基于分子标记和DNA条形码的大别山特产柿种质的遗传多样性和系统发育学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柿属(Diospyros Linn.)是柿科中种类最多、分布最广、经济价值最大的属。我国是柿属植物的分布中心和原产中心之一,拥有丰富的种质资源。柿(Diospyros kaki Thunb.)是柿属植物作为果树栽培的代表种,分为完全甜柿、不完全甜柿、不完全涩柿和完全涩柿四种类型。我国大多数柿品种为完全涩柿。中国甜柿和完全雄性柿种质仅分布在湖北、河南和安徽三省交界的大别山区,因其甜涩性状为显性遗传等特点而在世界柿基因库和甜柿遗传改良中具有重要的地位,但其遗传多样性和起源与进化至今鲜见报道。另外,柿属植物的系统发育关系至今仍不清楚。本研究首次利用ISSR、IRAP和cpDNAPCR-RFLP分子标记对大别山区特产柿种质的遗传多样性和系统发育学进行系统分析,探索其起源与传播途径,并对柿属植物DNA条形码进行初探,以期为柿属植物的快速鉴定、系统发育学、起源与进化和遗传育种等研究提供方法和思路。主要研究结果如下:
     1.利用ISSR和IRAP对43份‘罗田甜柿’单株间的遗传差异进行分析,两种分子标记共扩增280条谱带,长度范围在250~2000bp,均具有较高的多态性比例(PiISSR=100%和PiiRAP=97.93%)和多态性信息含量(PICISSR=0.20和PICIRAP=0.26),是有效的分析方法(标记指数MIISSR=1.78和MIIRAP=1.14); ISSR和IRAP分析试材间的SM相似系数分别为0.104-0.985(平均0.795)和0.566-0.903(平均0.734),前者鉴定的遗传变异范围较后者更广,说明ISSI适用于筛选中国甜柿新种质而IRAP适宜研究其居群遗传多样性和起源与进化;UPGMA聚类图中,ISSR将试材分为两大类,IRAP将其分为三大类,整合两种方法的结果与ISSF类似,这说明‘罗田甜柿’单株间存在遗传差异,并且少数遗传差异较大的试材可能为隐存新种质,如11、36、40、41等,‘罗田甜柿’是遗传背景复杂的品种群而非遗传背景一致的单一品种。
     2.利用IRAP对大别山区甜柿的遗传多样性进行分析,共扩增101条谱带,长度范围在250-2000bp,IRAP具有高的多态性比例(Pi=100%)和多态性信息含量(PIC=0.35),标记指数(MI)为1.92,是有效的分析方法;大别山区甜柿在物种水平上的Nei's基因多样度指数(H)为0.2992,Shannon信息指数(I)为0.4630,在居群水平上分别为0.2615和0.4156,说明大别山区甜柿存在较高的遗传多样性水平,并且物种水平略高于居群水平,存在丰富的遗传变异;七个居群中,八迪河居群的Nei's基因多样度指数(H=0.3194)和Shannon信息指数(I=0.4864)均最高,推测其为大别山区甜柿的起源中心;甜柿居群总基因多样度(Ht)为0.2967,居群内基因多样度(Hs)为0.2615,占总基因多样度的比率为88.14%,说明大别山区甜柿的遗传多样性主要是由居群内的基因多样性引起的,遗传变异主要发生在居群内单株间;居群间存在强的基因流(Nm=3.7205),可能发生过突变、杂交或人为引种等事件;大别山区甜柿的传播途径是从罗田县的八迪河村起始,向西南方传播至罗田县的唐家山村、錾字石村和东冲畈村等地,向东北方传播至安徽省的马石村等地进而传播至河南省的大埠河村等地,向西方传播至麻城市的凌家塝村等地,最终在湖北、安徽和河南三省交界的大别山区进行广泛栽植和遗传进化。
     3.利用cpDNA PCR-RFLP和IRAP对完全雄性柿种质的分类学地位和系统发育学进行分析,前者多态性比例为75.0%,多态性信息含量为0.13,标记指数为0.26,后者多态性比例为97.61%,多态性信息含量为0.32,标记指数为2.49,说明cpDNA PCR-RFLP的鉴定力较低,适合种间或者利以上柿属植物的鉴定、系统发育学和遗传进化研究,而IRAP的鉴定力和灵敏度高,适合鉴定系统发育关系近的种内试材;cpDNA PCR-RFLP分析试材间的Jaccard相似系数范围为0.318-1.0(平均值为0.836),而IRAP分析的SM相似系数范围为0.394~0.912(平均值为0.671);两利,方法获得的UPGMA聚类图表明完全雄性柿种质属于柿种,并且与中国柿品种系统发育关系紧密------雄株1号、雄株2号、雄株3号和雄株9号与‘罗田甜柿’和‘宝盖甜柿’等中国完全甜柿的系统发育关系较近,雄株8号与‘磨盘柿’和‘铜盆柿’等中国完全涩柿的关系很近,雄株10号则和日本柿品种关系近,这说明完全雄性柿种质间具有不同的遗传背景,其起源与进化途径不同;另外,君迁子与柿种内材料的遗传关系较浙江柿、老鸦柿和美洲柿近。
     4.利用matK和rbcL序列分析柿属植物DNA条形码及其适用性,通过比较分析筛选X+3.2和a f+724r引物组合分别对柿属植物natK和rbcL序列进行扩增,扩增效率均为84.47%,测序成功率分别为82.35%和100%;由于X+3.2扩增产物(1031bp)过长,推荐2.1a+5和a f+724r分别作为柿属植物DNA条形码matK和rbcL序列的通用PCR扩增引物;matK和rbcL序列长度分别为1031bp和744bp,相应序列已提交GenBank数据库(登录号GU471696~GU471727);功能分析可知前者为成熟激酶(matK)超家族蛋白的部分编码序列(编码约343个氨基酸),后者为核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)超家族蛋白的部分编码序列(编码约248个氨基酸),多数碱基位点高度保守;matK序列在所有试材间存在238个变异位点(23.92%)和114个简约信息位点(11.46%),约为rbcL)序列变异位点(12.84%)和简约信息位点(6.64%)的两倍,matK+rbcL序列组合居二者之间;matK检测最大的平均种内遗传距离(0.0009),因此当种间遗传距离大于0.001时确定为物种鉴定成功:当对110种柿属植物进行DNA条形码分析时,鉴定力大小依次为matK+rbcL (92.73%)>matK(91.82%)>rbcL(79.09%),因此建议matKK+rbcL片段组合作为柿属植物核心DNA条形码;利用matK+rbcL对110种164份试材(其中2份假乌木属试材作为外类群)构建NJ树、进行系统发育学分析,大多数柿属植物的分类学地位和系统发育关系得到鉴定,支持野毛柿和金枣柿分别作为新种,并且野毛柿与油柿、D. glandulosa聚类在一起,浙江柿和君迁子聚类在一起,说明他们之间的系统发育关系近,可能具有共同的祖先,但是一些未知试材[如Diospyros sp. SD-2009voucher Lowry et al.5783(MO)、Diospyros sp. K20616和Diospyros sp. K20613等]无法鉴定,柿属植物DNA条形码仍需深入研究。
Diospyros Linn. is the biggest genus including the most species distributed most widely and of the largest economic value in Ebenaceae. China is one of the originating and distributing centers of Diospyros Linn. with abundant genetic resources. D. kaki Thunb. is the representative species cultivated as fruit and classified into PCNA, PVNA, PVA and PCA types. Most of the cultivars in China are PCA types. Chinese non-atringent persimmon and staminate germplasm are only distributed in Dabieshan Mountain around the junction of three provinces, Hubei, Henan and Anhui in central China. They play important roles in the research and industry of the oriental persimmon in the world because that their trait of natural astringency-loss of fruit is dominant to the non-PCNA types whereas Japanese PCNA cultivars' is recessive. The genetic diversity and phylogenetics of the persimmon germplasm native to Dabieshan region are still unclear now. Here they were analyzed by ISSR, IRAP and cpDNA PCR-RFLP markers, meanwhile DNA barcoding for Diospyros Linn, was researched in the present study, and the main results were shown as follows:
