核桃(Juglans regia L.)早实基因定位的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核桃的早实基因是一份珍贵的自然资源,研究核桃早实基因的遗传规律,寻找与其相连锁的DNA分子标记,不仅对于核桃育种和栽培实践,而且对于揭示木本植物童期发育的机理都有重要意义。近年来的研究表明,核桃的早实特性的遗传是数量性状遗传,有分离现象,是由多基因控制的性状。本研究以早实核桃优系绿园和晚实优系绿丰的F1代杂种后代以及部分核桃品种为试材,以RAPD标记OPB-08958定位核桃早实基因,计算该标记与核桃早实基因间的遗传距离,对该标记进行克隆测序及序列分析,并将该特异标记转化为SCAR标记;还初步确立了适于核桃的SRAP标记的反应体系。主要结果如下:
     ①核桃基因组DNA的提取
     本研究证明改良的CTAB法是适合核桃基因组DNA提取的快速、简便的方法。该方法提取的核桃基因组DNA条带清晰,亮度均一,纯度较高,没有明显拖尾,无RNA,酶切反应均能被完全切开,酶切产物均一,酶切反应彻底,说明用本法提取的基因组DNA从质量和数量上都可以满足进一步研究的需要。
     ②RAPD特异标记在亲本与杂交F1后代中的分离状况分析
     RAPD特异标记OPB-08900在早实亲本绿园上扩增出一条约900bp的特异性条带,而在晚实亲本绿丰上则无此条带;对于70株早实后代,有69株出现该条带,1株未出现(5号);84株晚实后代中,82株未出现该条带,2株出现(18号、108号)。χ2检测显示,供试杂交群体早实和晚实性状的分离比例符合1:1的分离比例,标记OP-B08900与早实性状共分离。在154株杂交F1后代中,共有3株表现为重组类型,则其重组率为1.95%。利用Haldane函数M=–㏑(1-2r)/2,计算得标记与核桃早实基因间的遗传距离为1.99cM,表明RAPD标记OPB-08900与核桃早实基因相连锁。
     ③RAPD特异标记的回收、克隆、测序及序列分析
     本研究对RAPD特异标记片断OPB-08900进行了回收,并将回收产物与质粒PMD18-T连接,转化大肠杆菌JM109菌株感受态细胞,涂在预先涂布X-Gal/IPTG的含Amp的LB固体培养基上进行蓝白斑筛选,克隆了该片断。对该片断进行测序,结果显示序列大小为958bp,提交GenBank,登录号为DQ673614。运用序列分析软件DNAMAN进行序列分析,表明该片断共有36个酶切位点,不具有基因的结构,应属于与核桃早实基因紧密连锁的DNA片断。在NCBI上特异标记DNA序列的同源性进行了比较,结果发现在GenBank中有26条来自于其它生物的DNA序列和DQ673614序列有部分相似性,但相似性位点片段大小大都在27-30bp之间,E值为0.002-7.0﹥﹥1×10-5,同源性较小说明特异标记OPB-08958的DNA序列为核桃基因组所独有。
     ④SCAR标记的转化分析
     根据测序结果,在原有的OPB08随机引物及其互补序列基础上,设计了SEA、SEB两对SCAR引物,经检验,引物SEA在退火温度56℃条件下,对反应条件、反应体系如Taq酶、Mg2+、模板和引物的浓度等不敏感,重复性好,可以用于分子辅助育种的鉴定与选择。SEA在早实亲本及品种上扩增出和OPB-08958大小相似的条带,在晚实亲本及品种上则无此条带。检测其在杂交F1后代中的分离状况,发现与RAPD标记相一致。对该SCAR标记进行回收、克隆以及测序,与RAPD标记OPB-08958大小一致,表明本研究成功的将与核桃早实基因相连锁的RAPD标记OPB-08958成功转化为SCAR标记。
     ⑤适于核桃的SRAP标记反应体系的确立分析
     本研究初步确立了适于核桃的SRAP标记反应体系,并利用不同引物组合对核桃早实和晚实亲本进行了SRAP-PCR扩增,挑选出一个多态性比较高的引物组合Em10-Me4对20株杂交后代上进行了检测,引物组合Em10-Me4在这20株杂交后代个体上共产生196条DNA条带,其中多态性条带为107条,多态性比率达54.6%,这说明SRAP标记适用于核桃遗传多样性的分析。
Precocious gene of walnut is rare natural resource. Studying on inheritance of walnut precocious gene and finding DNA molecular markers linked to it are not only significative to walnut breeding and cultivation, but also to revealing flowering regulating genes and their relations with juvenility in woodyplant. Studies of recent years indicated that walnut pecocious characteristic is quantitative characters, and it is controled by multiple genes. In this research, RAPD technique was used to study segregation of a specific DNA marker OPB-08900 in walnut F1 hybrids of cross between precocious parent Lüyuan and later mature parent Lüfeng, and genetic distance to this marker is counted; we cloned and sequencinged this marker, and transformed it to SCAR marker; SRAP marker reaction system in walnut were also established in this research. Main results are followed.
