杯形波动陀螺关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体波动陀螺具有精度高、体积小、稳定性好、抗冲击强等突出优点,适用于精确制导武器尤其是战术武器装备,但国内固体波动陀螺的研究水平与国外差距较大,国外高性能的固体波动陀螺对我国进行产品和技术限制。因此,开展固体波动陀螺技术研究,提高自主创新能力具有重要的战略意义。
     现有的高精度固体波陀螺通常由熔融石英制成,对加工精度和装配精度要求极高,带来了成本高和成品率低的问题,无法实现批量生产。本文设计了一种基于压电效应的杯形波动陀螺,其杯形谐振子由高性能合金金属结构和成品压电电极组成,通过精密机械加工技术和高性能粘接技术完成陀螺的制造。杯形波动陀螺制造工艺相对简单,成本低,精度高,性能稳定,具有批量生产的潜力。
     本文主要围绕杯形波动陀螺的结构设计、理论建模分析、制造工艺、测控技术和性能测试开展研究,主要研究内容如下:
     1.设计了一种基于压电效应的杯形波动陀螺,对陀螺的基本结构形式和工作原理进行了分析。通过对陀螺谐振子的模态特征进行了理论分析和有限元仿真,得出其基本振型函数;通过对谐振子的振动结构和压电电极进行力学分析和电学分析,建立了陀螺压电驱动器传感器模型、谐振子的集中刚度模型和集中质量模型。
     2.在杯形波动陀螺谐振子理论模型的基础上建立了谐振子的动力学方程,利用假设模态法、动力放大法和模态叠加法得到陀螺谐振子驱动模态的稳态响应,推导了陀螺在外界角速度作用下的等效哥氏力矩,求解陀螺谐振子敏感模态的稳态响应和检测信号输出,建立了陀螺角速度灵敏度模型,通过分析灵敏度和工作频率与谐振子几何参数和物理参数之间的关系,优化并确定了谐振子的结构尺寸。
     3.通过有限元仿真,研究了谐振子加工误差与其动态性能之间的关系,规划了谐振子制造精度目标;选用C902恒弹性合金作为谐振子金属结构的材料,设计了谐振子金属结构的精密机械加工流程和压电电极的胶粘引线方法并制造了谐振子样机;通过分析谐振子结构特征与谐振频率的关系,提出了基于杯底修形的杯形波动陀螺精细平衡方法,并进行了仿真和试验研究,平衡后谐振子的频率裂解接近0.01Hz,满足陀螺动态特性要求。基于上述技术制造出陀螺表头样机,样机的工作模态频率为3954Hz。
     4.根据杯形波动陀螺的机电耦合特点,建立了谐振子的等效电路模型,通过谐振子的频率响应曲线辨识了等效电路参数;研究了基于相位控制的谐振激励方法和基于ITAE指标的PID稳幅控制技术,提高了陀螺驱动模态的稳定性;研究了谐振子力平衡控制技术和角速度的相关解调检测方法,增加了陀螺的检测带宽和线性度。基于上述技术,研制了杯形波动陀螺测控电路,并进行了电路测试。
     5.对杯形波动陀螺的原理样机进行了性能测试,室温下杯形波动陀螺在±220°/s动态范围内的刻度因子为50.5mV/°/s,非线性度为216ppm,常温零偏稳定性为0.86°/hr,角度随机游走为0.07°/h1/2,全温区条件下,陀螺的频率温度系数为-14.4ppm/°C,零偏温度系数为0.066°/s/°C。杯形波动陀螺的性能基本达到战术级陀螺性能要求。
The solid-state wave gyroscope has the advantages of high operation accuracy,small size, good stabilization and shock resistance, which is suit for the precision guidedweapons, especially for the tactical weapons and system. However, domestic solid-statewave gyroscopes couldn’t achieve the same performances as foreign ones, andexporting of high performance solid-state wave gyroscopes is forbidden by foreigngovernments. Therefore, researching the solid-state wave gyroscope technologies toimprove the ability of independent innovation is of great importance.
     Up to now, the highest performance solid-state wave gyroscopes are always madeof fused quartz, which needs high machining precision and assembly precision, andleads to high cost and low production efficiency, therefore, mass production is limited.In this dissertation, we explore the possibility of developing a novel cupped solid-stategyroscope based on piezoelectric effect. The cupped resonator of the gyroscope consistsof a high performance metallic structure and confectioning piezoelectric electrodes,which is fabricated by precision mechanical machining and precision adherencetechnologies. The cupped wave gyroscope has the advantages of simple manufacturingprocess, low cost, high performance and long life, which is a good candidate for massproduction.