     1. ISSR and IRAP markers were used to predict the genetic differences among43'Luotian-tianshi'collected from three major producing areas in China. A total number of280amplicons were observed ranging between250~2000bp. Both of them were effective methods because of the high Pi (ISSR=100%; IRAP=97.93%), PIC (ISSR=0.20; IRAP=0.26) and MI (ISSR=1.78; IRAP=1.14). The SM coefficient between 'Luotian-tianshi'were from ranged from0.104to0.985(average0.795) analyzed by ISSR and from0.566to0.903(average0.734) by IRAP, indicating that ISSR is suitable for selecting new germplasm while IRAP for studying the population genetic diversity, origin and evolution of Chinese non-atringent persimmon. On the basis of cluster analysis in the UPGMA dendrogram, two and three clusters were observed by ISSR/ISSR+IRAP and ISSR, indicating that 'Luotian-tianshi' existed the genetic differences and some could be potential germplasms because of the significant genetic differences, such as Accll, Acc36, Acc40and Acc41. So 'Luotian-tianshi' was a complex group including different cultivars rather than a single cultivar with the same genetic background.
     2. IRAP was used to study the genetic diversity, origin and evolution of non-atringent persimmons native to Dabieshan Mountain. A total number of101amplicons were observed ranging between250-2000bp. IRAP was the effective method because of the high Pi (100%), PIC (0.35) and MI (1.92). The values of H and I of Chinese non-atringent persimmon were0.2992and0.4630in the level of individuals while0.2615and0.4156in the level of population, indicating that the high genetic diversity existed among non-atringent persimmons native to Dabieshan Mountain. Among the seven populations, Badihe population had the highest H (0.3194) and I (0.4864) so that it was supposed to be the origin center of non-atringent persimmons native to Dabieshan Mountain. The values of Hs was88.14%of Ht (0.2967), illustrating that the genetic diversity of non-atringent persimmons native to Dabieshan Mountain is mainly contributed by individuals in the population. The gene flow from Gst was strong (Nm=3.7205) among the populations, suggesting that mutation, crossover or artificial introduction might have happened in the evolution of non-atringent persimmons native to Dabieshan Mountain. Basing on the Nei's similarity, UPGMA and NJ dendrograms, the probable spreading pathway of non-atringent persimmons native to Dabieshan Mountain was as follows:they origined from Badihe village, then migrated to Tangjiashan village, Zanzishi village, Dongchongfan village and so on in the southwest, to Mashicun village, Dabuhe village and so on in the northeast, to Lingjiabang village and so on in the west, and finally were cultivated widely and evolved in Dabieshan Mountain around the junction of three provinces, Hubei, Henan and Anhui in central China.
     3. The taxonomy and phylogenetic relationships of Chinese staminate germplasm and the other genotypes in Diospyros Linn. were analyzed by cpDNA PCR-RFLP and IRAP. cpDNA PCR-RFLP was suitable for the identification, phylogenetics and evolution of inter-species or above-species level because of the low values of Pi (75%), PIC (0.13) and MI (0.26), meanwhile IRAP was appropriate for that of intra-species level because of high values (Pi=97.61%; PIC=0.32; MI=2.49). The Jaccard similarity of samples analyzed by cpDNA PCR-RFLP ranged from0.318to1.0(average0.836) and the SM coefficient analyzed by IRAP was from0.394to0.912(average0.671). The UPGMA dendrograms constructed via the combination of the two methods indicated that Chinese staminate germplasm belonged to D. kaki Thunb. indeed and had different genetic background. Male strain No.l, Male strain No.2, Male strain No.3and Male strain No.9were closely related with Chinese PCNA persimmons, such as 'Luotian-tianshi' and 'Baogai-tianshi'. Interestingly, Male strain No.8was closely related with Chinese PCA persimmons, such as 'Mopanshi' and 'Tongpanshi', and Male strain No.10was closely related with Japanese persimmon. In addition, the phylogenetic relationship between D. kaki Thunb. and D. lotus L. was closer than that between D. kaki Thunb. and D. glaucifolia Mete., D. rhombifolia Hemsl., D.virginiana L.