     ①Extraction of walnut genomic DNA
     This research indicated that improved CTAB method is a fast, convenient and appropriate way for genomic DNA extraction in walnut. Both the enzyme digestion and agarose gel electrophoresis test indicated that the quality of genomic DNA was high pure, and they were fit for the further studies.
     ②Segregation of RAPD marker OPB-08900 in walnut parents and F1 hybrids of cross
     A 900bp DNA fragment was amplified by RAPD primer OPB08 in precocious parent Lüyuan, but this fragment did not appear in late mature parent Lüfeng. In 70 precocious hybrids of cross, this fragment appeared in 69 progenies, and in 84 late mature hybrids of cross, this fragment did not appear in 82 progenies.χ2 test indicated that precocious and late mature hybrids of cross accorded with 1:1 segregation proportion, and the marker OP-B08900 segregated with precocious character. In 154 hybrids of cross, there were 3 recombinant types, and the recombinant rate was 1.95%. It indicated that RAPD marker OP-B08900 linked with walnut precocious gene.
     ③Retrieval, cloning and sequencing of RAPD marker OPB-08900
     RAPD marker OPB-08900 was retrievaled and cloned into PMD18-T vector in this research, and then transferred into E.coli JM109. White screen was selected from the LB solid culture medium and cultivated in fluid culture medium for 12 hours. Plasmid was extracted from bacteria liquid with MiniBest Plasmid Purification Kit. Sequencing final showed that this DNA fragment was actually 958bp in length. It was submitted to GenBank and the accession number was DQ673614. Sequence analysis carried by software of DNAMAN indicated that there are 36 enzyme digestion sites and it has no gene structure. So it should belong to the DNA fragments which linked to precocious gene of walnut. GeneBank accession number of this marker is DQ673614. Comparability of this fragment was analysed in NCBI, and 26 sequences of other species were found to be homologous to this fragment, but comparability sites are mostly between 27 to 30bp, and E value=0.002-7.0﹥﹥1×10-5. So the homology are very small, and the DQ673614 are unique to the walnut genome.
     ④Transformation of SCAR marker
     Two pairs of SCAR primers SEA and SEB were designed according to sequence of OPB08 and its complementary sequence. After identification, pimer pairs SEA are not insensitive to reaction factors at annealing temperature 56℃, and can be used on molecular assistance breeding. SEA amplified a fragment which similar with OPB-08958 on precocious parent, and can not amplify this fragment on late mature parent. Segregation of the SCAR marker in walnut parents and F1 hybrids of cross was in agreement with RAPD marker OPB-08958. This SCAR marker was reclaimed and cloned, and then results of DNA sequencing indicated that it is in agreement with RAPD marker OPB-08958. So this research successfully transformed RAPD marker to SCAR marker.
     ⑤Establishment of SRAP marker reaction system of walnut