     In this dissertation, we present the structure design, theoretical modeling andanalysis, fabrication process, control technology and performance test of the cuppedwave gyroscope. The main content includes:
     1. The cupped wave gyroscope based on piezoelectric effect is designed, and thebasic structure and operation principle are analyzed. The functions of vibration modeare obtained after analyzing the characteristic of vibration mode by theoretical methodand finite element method. Based on the mechanical analysis and electrical analysis ofthe vibrating structure and piezoelectric electrode, the piezoelectric actuator and sensormodel, lumped-mass model and lumped-stiffness model of the gyroscope are built.
     2. The dynamic function of the cupped resonator is established based on thetheoretical model. The dynamic responses of the active mode are achieved by assumedmode model method, dynamic magnification method and modal superposition method.The equivalent Coriolis moment the dynamic responses and detection signal of thesense mode are calculated, hence, the angular rate sensitivity of the gyroscope isachieved. By analyzing the effects of geometric and physical parameters on thesensitivity and natural frequency, the optimized structural dimensions of the cuppedresonator are25mm×18mm×1mm, the minimum dimension is0.3mm.
     3. The machining precision of the cupped resonator is planned based on theanalysis of the effect of fabrication errors on dynamic characteristics by finite element method. The C902alloy with constant elastic parameters is selected for metal structureof the cupped resonator. The mechanical machining process of the metal structure andthe adherence technology of the piezoelectric electrodes are designed. Several cuppedwave gyroscope samples are fabricated. The precision balanced method based oncup-bottom trimming is presented by analyzing the relationship of structure and naturalfrequency of the resonator. By using the precision balance method, the frequency splitof the resonator is minimized to0.01Hz, which satisfies the dynamic index of thegyroscope. The natural frequency of the fabricated prototypal cupped wave gyroscope isabout3954Hz.
     4. The equivalent circuit model of the resonator is deduced according to theelectromechanical coupling characteristics of the gyroscope, and the parameters of themodel are recognized from frequency response curves of the resonator. Based on thephase control method and ITEA index method, a stable resonant loop is designed toexcite the active mode of the resonator. The force balance control method of theresonator is researched and the angular rate signal is demodulated from the forcebalance control signal, which improves the bandwidth and linearity of the gyroscope.Based on the control technology above, the readout circuit of cupped wave gyroscope isdesigned and tested.
     5. A fabricated cupped wave gyroscope is characterized. The scale factor at roomtemperature is measured as50.5mV/°/s with a nonlinearity of216ppm in a range of±220°/s. The bias stability at room temperature is0.86°/hr and the angle random walk isabout0.07°/h1/2. At full operation temperature range, the frequency temperaturecoefficient is-6.5ppm/°C and the bias temperature coefficient is0.066°/s/°C. Theperformance indexes of cupped wave gyroscope reach tactical grade approximately.
引文
[1] J L Weston, D H Titierton. Modern Inertial Navigation Technology and ItsApplication [J]. Electronic and Communication Engineering Journal,2000,12(2):49-64
    [2] N M Barbour, J M Elwell, R H Setterlund. Inertial Instruments: Where to Now
    [C]. Proceedings of AIAA Guidance, Navigation and Control Conference, HiltonHead Island, USA, August10-12,1992:566~574.
    [3] S A Jerebets. Gyro Evaluation for the Mission to Jupiter [C]. Proceedings ofIEEE Aerospace Conference, Big Sky, USA, March3-10,2007:1~10.
    [4] N Barbour, G Schmidt. Inertial Sensors Technology Trends [C]. Proceedings ofthe Workshop on Autonomous Underwater Vehicles, Cambridge, USA, August20-21,1998:55~62.
    [5]张均红.惯性导航中陀螺仪的研究现状及发展趋势[J].科学与研究,2008(7):13-14
    [6]祝斌,郑娟.美国惯性导航与制导技术的新发展[J].中国航天,2008(1):43-44
    [7]张炎华,王立瑞,战兴群.惯性导航系统的新进展及发展趋势[J].中国造船,2008,49(183):134-144
    [8]梁阁亭,惠俊军,李玉平.陀螺仪的发展及应用[J].飞航导弹,2006,(4):38-40
    [9]李园晴.光纤陀螺发展及其在制导武器中的应用[J].科技经济市场,2008,7:23-25
    [10]刘兰芳,陈刚,金国良.光纤陀螺基本原理与分类[J].现代防御技术,2007,35(2):59-64
    [11] S Beeby, G Ensell, Michael Kraft, Neil White. MEMS mechanical sensors [M].Boston: Artech House,2004:9~10
    [12] R H Dixon, J Bouchaud. Markets and Applications for MEMS Inertial Sensors [J].Proceedings of SPIE,2006,6113.