     4. matK and rbcL sequence fragments were selected to analyze DNA barcode for Diospyros Linn. and its applicability. X+3.2and a_f+724r primers combinations were screened to amplify mat K. and rbcL sequences of17persimmon samples used in the study. The amplification efficiency of mat K and rbcL were the same (84.47%) and the sequencing success rates were82.35%and100%, respectively. Due to the long X+3.2amplicons (1031bp), we recommended2.1a+5and a_f+724r as the universal PCR amplification primers for matK and rbcL sequence in Diospyros Linn, respectively. The length of matK and rbcL sequences, which were deposited in GenBank database (Accession nunbers were from GU471696to GU471727), were1031bp and744bp, respectively. The sequence analysis showed that matK sequence includes gene fragment encoding about343amino acids of mature kinase (matK) superfamily protein, and rbcL sequence is the partial gene fragment encoding about248amino acids of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) superfamily protein, most nucleotide sites in which were highly conserved. matK sequences in all samples had238variable sites (23.92%) and114parsimony informative sites (11.46%), which were approximately twice of those of rbcL sequences, and matK+rbcL sequences between them. The identification of Diospyros Linn, was regarded as successful when the inter-specific genetic distance is greater than0.001because that the largest average intra-specific genetic distance (0.0009) were detected by aligning the matK sequences. When110species in Diospyros Linn.were analyzed by DNA barcoding, the percent of discrimination success were matK+rbcL (92.73%)> matK (91.82%)> rbcL (79.09%), so that matK+rbcL was recommended to be the core DNA barcode for Diospyros Linn.. On the basis of the NJ tree of164samples from110species constructed by matK+rbcL, the taxonomic status and phylogenetic relationships of most species were identified. It was supported that D. kaki Thunb. var. sylvestris Makino and Jinzaoshi would be new species. In addition, D. kaki Thunb. var. sylvestris Makino, D. oleifera Cheng, and D. glandulosa, D. glaucifolia Metc. and D. lotus L. had the close phylogenetic relationships, suggesting that they might have the same ancient. But some unknown species, for example, Diospyros sp. SD-2009voucher Lowry et al.5783(MO), D. sp. K20616and D. sp. K20613, couldn't be identified so far and DNA barcode for D. spp. needed to be further researched.
引文
1.艾呈祥,张力思,魏海蓉,金松南,苑克俊,刘庆忠.山东实生板栗居群遗传多样性ISSR分析.生物工程学报,2007,23:628-633
    2.傍岛善次.柿和人生.东京:明玄书房,1980.1445(日文)
    3.陈方永,倪海枝,何理坤,王引,卢国耀,王冬米,任正初.浙江部分柿属植物鉴定及系统发育关系的SSR分析.果树学报.2011,28:46-50
    4.程运江,伊华林,庞晓明,郭文武,邓秀新.几种木本果树DNA的有效提取.华中农业大学学报,2001,20:481-483
    5.杜晓云.系列逆转座子分子标记的建立及其在柿属植物中的应用研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    6.杜晓云,张梦思,罗正荣,张青林.ISTR在部分柿属植物种质鉴定和亲缘关系分析中的应用.园艺学报,2009,36:481-486
    7.杜晓云,张青林,黄建民,罗正荣.SSAP逆转座子分子标记在柿属植物遗传分析中的应用.农业生物技术学报,2010,18:682-688
    8.费学谦,周立红,龚榜初.不同甘、涩类型果实单宁组成的差异及罗田甜柿单宁的特性.林业科学研究,1999,12:369-373
    9.葛颂.酶电泳资料和系统与进化植物学研究综述.武汉植物学研究,1994,12:71-84
    10.郭大龙,罗正荣.柿和君迁子SSR分析技术的建立.农业生物技术学报,2004,12:386-389
    11.郭大龙.几种分子标记技术的建立及其在部分柿属植物系统发育关系分析中的应用.[博士学位论文].武汉:华中农业大学图书馆,2006
    12.郭大龙,罗正荣.部分柿属植物SRAP-PCR反应体系的优化.果树学报,2006a,23:138-141
    13.郭大龙,罗正荣.一种利用ISSR开发SSR引物的方法.植物生理学通讯,2006b,43:268-270
    14.何云核.安徽柿树品种资源初步研究.西北林学院学报,1995,10:47-51
    15.胡芳名,谢碧霞,张在宝,吴定国,伍根庭,段以规,王琳,龚家发,苏冬梅,刘佳佳.湖南柿树资源及开发利用.经济林研究,1989,7:1-30
    16.李高潮,王仁梓,杨勇.柿品种性状演变与分化研究.西北农业学报,2002,11:68-71
    17.李高潮,王仁梓,杨勇.柿种植物雄性种质资源.果树科学,1996,13:199-200
    18.李高潮,杨勇,王仁梓.中国原产柿品种资源.中国种业,2006,4:52-53
    19.李树刚.中国植物志(第六十卷第一分册).北京:科学出版社,1987.84-154
    20.李先明.罗田甜柿资源调查报告.中国南方果树,2003,32:69-70
    21.李先明.早熟甜柿新品种—宝华甜柿.广西园艺,2004,15:22-23
    22.卢涛,李明军,蒲飞,马锋旺,梁东,李瑞,杨勇.柿资源叶片中抗坏血酸和谷胱甘肽含量的多样性研究.西北农林科技大学学报(自然科学版),2008,36:45-50
    23.罗正荣,米森敬三,杉浦明.应用RAPD技术进行柿种类和品种鉴定.园艺学会杂志,1995,64:535-541(日文)
    24.罗正荣,蔡礼鸿,胡春根.柿属植物种质资源及其利用研究现状.华中农业大学学报,1996,15:381-388