     SRAP marker reaction system of walnut were established in this research. Different primer pairs were used at SRAP-PCR amplification in walnut parents, and a higher polymorphism primer pair, Em10-Me4, was selected and identified in 20 F1 hybrids of across. This primer pair amplified 196 DNA fragments, in which 107 were polymorphism, and diversity rate was 54.6%. So SRAP marker can be used for analyse at genetic diversity of walnut.
引文
1. 毕晓颖,吴禄平,安利佳.一个苹果属显性矮生主基因 DW 连锁的 RAPD标记.园艺学报,2002, 29(1): 1-4
    2. 曹秋芬.苹果 LEAFY 同源基因的 cDNA 克隆与表达分析.园艺学报,2003, 30(3): 267-27
    3. 陈大明,金勇丰,张上隆.柑桔 LEAFY 同源基因片段分离及特性研究.园艺学报,2001, 28(4): 295-300
    4. 方宏筠,王关林.黑核桃体细胞胚状体发生及其基因转化系统的建立.园艺学报,2000, 23(6): 406-411
    5. 甘四明,苏晓华.林木基因组学研究进展.植物生理与分子生物学报,2006, 32(2): 133-142
    6. 高玲.水稻长护颖突变体基因图位克隆(硕士学位论文).西北农林科技大学,2005
    7. 高振宇,曾大力,崔霞等.水稻稻米糊化温度控制基因 ALx 的图位克隆及其序列分析.中国科学(C 辑),2003, 33(6): 481-487
    8. 高志红,韩振海,章镇等.梅单瓣复瓣花的相关分子标记初探.园艺学报,2003, 30(5): 612-614
    9. 葛永奇,邱英雄,丁炳扬等.孑遗植物银杏群体遗传多样性的 ISSR 分析.生物多样性,2003, 11(4): 276-287
    10. 郭大龙, 罗正荣. 部分柿属植物 SRAP-PCR 反应体系的优化. 果树学报,2006,23(1):138-141
    11. 韩华柏,何方.我国核桃育种的回顾与展望.经济林研究,2004, 22(3): 45-50
    12. 黄 久 香 . 庄 雪 影 . 观 光 木 种 群 遗 传 多 样 性 研 究 . 植 物 生 态 学报,2002,26(4):413-419
    13. 黄烈健,苏晓华,张香华等.与杨树木材密度、纤维性状相关的 SSR分子标记.遗传学报,2004, 31(3): 299-304
    14. 黄永芳,陈锡沐,庄雪影.油茶种质资源遗传多样性分析.林业科学,2006, 42(4): 39-42
    15. 贾兵.猕猴桃种质资源 RAPD 分析及芽变 SCAR 标记研究(硕士学位论文).安徽农业大学,2005
    16. 姜立杰,杨英军,张晓明等.桃果实白肉/黄肉性状的 RAPD 标记向 SCAR 标记的转化研究.果树学报,2005, 22(5): 458-461
    17. 姜立杰,杨英军,张晓明等.桃果实有毛/无毛性状的 SCAR 标记.园艺学报,2005, 32(4): 613-616
    18. 金则新,李钧敏,李增鸿.浙江仙居长叶榧自然居群遗传多样性的 ISSR分析.北京林业大学学报,2007, 29(1): 53-59
    19. 李 严,张春庆.西瓜杂交种遗传多态性的 SRAP 标记分析.园艺学报.2005,32(4):643-647
    20. 李德葆,徐平.重组 DNA 的原理和方法.杭州:浙江科技出版社,1994: 69-83
    21. 李娟,江昌俊,王朝霞.中国茶树初选核心种质遗传多样性的 RAPD 分析.遗传,2005, 27(5): 765-771
    22. 李可峰,韩太利,董贵俊等.用形态与分子标记研究石刁柏种质资源遗传多样性.植物遗传资源学报,2006, 7(1): 59-65
    23. 李落叶,井金学.稻瘟病抗性基因的分子定位及克隆.中国农学通报,2006, 22(1): 49-53
    24. 李宪利,袁志友,高东升.高等植物成花分子机理研究现状及展望.西北植物学报,2002,15 (22): 173-183
    25. 林忠旭, 张献龙, 聂以春. 新型标记 SRAP 在棉花 F2 分离群体及遗传多样性评价中的适用性分析. 遗传学报, 2004, 31: 622-626
    26. 刘华清,吴为人,段远霖.水稻小穗特征基因 FZP 的图位克隆.遗传学报,2003, 30(9): 811-816
    27. 刘慧娟,张在宝,高菊芳等.拟南芥雄性不育突变体 EC2-157 基因的精细定位.2005, 34(1): 58-63
    28. 刘淑兰,韩碧文.核桃(Juglans regia L.)的离体繁殖.北京农业大学学报,1986, (2): 143-147
    29. 陆嘉惠,李学禹,马淼等. 甘草属植物 DNA 的提取方法研究. 生物技术,2006,16(3):45-47
    30. 莫惠栋. 数量遗传学的新发展——数量性状基因图谱的构建和应用. 中国农业科学, 1996,29(2):8-16
    31. 任朝兴,黄建昌,肖艳等.番木瓜雄性性别的 RAPD 和 SCAR 标记.果 树 学 报,2007, 24(1): 72-75
    32. 施季森,童春发.利用改进的复合区间作图法和 F1 代群体进行杉木的QTL 作图.分子植物育种,2004, 2(1): 1-6
    33. 宋婉,陈晓阳,续九如.林木遗传连锁图谱构建研究进展与发展方向.遗传,2003, 25(6): 749-756
    34. 孙万仓,范惠玲,孟亚雄等.利用 RAPD 分子标记技术研究芸芥(Eruca Mill.)的遗传多样性.中国农业科学,2006, 39(5): 1049-1057
    35. 汤浩茹,Wallbraun M, 任正隆等.通过农杆菌介导法将哈兹木霉几丁质酶 ThEn-42 基因导入核桃.园艺学报,2001, 28(1): 12-18
    36. 汤浩茹,王永清,任正隆.核桃体细胞胚发生与转基因研究进展.林业科学,2000, 36(3): 102-110
    37. 田义轲,王彩虹,戴洪义等.与苹果 Co 基因紧密连锁的 RAPD 标记的筛选及其 SCAR 标记转换.遗传学报,2004, 31(9): 919-925
    38. 童春发,施季森.利用杉木的 F1 代群体构建遗传连锁图谱.遗传学报,2004, 31(10): 1149-1156
    39. 万怡震,王跃进,张今今等.多年生果树植物分子遗传作图.园艺学报,2002,29: 629-634
    40. 王春连.水稻抗白叶枯病基因 Xa23 的图位克隆(博士学位论文).中国农业科学院,2006
    41. 王国安,张虎平,虎海防等.核桃早实性状相关联的 RAPD 标记.果树学报,2004, 21(5): 485-487
    42. 王国安,张虎平,虎海防等.适于核桃的 RAPD-PCR 反应体系的建立.新疆农业科学,2004,4(11): 61-64
    43. 王晓梅,宋文芹,刘松等.利用 AFLP 技术筛选与银杏性别相关的分子标记.南开大学学报(自然科学版),2001, 34(1): 5-9
    44. 王雪萍,马炳田,齐桂年等.四川主栽茶品种亲缘关系的 RAPD 分析.园艺学报,2007, 34(1): 242-244
