immink R G, Gadella T W, Ferrario S, Busscher M, Angenent G C.2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad,99:2416-2421.
    [210]Ackerman C M, YuQY, Kim S T, Paull R E, Moore P H, Ming R.2008. B-class MADS-box genes in trioecious papaya:Two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI. Planta,227:741-753.
    [211]Davies B, Egea-Cortines M, Silva E, Saedler H.1996. Multiple interactions amongst floral homeotic and MADS-box proteins. EMBO J,15:4330-4334.
    [212]Fan H Y, Hu Y, Tudor M, Ma H.1997. Specific interactions between K domains of AG and AGLs members of the MADS domain family of DNA binding proteins. Plant J,12:999-1010.
    [213]Yang Y Z, Fanning L, Jack T.2003. The K domain mediates heterodimerization of the Arabidopsis floral orgna identity proteins, APETALA3 and PISTILLATA. The Plant Journal,33:47-59.
    [214]Cseke LJ, Cseke SB, Ravinder N, Taylor LC, Shankar A, Sen B, Thakur R, Karnosky DF, Podila GK (2005). SEP-class genes inPopulus tremuloides and their likely role in reproductive survival of poplar trees.Gene 358,1-16.
    [215]Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, M akel a H, Sopanen T (2004). Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant 121, 149-162.
    [216]胡桂兵,林顺权,叶自行,徐昌杰,张上隆.2004.芒果LEAFY同源基因的分离及序列分析.亚热带植物科学,33(2):1-4.
    [217]郑丽霞,林晓东,朱芳德,肖洁凝,符同浩,钟伟,黄上志.2004.龙眼FLO/LFY同源基因cDNA片段的克隆.中山大学学报:自然科学版,43:60-64.
    [218]刘月学,胡桂兵,林顺权,刘宗莉,陈厚彬.2005.枇杷LEAFY同源基因的克隆及序列分析.华南农业大学学报,26(2):66-68.
    [219]何新华,郭永泽,张利,李杨瑞.2007.金柑LEAFY同源基因克隆与全序列分析.广西农业生物科学,26(4):273-276.
    [220]吕山花.太行花MADS-box基因克隆、表达模式及功能分析[D].中国科学院植物研究所,2006.
    [221]康兆茹.草莓(Fragaria ananassa Duch.)果实MADS-box基因的克隆与表达初探[D].西南大学,2011.
    [222]郑铁庚.椪柑花器官和幼果的cDNA文库构建及EST分析[D].华中农业大学,2008.
    [223]石明旺.油茶种子EST文库构建及油脂合成关键酶基因的分离鉴定[D].中南林学院,2004.
    [224]曾艳玲.鹅梨S基因型的鉴定及S基因的cDNA克隆[D].中南林业科技大学,2006.
    [225]明付焕.绵毛优若藜冷胁近均一化全长cDNA文库构建及EST分析[D].中南林业科技大学, 2011.
    [226]邓建军.惠阳红梨S基因型的鉴定及花粉S基因克隆[D].中南林业科技大学,2009.
    [227]刘儒.油桐花牙分化期外源激素对Tunglfy表达特性及光合作用的影响[D].中南林业科技大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700