    25.罗正荣,米森敬三,杉浦明.应用RAPD技术研究柿品种间的亲缘关系.果树科学,1998,15:311-316
    26.罗正荣,李发芳,蔡礼鸿.部分中国原产甜柿的分子系统学研究.园艺学报,1999,26:297-301
    27.罗正荣,王万双,王仁梓,李高潮.应用同工酶技术鉴别同物异名柿.园艺学报,2000,27:475-480
    28.马齐,张强,秦涛.我国柿资源的研究开发现状.陕西农业科学,2005,6:56-57
    29.潘德森,马业萍,余秋英,易珍望,张仕辉.罗田甜柿资源调查及优良株系选育.湖北林业科技,1994,2:24-28
    30.钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994
    31.杉浦明.柿的起源和品种演化.育种学最近的进步,1984,25:30-37(日文)
    32.世界资源研究所(WRI)等著,中国科学院生物多样性委员会译.全球生物多样性策略.北京:中国标准出版社,1992
    33.苏冬梅.柿属君迁子和湖南九个乡土柿品种过氧化物酶同工酶的研究.武汉植物学研究,1991,9:253-258
    34.唐仙英,罗正荣.部分中国柿品种及其胚培养后代的染色体倍性研究.园艺学报,2000,27:235-239
    35.童敏.浙江省柿树遗传多样性与种质鉴定研究.[博士学位论文].杭州:浙江林学院图书馆,2007
    36.王劲风,方正明.甜柿引种栽培.北京:中国农业出版社,1995.3
    37.王柯,陈科力,刘震,陈士林.锦葵科植物DNA条形码通用序列的筛选.植物学报,2011,46:276-284
    38.王仁梓.柿种质资源研究.见:陕西省果树研究所主编,陕西果树所建所三十年和陕西果品研究中心成立科学研究论文集,1979,25-27
    39.王仁梓.关于罗田甜柿原产地问题的探讨.中国果树,1983,2:16-19
    40.王文江.柿(Diospyros kaki Thunb.)优良品种AFLP指纹图谱构建及遗传多样性研究.[博士学位论文].保定:河北农业大学图书馆,2004
    41.王燕.中国原产完全甜柿自然脱涩机理研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    42.王正加,黄有军,郭传友,黄坚钦,王华芳.大别山山核桃种群遗传多样性研究.植物生态学报,2006,30:534-538
    43.王中仁.植物等位酶分析.北京:科学出版社,1996
    44.徐莉清.部分中国原产柿属雄性种质的生物学特性及其新种质创制的研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    45.徐象华,陈民管,李永强,孙杰,陈文荣,郭卫东.金枣柿与部分柿属植物系统发育关系的ISSR分析.浙江农业学报.2010,22:731-735
    46.晏海云,赵和清.甜柿.北京:中国农业出版社,2006
    47.杨继涛,李明军,杜国荣,马锋旺.不同基因型柿果实抗氧化物成分分析.西北农业学报,2010,19:138-141
    48.杨勇,王仁梓,李高潮,王雯.柿属植物及柿品种染色体数目研究.西北农业学报,1999,8:64-67
    49.杨勇,阮小凤,王仁梓,李高潮.柿单宁细胞形态特征及发育动态研究.西北农林科技大学学报(自然科学版).2003,31:93-99
    50.杨勇,阮小凤,王仁梓,李高潮.柿种质资源及育种研究进展.西北林学院学报,2005,20:133-137
    51.杨勇,王仁梓.柿种质资源描述规范和数据标准.北京:中国农业出版社,2006
    52.杨勇,阮小凤,王仁梓,李高潮.单宁细胞形态与部分柿属种及品种相关性研究.西北植物学报,2007,27:1524-1530
    53.易珍望,罗正荣,潘德森,吴汉初,周建设.完全甜柿新品种‘鄂柿1号’.园艺学报,2004,31:699
    54.俞德浚.中国果树分类学,北京:农业出版社,1979
    55.袁录霞,张青林,郭大勇,罗正荣.中国原产甜柿及其在世界甜柿基因库中的地位.园艺学报,2011,38:361-370
    56.张金梅,王建秀,夏涛,周世良.基于系统发育分析的DNA条形码技术在澄清芍药属牡丹组物种问题中的应用.中国科学C辑:生命科学,2008,38:1166-1176
    57.张青林,罗正荣.柿属植物ISSR分析技术的建立.农业生物技术学报,2004,12:521-525
    58.张青林,罗正荣.部分柿属雄性种质的巨大花粉、花粉离体及其在罗田甜柿柱头上的萌发率.果树学报,2006,23:293-296
    59.张青林.完全甜柿及部分雄性种质间的系统发育关系研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    60.张田,李作洲,刘亚令,姜正旺,黄宏文.猕猴桃属植物的cpSSI遗传多样性及其同域分布物种的杂交渐渗与同塑.生物多样性,2007,15:1-22
    61.张永卓,张艳芳,罗正荣.部分中国原产甜柿种质甜涩性状的鉴定.园艺学报,2006,33:370-373
    62.中村三夫,福井博一.柿的生理生态和栽培新技术.东京:诚文堂新光社,1994.3-23(日文)
    63.左大勋,柳鎏,王希蕖.我国柿属植物资源的地理分布及利用.中国果树,1984,3:27-34
    64. Badenes M, Garces A, Romero C, Romero M, Clave J, Rovira M, Llacer G. Genetic diversity of introduced and local Spanish persimmon cultivars revealed by RAPD markers. Genet Resour Crop Ev,2003,50:579-585
    65. Baille D, Barriere A, Felix MA. Oscheius tipulae, a wide-spread hermaphroditic soil nematode, displays a higher genetic diversity and geographical structure than Caenorhabditis elegans. Mol Ecol,2008,17:1523-1534
    66. Bakhuizen van den Brink RC. Revisio ebenacearum Malayensium. Bull Jard Bot Buitenzorg,1936-1955,15:1-515
    67. Biswas MK, Xu Q, Deng XX. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hortic,2010a,124:254-261
    68. Biswas MK, Baig MNR, Cheng YJ, Deng XX. Retro-transposon based genetic similarity within the genus Citrus and its relatives. Genet Resour Crop Ev,2010b,57: 963-972
    69. Breto MP, Ruiz C, Pina JA, Asins MJ. The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylog Evol,2001,21:285-293
    70. Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V. Land plants and DNA barcodes:short-term and long-term goals. Phil Trans R Soc B,2005,360:1889-1895
    71. Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, ZhuYJ, Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, Lin YL, Leon C. Validation of the ITS2 region as a novel DNA bareode for ideniifying medicinal Plant species. PLoS ONE,2010,5: e8613
    72. Choi YA, Tao R, Yonemori K, Sugiura A. Multi-color genomic in situ hybridization identifies parental chromosomes in somatic hybrids of Diospyros kaki and D.glandulosa. HortScience,2002,37:184-186.