    45. 王卓伟,余茂德,鲁成.PVP 在桑叶总 DNA 提取中的应用.西南农业大学学报,2001, 23(1): 61-65
    46. 魏玉清,许兴,王璞.不同地区主要栽培宁夏枸杞品种的 RAPD 分析.西北农林科技大学学报(自然科学版),2007, 35(1): 91-95
    47. 文雁成,王汉中,沈金雄,刘贵华,张书芬.用 SRAP 标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础.中国农业科学,2006,39(2):246-256
    48. 吴傻琦,张进兴,洪旭光,等.分子标记技术的进展及其应用.高技术通讯,2001, 4: 99-103
    49. 吴燕民,裴东,奚声珂等.用 RAPD 分析麻核桃起源与分类地位.林业科学,1999,35(4): 25-30
    50. 吴燕民,裴东,奚声珂等.运用 RAPD 技术对核桃属种间亲缘关系的研究.园艺学报,2000,27(1): 17-22
    51. 武志朴,杨文香,刘大群,张汀. 小麦基因组 SRAP 扩增体系的初步研究. 河北农业大学学报,2005, 28(3):66-69
    52. 徐炎,王跃进,周鹏等.中国野生葡萄果实抗白腐病基因的分子标记.园艺学报,2003, 30(1): 6-10
    53. 许永汉.水稻长节间基因 Eui 的图位克隆及功能分析(博士学位论文).浙江大学,2004
    54. 闫其涛,逯慧,毛万霞.植物基因分离的图位克隆技术.分子植物育种,2005, 3(4): 585-590
    55. 杨克强,程三虎,朱亚胜.核桃的早实特性及其研究.北方园艺,1998, 5: 34-35
    56. 杨克强,王跃进,张今今等.葡萄无核基因定位与作图的研究.遗传学报,2005, 32(3): 297-302
    57. 杨克强,王跃进,张银东等.核桃早实性状的 RAPD 标记.园艺学报,2002, 29(6): 573-574
    58. 杨英军,王跃进,周鹏等.葡萄无核基因的 SCAR 标记及 Southernblot分析.西北农林科技大学学报(自然科学版),2002, 30(6): 77-80
    59. 袁巧平,董茂山,黄钦才等.核桃体细胞胚诱导的初步研究.林业科技通讯,1990, (7): 13-14
    60. 张德水,陈受宜.DNA 分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报,1998,5:19-22
    61. 张建成,王传堂,焦坤,杨新道.SRAP 标记技术在花生种子纯度鉴定中的应用.中国农学通报,2005,21(12):35-39
    62. 张利波,彭金辉,范迎祥等.核桃壳综合利用技术的现状.林产化工通讯,2003,37(2): 21-25
    63. 张文标,金则新,李钧敏.濒危植物香果树自然居群遗传多样性的 RAPD分析.浙江大学学报(农业与生命科学版),2007, 33(1):61~67
    64. 张勇,张守攻,齐力旺.杨树——林木基因组学研究的模式物种.植物学通报,2006, 23(3): 286-293
    65. 赵静,田义轲,王彩虹等.与苹果果皮红色性状相关的 RAPD 分子标记的筛选.果树学报,2006, 23(2): 165-168
    66. 周延清,景建洲,李振勇等.利用 RAPD 和 ISSR 分子标记分析地黄种质遗传多样性.遗传,2004, 26(6): 922-928
    67. Adams MD, Kelly JM, Gocayne JD, et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252: 1651-1656
    68. Ahmad R, Potter D, Southwick S M. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular marker. Journal of American Society for Horticultural Science, 2004, 129 (2): 204-210
    69. Barreneche T, Casasoli M, Russell K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A. Comparative mapping between Quercus and Castanea using simplesequence repeats (SSRs). Theor Appl Genet, 2004, 108: 558–566
    70. Beth A Krizek, Jennifer C Fletcher. Molecular mechanisms of flower development: an armchair guide. Nature, 2005, 6: 688-698
    71. Beth A, Krizek, Jennifer C, Fletcher. Molecular mechanisms of flower development: an armchair guide. NATURE REVIEWS GENTICS. 2005, 6: 688-698
    72. Botstein D, White RL, Skolnick MH, et al. Construction of a genetic linkage map on men using restriction fragment length polymorphism. AM JGenent, 1980, 32(3): 314-331
    73. Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB. Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA, 2004, 101: 15255–15260
    74. Brown GR, Kadel EE, Bassoni DA. Anchored reference loci in loblolly pine(Pinus taeda L.)for integrating pine genomics.Genetics, 2001, 159: 799-809
    75. Budak H, Shearman R C, Parmaksiz I, Dweikat I. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs and SRAPs.Theoretical and Applied Genetics, 2004, 109: 280-288.
    76. Budak H, Shearman R C, Parmaksiz I, Gaussoin R E, Riordan T P,Dweikat I. Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers.Theoretical and Applied Genetics, 2004, 108: 328-334.
    77. Butcher PA, Moran GF. Genetic linkage mapping in Acacia mangium.2.Development of an integrated map from two outbred pedigrees using RFLP and microsatellite loci. Theoretical and AppliedGenetics, 2000, 101: 594~605
    78. Carlos Espinosa-Soto, Pablo Padilla-Longoria, Elena R Alvarez-Buylla. A Gene Regulatory Network Model for Cell-Fate Determination during Arobidopsis thaliana Flower Development. Plant Cell, 2004, 16(11): 2923-2940
    79. Cervera MT, Storme V, Ivens B, Gusm?o J, Liu BH, Hostyn V, van Slycken J, van Montagu M, Boerjan W. Dense genetic linkage maps of three Populus species (Populus deltoides,P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics, 2001, 158: 787–809
    80. Chagne D, Brown G, Lalanne C, Madur D, Pot D, Neale D, Plomion C. Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed, 2003, 12: 185–195
    81. Christian Breton, Daniel Cornu, Dominique Chriqui, Annie Sauvanet,Ierrette Capelli, Eric Germain,Christian Jay-Allemand. Somatic embryogenesis, micropropagation and plant regeneration of “Early Mature” walnut trees (Juglans regia) that flower in vitro. Tree Physiology, 2004, 24: 425–435
    82. Corn D. Somatic embryogenesis in tissue culture of walnut In: Ahuja MR(ed.), Somatic Cell Genetics of Woody Plants. Kluwer Academic Publishers, Dordrecht, 1988: 45-49
    83. Corn D. Walnut somatic embryogenesis: physiological and histological aspects. Ann.Sci.For, 1989, 46(Suppl.): 133-135
    84. Costa P, Pot D, Dubos C, Frigerio JM, Pionneau C, Bodenes C, Bertocchi E, Cervera MT, Remington DL, Plomion C. A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theoretical and AppliedGenetics, 2000, 100:39-48
    85. Dandekar AM, Martin LA, McGranahan GH. Genetic transfomation and foreign gene expression in walnut tissue.J.Amer.Soc.Hort. Sci,1988, 113(6): 945-949
    86. Dandekar AM, McGranahan GH, Vail PV, et al. High levels of expression of full-length cry IA(c) gene from Bacillus thuringiensis in transgenic walnut somatic embryos. PlantSci, 1998, 131(2): 181-193
    87. Dandekar AM, McGranahan GH, Vail PV, et al. Low levels of expression of wild type Bacillus thuringiensis vark urstaki cry IA(c) sequences in transgenic walnut somatic embryos.PlantSci, 1994, 96(2): 151-162
    88. Devey ME, Groom KA, Nolan MF, Bell JC, Dudzinski MJ, Old KM, Matheson AC, Moran GF. Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theor Appl Genet, 2004, 108: 1056–1063
    89. Ellul P, Angosto T, Garca-Sogo B, et al. Expression of Arabidopsis APETALA 1 in tomato reduces its vegetative cycle without affecting plant production. MolecularBreeding, 2004, 13: 155-163
    90. Elo A, Lemmetyinen J, Turunen ML, et al. Three MADS-box genes similar to APETALA 1 and FRUITFULL from silver birch(Betula pendula). Physiologia Plantarum, 2001, 112: 95-10
    91. Eluch C, Jay-Allemand C, Pastuglia M, et al. Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcutting-effect on flavonoid content and rooting ability. PlantMol,Bio,1998, 38(3): 467-479
    92. Eluch C, Jay-Allemand C, Pastuglia M, et al. Modification delexpression du met abolisme phenolique chezle Noyer et reactivite in vitro. ActaBot, Gallica, 1996, 143(6): 547-553
    93. F.P. Nicese1, J.I. Hormaza, G.H. McGranahan. Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotypes based on RAPD markers. Euphytica ,1998, 101: 199-206
    94. Fan XX, Shen L, ZhangX, Chen XY, et al. 2004, Assessing genetic diversity of Ginkgo biloba L populations from China by RAPD markers. Biochemical Genetic, 2004, 42(7): 269-278
    95. Ferrandiz C, Gu Q, Martienssen R, et al. Redundant regulation of meristemidentity and plant architecture by FRUITFULL, APETALA 1 and CAULIFLOWER. Development, 2000, 127: 725-734
    96. Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution, 2003, 50(3): 227-2381
    97. Ferriol M, Pioó B, Nuez F. Genetic diversity of a germplasm collection of cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics, 2003, 107: 271-282.