    73. Choi YA, Tao R, Yonemori K, Sugiura A. Physical mapping of 45S rDNA by fluorescent in situ hybridization in persimmon(Diospyros kaki) and its wild relatives. J Hort Sci Biotech,2003a,78:265-271
    74. Choi YA, Tao R, Yonemori K, Sugiura A. Simultaneous visualization of 5S and 45S rDNAs in persimmon(Diospyros kaki) and several wild relatives(Diospyros spp.) by fluorescent in situ hybridization (FISH) and MultiColor FISH (MCFISH). J Amer Soc Hort Sci,2003b,128:736-740
    75. Choi YA, Tao R, Yonemori K, Sugiura A. Genomic in situ hybridization between persimmon(Diospyros kaki) and several wild species of Diospyros. J Jpn Soc Hort Sci,2003c,72:385-388
    76. Choi YA, Tao R, Yonemori K, Sugiura A. Genomic distribution of three repetitive DNAs in cultivated hexaploid Diospyros spp.(D. kaki and D. virginiana) and their wild relatives. Genes Genet Syst,2003d,78:301-308
    77. Cowan RS, Chase MW, Kress WJ, Savolainen V.300,000 species to identify: problems, progress, and prospects in DNA barcoding of land plants. Taxon,2006,55: 611-616.
    78. Crawford DJ. Plant molecular systematics:macromolecular approaches. New York: Wiley,1990
    79. D'Onofrio C, De Lorenzis Q Giordani T, Natali L, Cavallini A, Scalabrelli G. Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genet Genomes,2010,6:451-466
    80. de Candolle A. Ordo CXXV. Ebenaceae. In:de Candolle AP, de Candolle A (Eds.), Prodromus systematis naturalis regni vegetabilis 8. Paris:Treuttel & Wiirtz,1844. 209-243
    81. de Groot GA, During HJ, Maas JW, Schneider H, Vogel JC, Erkens RHJ. Use of rbcL and trnL-F as a two locus DNA barcode for identification of NW-European ferns:an ecological perspective. PLoS ONE,2011,6:e16371
    82. Demesure B, Sodiz N, Petit R J. A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and cpDNA in plants. Mol Ecol, 1995,4:129-131
    83. Dong WP, Liu J, Yu J, Wang L, Zhou SL. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE,2012,4:e35071
    84. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull,1987,9:11-15
    85. Du XY, Zhang QL, Luo ZR. Identification of a Chinese PVNA type of Japanese persimmon discovered from Dabieshan region in central China. Acta Hort,2009a, 833:97-102
    86. Du XY, Zhang QL, Luo ZR. Comparison of four molecular markers for genetic analysis in Diospyros L. (Ebenaceae). Plant Syst Evol,2009b,281:171-181
    87. Du XY, Zhang QL, Luo ZR. Development of retrotransposon primers and their utilization for germplasm identification in Diospyros spp. (Ebenaceae). Tree Genet Genomes,2009c,5:235-245
    88. Duangjai S, Wallnofer B, Samuel R, Munzinger J, Chase MW. Generic delimitation and relationships in Ebenaceae sensu lato:evidence from six plastid DNA regions. Am J Bot,2006,93:1808-1827
    89. Duangjai S, Samuel R, Munzinger J, Forest F, Wallnofer B, Barfuss MHJ, Fischer G, Chase MW. A multi-locus plastid phylogenetic analysis of the pantropical genus Diospyros (Ebenaceae), with an emphasis on the radiation and biogeographic origins of the New Caledonian endemic species. Mol Phylogenet Evol,2009,52:602-620
    90. Dunning LT, Savolainen V. Broad-scale amplification of maiK for DNA barcoding plants, a technical note. Bot J Linn Soc,2010,164:1-9
    91. Eggert LS, Rasner CA, Woodruff DS. The evolution and phylogeography of the African elephant inferred from mitochondrial DNA sequence and nuclear microsatellite markers. P Roy Soc B-Biol Sci,2002,269:1993-2006
    92. Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SC. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE,2008,3:e2802
    93. Floyd R, Abebe E, Papert A, Blaxter M. Molecular barcodes for soil nematode identification. Mol Ecol,2002,11:839-850
    94. Ford CS, Ayres KL, Toomey N, Haider N, Stahl JV, Kelly LJ, Wikstrom N, Hollingsworth PM, Duff RJ, Hoot SB, Cowan RS, Chase MW, Wilkinson MJ. Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn Soc,2009,159:1-11
    95. Gao T, Chen SL. Authentication of the medicinal plants in Fabaceae by DNA barcoding technique. Planta Med,2009,75:417-417
    96. Geuna F, Toschi M, Bassi D. The use of AFLP markers for cultivar identification in apricot. Plant Breeding,2003,122:526-531
    97. Gottlieb LD. Electrophorelic evidence and plant populations. Prog Phytochem,1981, 7:1-46
    98. Guo DL, Luo ZR. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genet Resour Crop Ev, 2006a,53:1597-1603
    99. Guo DL, Luo ZR. Development of SSR primers using ISSR-PCR in Diospyros kaki Thunb.. Mol Ecol Notes,2006b,6:886-887
    100.Guo DL, Zhang HQ, Luo ZR. Genetic relationships of Diospyros kaki Thunb.and related species revealed by IRAP and REMAP analysis. Plant Sci,2006,170: 528-533
    101.Guo DL, Luo ZR. Microsatellite isolation and characterization in Japanese persimmon (Diospyros kaki Thunb.). Biochem Genet,2008,46:323-328
    102.Guo DL, Luo ZR. Genetic relationships of the Japanese persimmon Diospyros kaki (Ebenaceae) and related species revealed by SSR analysis. Genet Mol Res,2011,10: 1060-1068
    103.Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.1999.