    98. Gan S, Shi J, Li M, Wu K, Wu J, Bai J . Moderate-densitymolecular maps of Eucalyptus urophylla S. T. Blake and E.tereticornis Smith genomes based on RAPD markers. Genetica, 2003,118: 59–67
    99. Garcia G M, Stalker H T, Shroeder E, et al . Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome, 1996,39(5) :836-845
    100. Germain, E. F. Delort, V. Kanivets. Precocious maturing walnut populations originating from central Asia: their behaviour in France. In III International Walnut Congress. Eds. J.A. Gomes Pereira, J.M.S. Martins , C. Pinto de Abreu. ISHS Acta Hortic Alcoba?a, Portugal.1997: 83–89
    101. Gianfranceschi L, Mcdermott JM, Seglias N. Toward a marker assisted breeding for resistance against apple. ScabEuphytica, 1994, 77: 93-96
    102. GIRAUDAT J ,HAUGE BM, VALONC C. Isolation of the Arabidosis ABI3 gene by positional cloning. PlantCell, 1992, 4: 1251-1261
    103. Gosselin I, Zhou Y, Bousquet J. Megagametophyte-derived linkage maps of white spruce(Picea glauca)based on RAPD, SCAR and ESTP markers. Theoretical and AppliedGenetics, 2002, 104: 987-997
    104. Gygax M, Gianfranceschi L, et al. Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl, 2004, 109: 1702-1709
    105. Hanley S, Barker JHA, van Ooijen JW, Aldam C, Harris S, Ahman I, Larsson S, Karp A. A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers.Theor Appl Genet ,2002, 105: 1087–1096
    106. Harkins DM, Johnson GN, Skaggs PA. Saturation of a major gene for resistance to white pine blister rust in sugar pine. Theoretical and AppliedGenetics, 1998, 97: 1355-136
    107. He Z, Zhu Q, Dabi T, et al. Transformation of rice with the Arabidopsis floral regulator LEAFY cause searly heading.Transgenic Res, 2000, 9:223-227
    108. Ingvarsson PK. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics , 2005, 169: 945–953
    109. Iwata H, Ujino-Ihara T, Yoshimura K. Cleaved amplified polymorphic sequence markers in sugi, Cryptomeria japonica D. Don, and their locations on a linkagemap. Theoretical and AppliedGenetics, 2001, 103: 881-895
    110. Jay-Allemand C, Jouanin L, Deng MD et al. Transfer of chalcone synthase antisensegene:new strategy for studying polyphenols involved in walnut rhizogenesis. PlantSci, 1991, 59: 305
    111. Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III. QTL by environment interactions. Genetics, 2003, 165: 1489–1506
    112. Jiang L, You RL, Lim.X, Shi C. Identification od a sex-associated RAPD marker in Ginkgo biloba. Acta Botanica Sinaca, 2003, 45(6): 742-747
    113. Kelley AJ, Bonnlander MB, Meeks-Watger DR.NFL, the tobacoo homologo of LEAFY is transcriptionally expressed in both vegetative and floral meristem. Plant cell, 1995, 7: 225-234
    114. Kirst M, Basten CJ, Myburg AA, Zeng Z-B, Sederoff R. Genetic architecture of transcript-level variation in differentiating xylem of a Eucalyptus hybrid. Genetics, 2005, 169: 2295–2303
    115. Komulainen P, Brown GR, Mikkonen M, Karhu1 A, Garcia-Gil1MR, O’Malley D, Lee B, Neale DB, Savolainen O.Comparing EST-based genetic maps between Pinus sylvestrisand Pinus taeda. Theor Appl Genet, 2003, 107: 667–678
    116. Komulainen P, Brown GR, Mikkonen M, Karhu1 A, García-Gil1MR, O’Malley D, Lee B, Neale DB, Savolainen O.Comparing EST-based genetic maps between Pinus sylvestrisand Pinus taeda. Theor Appl Genet, 2003, 107: 667–678
    117. Kong L R, Tzeng D D, Yang C H. Generation of PCR - based DNA fragments for specific detection of Streptomyces saraceticus N45. Proc Natl SciCounc Repub China B , 2001 ,25(2) :119-127
    118. Kong LR, Tzeng DD, Yang CH. Generation of PCR-based DNA fragments for specificdetection of Streptornyces saraceticus N45. Proc Natl Sci Counc Repub China B, 2001, 25(2): 119-27
    119. Koornneef M, Alonso-Blanco C, Blankestijn-de Vrise H. Geneticinteractions among late-flowering mutants of Arobidopsis. Genetics, 1998, 148: 885-892
    120. Kotake T, Takada S, Nakahigashi K, et al. Arabidopsis teminal flower 2 gene encodes a heterochromat in protein1 homolog and represses both FLOWERING locus to regulate flowering time and several floral homeotic genes. Plant and cell physiology, 2003, 44: 555-564
    121. Kotoda N, Wada M, Masuda T, et al . The break-through in the reduction of juvenile phase in apple using transgenic. Acta Horticulturae, 2003, 625: 337-34
    122. Kuang H, Richardson T, Carson S, Wilcox P, Bongarten B. Genetic analysis of inbreeding depression in plustree 850.55 of Pinus radiata D. Don. I. Genetic map with distorted markers. Theoretical and AppliedGenetics, 1999, 98: 697-703
    123. Kuddus RH, Kuddus NN, Dvorchik. DNA polymorphism in the living fossil Ginkgo biloba from the eastern United States. Genome, 2002, 45(1): 8-12
    124. Lamb RS, Hill TA, Tan QKG, et al. Regulation of Arabidopsis floral homeotic gene expression by meristem identity genes. Development, 2002, 129: 2079-2086
    125. Lcister D, Ballvora A, Salamini F, et al. A PCR-based approach for isolating pathogen resistance genes from potato with a potential for wide application in plant . Nature Genet, 1996, 14: :421-429
    126. Leandro P. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reducestheir generation time. Plant Biology, 2001, 19(3): 263-267
    127. Lerceteau E, Plomion C, Andersson B. AFLP mapping and detection of quantitative trait loci(QTLs)for economically important traits in Pinus sylvestris: apreliminarystudy. MolecularBreeding, 2000, 6: 451~458
    128. Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theoretical and Applied Genetics, 2003, 107: 168-180
    129. Li G, Quiros C F. Analysis expression and molecular characterization of a major gene involved in the Aliphatic Glucosinolate pathway of Brassica species. Genetics, 2002, 162: 1937-1943
    130. Li G, Quiros C F. Analysis expression and molecular characterization of a major gene involved in the Aliphatic Glucosinolate pathway of Brassica species. Genetics, 2002, 162: 1937-19431
    131. Li G, Quiros C F. Sequence-related amplified polymorphism(SRAP). A newmarker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001,103: 455-461
    132. Li G, Quiros CF. Analysis, Expression and molecular characterization of BoGSL-ELONG, a major gene involved in the Aliphatic Glucosinolate pathway of Brassicaspecies. Genetics, 2002,162:1937-1943
    133. Lodhi M. A,. Daly M. J, G.-N. Ye,. Weeden , Lodhi MA, Daly MJ, Ye GN, Weeden NF, Reisch BI. A molecular m arker based linkage map of Vitis. Genome, 1995, 38: 786-794
    134. Marques M, Araujo JA, Ferreira JG, Whetten R, Omalley DM, Liu BH, Sederoff R. AFLP genetic maps of Eucalyptus globulus and E.tereticornis.Theoretical and AppliedGenetics, 1998, 96: 727-737
    135. McGranahan GH, Leslie CA, Uratsu SL, et al. Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technol, 1988, 6: 800-804
    136. McGranahan GH, Leslie CA, Uratsu SL, et al. Improved efficiency of the walnut somatic embryogene transfer system. PlantCellRept, 1990, 8(8): 512-516
    137. Mika L?nnenp??. Genetic regulation of britch flower development and potential biotechnological applications. University of Joensuu, PhD Dissertations in Biology(No.37), 2005
    138. Mueller U G, Wolfenbarger L L. AFLP genotyping and fingerprinting. Trends Ecol Evol, 1999, 14(10): 389-394
    139. Mullis KB, Faloona FA. A specific synthesis of DNA in vitro varya polymerase chain reaction. Methods Enzymol, 1987, 115: 335-338
    140. Murray J, Larsen J, Michaels TE, et al. Identification of putative gene in bean(Phaseolus vulgars) genomic(Bng) RFLP clones and their conversion toSTSs. Genome, 2002, 45: 1013-1024
    141. Myburg AA, Griffin AR, Sederoff RR, Whetten RW. Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet, 2003, 107: 1028–1042
    142. N Nakayama, J Arroyo, Simorowski. Gene Trap Lines Define Domains of gene Regulation in Arobidopsis Petals and stamens. The Plant Cell, 2005, 17: 1-21
    143. Neale DB, Savolainen O. Association genetics of complex traits in conifers. Trends Plant Sci, 2004, 9: 325–330
    144. Neale DB, Sewell MM, Brown GR. Molecular dissection of the quantitative in heritance of wood property traits in loblolly pine.Annals of ForestScience, 2002, 89(3): 1536-1540
    145. Nickerson ML, Weirich G, Zbar B, et al. Signature - based analysis of MET proto - oncogene mutations using DHPLC. Hum Mutat , 2000 , 16(1) :68-76
    146. Paglia GP, Olivieri AM, Morgante M. Towards second-generation STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce(Piceaabies K.). MolGenGenet, 1998, 258: 466~478
    147. Paran I, Michelmoer RN. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuse. Theor Apll Genet, 1993, 85: 985-993
    148. Paterson AH, Bowers JE, Burrow MD, Draye X, Elsik CG, Jiang C-X, Katsar CS, Lan T-H, Lin Y-R, Ming R-G, et al. Comparative genomics of plant chromosomes. Plant Cell, 2000, 12:1523–1539
    149. Paul K Boss, Ruth M Bastow, Joshua S Mylne. Biologist Mutiple Pathways in the decision to flower: Enabling, Promoting, and Resetting. The plant cell, 2004, 16: 18-31
    150. Pena L, Martin-Trillo M, Juarez J, et al. Constitutive expression of Arabidopsis LEAFY or APETALA 1 genes in citrus reduces their generation time. NatureBiotechnology, 2001, 19: 263-26
    151. Plomion C, Dure lCE, Verhaegen D. Marker assisted selection in forest tree breeding programs as illustrated by two examples: Maritime pine and eucalyptus. Annales Des SciencesForestieres, 1996, 53(4): 819-848
    152. Quarta R, Dettori MT, verde I. Genetic analysis of agronomic traits and genetic linkage mapping in a BC1 peach population using RFLPs and RAPDs. ActaHorti, 1998, 465: 51-59
    153. R G Fjellstrom, D E Parffit, G H McGranahan. Genetic relationships and characterization of persian walnut (Juglans regia L.) cultivars using restriction fragment length polymorphisms(RFLPs). Journal of the American Society for Horticultural Science ,1994,119(4):833-839