    104.Han JP, Shi LC, Yao H, Song JY, Xu HX, Sun C, Xie CX, Chen SL. Testing potential DNA barcoding regions in the Labiatae medicinal plants. Planta Med,2009,75: 407-407
    105.Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life:cytochrome coxidase subunit 1 divergences among closely related species. P Roy Soc B-Biol Sci, 2003,270:S96-S99
    106.Hiern WP, A monograph of Ebenaceae. Trans Cambridge Philos Soc,1873,12: 27-300
    107.Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim KJ, Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, Burgess KS, et al. A DNA barcode for land plants. Proc Natl Acad Sci USA,2009,106:12794-12797.
    108.Hu DC, Luo ZR. Polymorphisms of amplified mitochondrial DNA non-coding regions in Diospyros spp.. Sci Hortic,2006,109:275-281
    109.Hu DC, Zhang HQ, Luo ZR. Phylogenetic analysis in some Diospyros spp. (Ebenaceae) and Japanese persimmon using chloroplast DNA PCR-RFLP markers. Sci Hortic,2008,117:32-38.
    110.Ikada I, Yamada M, Kurihara A, Nishida T. Inheritance of astringency in Japanese persimmon. J Jpn Soc Hort Sci,1985,54:39-45 (in Japanese with English summary)
    111.Ikagami A, Yonemori K, Sugiura A, Sato A, Yamada M. Segregation of astringency in F1 progenies derived from crosses between Pollination constant Non-astringent (PCNA) persimmon cultivars. HortScience,2004,39:371-374
    112.1kegami A, Sato M, Yamada M, Kitajima A, Yonemori K. Molecular size profiles of tannins in persimmon fruits of Japanese and Chinese pollination-constant non-astringent (PCNA)-type cultivars and their offspring revealed by size-exclusion chromatography. J Jpn Soc Hort Sci,2005a,74:437-443
    113.1kegami A, Sato M, Yamada M, Kitajima A, Yonemori K. Expression of genes involved in proanthocyanidin biosynthesis during fruit development in a Chinese pollination-constant, nonastrigent (PCNA) persimmon,'Luo Tian Tian Shi'. J Amer Soc Hort Sci,2005b,130:830-835
    114.1kegami A, Eguchi S, Yonemori K, Yamada M, Sato A, Mitani N, Kitajima A. Segregations of astringent progenies in the F1 populations derived from crosses between a Chinese pollination-constant nonastringent (PCNA)'Luo Tian Tian Shi' and Japanese PCNA pollination-constant astringent (PCA) cultivars of Japanese origin. HortScience,2006,41:561-563
    115.Kajiura M. Persimmon cultivars and their improvement 2. Breed Hort,1946,1: 175-182
    116.Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet,1999, 98:704-711
    117.Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A. Analysis of the genetic relationships among pollination-constant and non-astringent (PCNA) cultivars of persimmon(Diospyros kaki Thunb.) from Japan and China using amplified fragment length polymorphism (AFLP). J Jpn Soc Hort Sci,2000a,69:665-670
    118.Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A. Evaluation of RFLP analysis for discriminating PCNA genotype in some persimmon cultivars. J Jpn Soc Hort Sci,2000b,69:702-704
    119.Kanzaki S, Yonemori K, Sugiura A. Identification of molecular markers linked to the trait of natural astringency loss of Japanese persimmon (Diospyros kaki) fruit. J Amer Soc Hort Sci,2001,126:51-55
    120.Kim TC, Ko KC. Classification of persimmon(Diospyros kaki Thunb.) cultvars on the basis of horticultural traits. Acta Hort,1997,436:77-83
    121.Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA,2005,102:8369-8374
    122.Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants:the coding rbcL gene complements the non-coding trnH-psbA apacer region. PLoS ONE,2007, 2:e508.
    123.Kress WJ, Erickson DL. DNA barcodes:Genes, genomoics, and bioinformatics. Proc Natl Acad Sci USA,2008,105:2761-2762
    124.Labate JA. Software for population genetic analyses of molecular marker data. Crop Sci,2000,40:1521-1528
    125.Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, barraclough TG, Vincent S. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA,2008a,105:2923-2928
    126.Lahaye R, Savolainen V, Duthoit S, Maurin O, Bank Mvd. A test of psbK-psbI and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park as a model system (South Africa). Nature Precedings,2008b.