    154. Reamonbuttner SM, Jung C. AFLP-derived STS markers for the identification of sex in Asparagus officinalis L.Theoretical and AppliedGenetics, 2000, 100(3-4): 432-438
    155. Roche P, Alston FH, Maliepaard C. RFLP and RAPD markers linked to the vosy leaf curling aphid resistance gene (sd1) in apple. TheorApplGenet, 1997, 94: 528-533
    156. Santiago C.Gonzalez-Martinez, Nicholas C. Wheeler, Elhan Ersoz, C.Dana Nelson, David B. Neale. Association Genetics in Pinus taeda L.I. Wood Property Traits. Genetics,2006, (6):11-27
    157. Shepherd M, Cross M, Dieters MJ, Herry R . Genetic mapsfor Pinus elliottii var. elliottii and P. caribaea var. hondurensis using AFLP and microsatellite markers. Theor Appl Genet, 2003,106: 1409–1419
    158. Song K, Slocum MK, Osborn TC. Molecular marker analysis of genes controlling morphological variation in Brassica rapa(syn.campestris). Theoretical and AppliedGenetics, 1995, 90(1): 1-10
    159. Staub JE, Serquen FC. Genetic markers, map construction, and their application in plant breeding. HortScience, 1996, 31(5), 729-741
    160. Stirling B, Yang ZK, Gunter LE, Tuskan GA, Bradshaw HD Jr. Comparative sequence analysis between orthologousregions of the Arabidopsis and Populus genomes reveals substantial synteny and microcollinearity. Can J For Res, 2003, 33: 2245–2251
    161. Sung SK, Yu GH, Nam J. Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta, 2000, 210(4): 519-528
    162. Tandre K, Albert VA, Sundas A. Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol, 1995, 27(1): 69-78
    163. Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, MatsumotoA, Yoshimura K, Yoshimaru H, Murai M, Nagasaka K, et al. A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites andexpressed sequence tags. Genetics, 2003, 165: 1551–1568
    164. Tao Huang, Henrik Bohlenius, Sven Eriksson, Francois Parcy, Ove Nilsson. The mRNA of the Arobidopsis Gene FT Moves from Leaf to Shoot Apex and Induces Flowering. Science, 2005, 309: 1694-1696
    165. Temesgen B, Brown GR, Harry DE. Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine(Pinustaeda L.).Theoretical and AppliedGenetics, 2001, 102: 664-675
    166. Tulecke W, McGranahan GH. Somatic embryogenesis and plant regeneration from cotyledons of walnut, Juglans regia L. PlantSci, 1985, 40(1): 57-63
    167. Tulecke W, McGranahan GH. Somatic embryogenesis in walnut (Juglans species). Biotechnology in Agriculture and Forestry, 1995, 30: 370-377
    168. Wang DG, Fan JB, Siao CT, et al. Large scale identification, mapping and genotyping of single-nucleotide-polymorphism in the human genome. Science, 1998, 280: 1048-1077
    169. Wang J X, Yang GS , Fu TD , et al . Development of PCR --based markers linked to the fertility restorer gene for the polima cytoplasmic malesterilityin rapeseed(Brassica napus L) . Journal of Genetics , 2000 , 27(11) :1012-1016
    170. Weigel D, Coupland G. LEAFY blooms in aspen. Nature, 1995,377:482-483
    171. Wheeler NC, Jermstad KD, Krutovsky K, Aitken SN, Howe GT, Krakowski J, Neale DB. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV.Cold-hardiness QTL verification and candidate gene mapping. Mol Breed 15: 145-156
    172. Woeste K, McGranahan F H , Bernatzky R. Randomly amplified polymorphic DNA loci from a walnut backcross 〔( Juglans hindsii ×J . regia) ×J . regia〕. Journal of the American Society for Horticultural Science, 1996 , 121(3) : 358-361
    173. Woeste K, McGranahan G, Bernatzky R. The identification and characterization of a genetic marker linked to hypersensitivity to the cherry leafroll virus in walnut . Molecular Breeding, 1996 , 2 : 261-266
    174. Wu SB, Graham C, Margaret S. A molecular linkage map of Olive(Olea Europaea L.) based on RAPD, microsatelite, and SCAR markers. Genome, 2004, 47(1): 26-35
    175. Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA. Large-scale heterospecific segregation distortion inPopulus revealed by a dense genetic map. Theor Appl Genet, 2004,109: 451–463
    176. Yin TM, Huang MR, Wang MX, Zhu LH, Zeng ZB, Wu RL. Preliminary inter specific genetic maps of the Populus genome constructed from RAPD markers. Genome, 2001, 44:602-609
    177. Yoahimura S, et al. Identification of a YAC clone carrying the Xa-1allele, a bacterial blight resistance gene in rice. TheorAppl, 1996, 93:117-122
    178. Yoshibumi Komeda. Genetic regulation of time to flower in Arobidopsis thaliana. Plant Biol, 2004, 55: 521-535
    179. Zabeau M, Monet R. International network on Prunus genetic resources: the European Prunus datebase. Acta Horti, 1998, 465,237-242
    180. ZHAO Jian-jun, WANG Xiao-wu, Guusje Bonnema, SUN Ri-fei1, XU Ze-yong,Dick Vreugdenh,Maarten Koornneef .A Genetic Linkage Map of Brassica rapa Based on AFLP Markers. Agricultural Sciences in China,2005, 4(4): 257-262
    181. Zietkiewicz E, Rafalski R, Labuda D. Genome finger pringting (SSR)-anchored polymerase chain reaction amplification. Genomics, by simple sequence repeat 1994, 20: 176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700