    127.Ledford H.Botanical identities. Nature,2008,451:616
    128.Lee SQ Gilbert MG, White F. Flora of China,1996,15:215-234
    129.Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB, Fu CX, Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen SY, Zhao L, Wang K, Yang T, Duan GW. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA,2011,108:19641-19646
    130.Li Y, Gao LM, Poudel RC, Li DZ, Forrest A. High universality of mat primers for barcoding gymnosperms. J Syst Evol,2011,49:169-175
    131.Liu Y, Yan HF, Gao T, Ge XJ. Evaluation of ten plant barcodes in Bryophyta (Mosses). J Syst Evol,2012,48:36-46
    132.Lucas C, Thangaradjou T, Papenbrock J. Development of a DNA barcoding system for seagrasses:successful but not simple. PLoS ONE,2012,7:e29987
    133.Luo K, Chen SL, Chen KL, Song JY, Yao H. Application of DNA barcoding to the medicinal plants of the Araceae family. Planta Med,2009,75:416-416
    134.Luo ZR, Zhang QL, Guo DL, Gu QQ. General situation on science and industry of persimmon in China mainland. Acta Hort,2005,685:29-36
    135.Luo ZR, Wang RZ. Persimmon in China:Domestication and traditional utilizations of genetic resources. Adv Hort Sci,2008,22:239-243
    136.Maki S, Oyama K, Kurahashi T, Nakahira T, Kawabata T, Yamada T. RFLP analysis for cultivar identification of persimmons. Sci Hortic,2001,91:407-412
    137.Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res,1967,27:209-220
    138.Meyer CP, Paulay G DNA barcoding:error rates based on comprehensive sampling. PLoS Biol,2005,3:e422
    139.Nakamura Y, Kobayashi S. DNA restriction fragment length variability in Diospyros kaki and related Diospyros species. HortScience,1994,29:809-811
    140.Nanney DL. Genes and phenes in tetrahymena. BioScience,1982,32:783-788
    141.Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA,1973,70:3321-3323
    142.Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in land plants:evaluation of rbcL in a multigene tiered approach. Can J Bot,2006,84:335-341
    143.Ng FSP. Diospyros roxburghii and the origin of Diospyros kaki. The Malaysion Forester,1978,22:932-935
    144.Parani M, Lakshmi M, Ziegenhagen B, Fladung M, Senthilkumar P, Parida A, Molecular phylogeny of mangroves VII PCR-RFLP of trnS-psbC and rbcL gene regions in 24 mangrove and mangrove-associate species. Theor Appl Genet,2000, 100:454-460
    145.Parfitt DE, Yonemori K, Ryugo K, Sugiura A. Isozyme identification of Japanese persimmon (Diospyros kaki L.):comparisons of cultivars in California and Japan. Fruit VarJ,1991,45:107-113
    146.Pei X, Zhang QL, Guo DY, Luo ZR. Effectiveness of the RO2 marker for the identification of Non-astringency trait in Chinese PCNA persimmon and its possible segregation ratio in hybrid F1 population. Sci Hortic. (Accepted)
    147.Pennisi E. Taxonomy wanted:A barcode for plant. Science,2007,318:190-191
    148.Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S V, Rafalski J A. The compassion of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Mol Breeding,1996,2:225-238
    149.Presting GG. Identification of conserved regions in the plastid genome:implications for DNA barcoding and biological function. Can J Bot,2006,84:1434-1443
    150.Ran JH, Wang PP, Zhao HJ, Wang XQ. A test of seven candidate barcode regions from the plastome in Picea (Pinaceae). J Integr Plant Biol,2010,52:1109-1126
    151.Ren BQ, Xiang XG, Chen ZD. Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers. Mol Ecol Resour,2010,10:594-605
    152.Rohlf FJ. NTSYS-PC:Numerical taxonomy and multivariate analysis system. Version 2.10e. Exeter Software, Setauket, New York, USA.2000
    153.Sass C, Little DP, Stevenson DW, Specht CD. DNA barcoding in the Cycadales: testing the potential of proposed barcoding markers for species identification of Cycads. PLoS ONE,2007,2:e1154
    154.Scariot V, De Keyser E, Handa T, De Riek J. Comparative study of the discriminating capacity and effectiveness of AFLP, STMS and EST markers in assessing genetic relationships among evergreen azales. Plant Breeding,2007,126:207-212
    155.Shannon CE, Weaver W. The mathematical theory of communication. Urbana:Univ. of Illinois Press,1949
    156.Silvertown J, Charlesworth D. Introduction to plant population biology. Wiley.2009
    157.Singh V. Monograph on Indian DiospyrosL. (persimmon, ebony) Ebenaceae. Kolkata: Botanical Survey of India,2005.
    158.Sokal RR, Jacquez GM, Wooten MC. Spatial autocorrelation analysis of migration and selection. Genetics,1989,121:845-855
    159.Soltis DE, Soltis PS. Isozymes in plant biology. Portland:Dioscorides Press,1989
    160.Soriano JM, Pecchioli S, Romero C, Vilanova S, Llacer G, Giordani E, Bandenes ML. Development of microsatellite markers in polyploid persimmon (Diospyros kaki Lf) from an enriched genomic library. Mol Eco Notes,2006,6:368-370
    161.Steele PR, Friar LM, Gilbert LE, Jansen RK. Molecular systematics of the neotropical genus Psiguria (Cucurbitaceae):implications for phylogeny and species identification. Am J Bot,2010,97:156-173
    162.Sugiura A. The origin of persimmon and its cultivar differentiation. Rec. Adv. Plant Breeding,1984,25:30-37 (in Japanese)
    163.Sugiura A, Yonemori K, Tetsumura T, Tao R, Yamada M, Yamane H. Identification of pollination-constant and non-astringent type cultivars of Japanese persimmon by leaf isozyme analysis. J Jpn Soc Hort Sci,1990,59:44-45
    164.Suzuki T, Someya S, Hu FY, Tanokura M. Comparative study of catechin compositions in five Japanese persimmons (Diospyros kaki). Food Chem,2005,93: 149-152
    165.Taberlet P, Gielly L, Pauto G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol,1991,17:1105-1109
    166.Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res,2007,35:e14
    167.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, avolutionary distance, and maximum parsimony methods. Mol Biol Evol,2011,28:2731-2739
    168.Tamura M, Tao R, Yonemori K, Utsunomiya N, Sugirua A. Ploidy level and genome size of several Diospyros species. J Jpn Soc Hort Sci,1998,67:306-312
    169.Tao R, Sugiura A. Cultivar identification of Japanese persimmon by leaf isozymes. HortScience,1987,22:932-935
    170.Taylor HR, Horris WE. An emergent science on the brink of irrelevance:a review of the past 8 years of DNA barcoding. Mol Ecol Resour,2012,12:377-388
    171.Vignieri SN. Streams over mountains:influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus). Mol Ecol,2005,14:1925-1937
    172.Wakisaka S, Kanzaki S, Takamatsu Y, Utsunomiya N. Characterization of persimmon cultivars using SSR markers. J Jpn Soc Hort Sci,2003,72:144
    173.Wallnofer B. The biology and systematics of Ebenaceae:a review. Ann Nat Mus Wien B,2001,103:485-512
    174. Wang RZ, Yang Y. Research on cold hardiness of germplasm resources of persimmon. Acta Hort,1997,436:101-107
    175.Wang Y, Zhang QL, Luo ZR. Isolation and expression of gene encoding leucoanthocyanidin reductase (LAR) from Japanese persimmon(Diospyros kaki Thunb.) during fruit development. Biol Plantrum,2010,54:707-710
    176.White F. The taxonomy, ecology and chorology of African Ebenaceae. Ⅰ. The Guineo-Congolian species. Bull Jard Bot Nat Bel,1978,48:245-358
    177.White F. Notes on the Ebenaceae Ⅷ:the African section of Diospyros. Bull Jard Bot Nation Belg,1980,50:445-460
    178.White F. The taxonomy, ecology and chorology of African Ebenaceae Ⅱ. The non-Guineo-Congolian species of Diospyros (excluding sect. Royena). Bull Jard Bot Nat Bel,1988,58:325-448
    179.White F. Flore de la Nouvelle-Caledonie et Dependances.19. Ebenacees. Paris: Museum National d' Histoire Naturelle,1993
    180. Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution,1965,19:395-420
    181.Xu LQ, Zhang QL, Luo ZR. Occurrence and cytological mechanism of 2n pollen formation in Chinese Diospyros spp. (Ebenaceae) staminate germplasm. J Hort Sci Biotech,2008,83:668-672
    182.Yamada M, Sato A, Yakushihi H, Yoshinaga K, Yamane H, Endo M. Characteristics of'Luo Tian Tian Shi', a non-astringent cultivar of oriental persimmon(Diospyros kaki Thunb.) of Chinese origin in relation to non-astringent cultivars of Japanese origin. Bull Fruit Tree Res Stat,1993,25:19-32 (in Japanese with English summary).
    183.Yamada M, Sato A. Segregation for fruit astringency type in progenies derived from crosses of 'Nishimura-wase'×pollination constant non-astringent genotypes in oriental persimmon(Diospyros kaki Thunb.). Sci Hortic,2002,92:107-111
    184.Yang BC, Xiao BG, Chen XJ, Shi CH. Assessing the genetic diversity of tobacco germplasm using intersimple sequence repeat and inter-retrotransposon amplification polymorphism markers. Ann Appl Biol,2007,150:393-401
    185.Yonemori K, Matsushima J, Sugiura A. Difference in tannins of non-astringent and astringent type fruits of Japanese persimmon(Diospyros kaki). J Jpn Soc Hort Sci, 1983,52:135-144 (in Japanese with English summary)
    186.Yonemori K, Matsushima J. Property of development of the tannin cells in non-astringent type fruits of Japanese persimmon(Diospyros kaki Thunb.) and its relationship to natural deastrigency. J Jpn Soc Hort Sci,1985,54:201-208 (in Japanese with English summary)
    187.Yonemori K, Parfitt D E, Kanzaki S, Sugiura A, Utsunomiya N, Subhadrabandhu S. RFLP analysis of an amplified region of cpDNA for phylogeny of the Genus Diospyros. J Jpn Soc Hort Sci,1996,64:771-777
    188.Yonemori K, Kanzaki S, Parfitt D E, Utsunomiya N, Subhadrabandhu S, Sugiura A. Phylogenetic relationship of Diospyros kaki (persimmon) to Diospyros spp. (Ebenaceae) of Thailand and four temperate zone Diospyros spp. from an analysis of RFLP variation in amplified cpDNA. Genome,1998,41:173-182
    189.Yonemori K, Sugiura A, Yamada M. Persimmon genetics and breeding. Plant Breed Rev,2000,19:191-225
    190.Yonemori K, Ikegami A, Kitajima A, Luo ZR, Kanzaki S, Sato M, Yamada M, Yang Y, Wang RZ. Existence of several pollination constant non-astringent type persimmons in China. Acta Hort,2005,685:77-83
    191.Yonemori K, Chitose H, Kitajima A, Aradhya M, Giordani E, Bellini E, Parfitt D E. Relationship of European persimmon (Diospyros kaki Thunb.) cultivars to Asian cultivars, characterized using AFLPs. Genet Resour Crop Ev,2008a,55:81-89
    192.Yonemori K, Honsho C, Kanzaki S, Ino H, Ikegami A, Kitajima A, Sugiura A, Parfitt DF. Sequence analyses of the ITS regions and the matK. gene for determining phylogenetic relationships of Diospyros kaki (persimmon) with other wild Diospyros (Ebenaceae) species. Tree Genet Genomes,2008b,4:149-158
    193.Yu J, Xue JH, Zhou SL. New universal matK primers for DNA barcoding angiosperms. J Syst Evol,2011,49:176-181
    194.Yuan LX, Zhang QL, Guo DY, Luo ZR. Genetic differences among 'Luotian-tianshi' (Diospyros kaki Thunb.) genotypes native to China revealed by ISSR and IRAP markers. Sci Hortic,2012,137:75-80
    195.Zhang QL, Guo DY, Luo ZR, Yang Y. Current progress on industry and science of persimmon in China. Acta Hort,2009a,833:25-30
    196.Zhang QL, Guo DY, Luo ZR. Identification and taxonomic status of Chinese Diospyros spp. (Ebenaceae) and roecious germplasms. Acta Hort,2009b,833:91-96
    197.Zhuang D H, Kitajima A, Ishida M, Sobajima Y. Chromosome numbers of Diospyros kaki cultivars. J Japan Soc Hort Sci,1990a,59:289-297
    198.Zhuang DH, Kitajima A, Ishida M, Sobajima Y. Chromosome number of the original tree and open-pollinated progenies of Japanese persimmon cv. Hiratanenashi. J Jpn Soc Hort Sci,1990b,59:479-485
    199.Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20: 176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700