    [13]胡爱民.微声电子器件[M].北京:国防工业出版社,2008:175-177
    [14]杨亚非,赵辉.固体波动陀螺[M].北京:国防工业出版社,2009:1-2
    [15] G H Bryan.Vibrations of A Revolving Cylinder or Bell. Proc Camp,1890,1(2):101
    [16] D D Lynch, A Matthews, G T Varty. Innovative Mechanizations to OptimizeInertial Sensor for High or Low Rate Operations [C]. Symposium GyroTechnology, Stuttgart, Germany,1997:9.0-9.21
    [17] V Art. Gyro and Accelerometer History [J]. Systems-AC Electronics,2008,(1):4-6
    [18]吕志清.美国半球式振子陀螺仪80年代中期发展概况[J].压电与声光,1990,12(5):33-40
    [19] J Anders, R Pearson. Applications of the ‘START’ vibratory gyroscope [J]. GECReview,1994(9):168–175.
    [20] Watson Industries Inc. Watson Pro Gyro Specifications [EB/OL],www.watson-gyro.com,2008
    [21] W Watson. Vibrating Structure Gyro Performance Improvements [C].Symposium Gyro Technology, Stuttgart, Germany,2008:6.0~6.4
    [22] W S Watson, E Claire. High Q Angular Rate Sensing Gyroscope [P]. U.S. Patent:6845667B1,2005-01-25
    [23] W S Watson. Vibratory Gyro Skewed Pick-Off And Driver Geometry [J]. Journalof Micro-Machines,2010,4(10):171~179
    [24] V V Chikovani, I M Okon, A S Barbashov. A Set of High Accuracy Low CostMetallic Resonator CVG [C]. Proceedings of the IEEE/ION Position, LocationAnd Navigation Symposium, Monterey, USA,2008:238–243
    [25] V V Chikovani, Y A Yatsenko, А S Barabashov. Thermophysical ParametersOptimization of Metallic Resonator CVG and Temperature Test Results [C]. S.Petersburg conference on Integrated Navigation Systems, S. Petersburg, Russia,27-29May,2007:74-77
    [26] V.V.Chikovani, I.M.Okon, A.S.Barabashov. Digitally Controlled High AccuracyMetallic Resonator CVG [C]. Symposium Gyro Technology, Stuttgart, Germany,2006:4.0-4.7
    [27] Innalabs Holding Inc. CVG Datasheet [EB/OL], www.innalabs.com,2008
    [28] T O Bakalor, P M Bondar. Research of A Low-frequency Spectrum OfResonators Coriolis Vibrating Gyroscope [C]. Movement Control and AerospaceTechnic Engineering, Kyiv, Ukraine,2007:110~114
    [29] Sergii Adolf, Sarapuloff. High-Q Single-Crystalline Resonator Fabrication ofCRG-1for Inclinometry of Oil&Drilling [J]. Special Technologies&Machines,2009,1(2):101
    [30] D D Lynch. HRG Development at Delco, Litton, and Northrop Grumman [C].Anniversary Workshop sponsored by the Academy of Technological Sciences ofUkraine, Yalta, Ukraine,19-21May,2008:2-9
    [31] Y A Yatsenko, J F Petrenko. Technological Aspects of Manufacturing ofCompound Hemispherical Resonators for Small-sized Vibratory Gyroscopes.Integrated Navigation Systems [C]. RTO SCI international Conference,St.Petersburg, Russia, May,1999:71~75
    [32]吕志清.半球谐振陀螺研究现状及发展趋势[C].惯性技术发展动态发展方向研讨会,桂林,中国,2003:103~105
    [33]章燕申.半球谐振陀螺研究在苏联[J].机载设备及系统,1989(11):1-2
    [34] N M Barbour. Resonant Ring MEMS Gyros [C]. Inertial Navigation Sensors,Cambridge, USA,2002:2.14~2.15
    [35] F Ayazi, K Najafi, High Aspect-ration Combined Poly and Single-crystal SiliconMEMS Technology [J]. IEEE/ASME Journal of Microelectro mechanicalSystems,2000(9):288-294
    [36] F Ayazi, K Najafi, A HARPSS Polysilicon Vibrating Ring Gyroscopes [J].IEEE/ASME Journal of Microelectromechanical Systems,2001(11):69-79
    [37] M Esmaeili, M Durali, N Jalili, Ring Microgyroscope Modeling and PerformanceEvaluation [J], Journal of Vibration and Control,2006(12):537-553.
    [38] A Tirtichny. Calculation of Vibrating Ring Gyroscope Characteristics [J]. Sensorsand Materials,2005,17(4):79~84.
    [39] Z Hao, F Ayazi, Thermo elastic damping in flexural-mode ring gyroscopes [C].ASME International Mechanical Engineering Congress and Exposition, Orlando,USA, November,2005:1-9
    [40] M F Zaman, A Sharma, N Jalili, F Ayazi. The ResonatingStar Gyroscope: ANovel Multiple-Shell Sicilion Gyroscope With Sub-5deg/hr Allan Deviation BiasInstability [J], IEEE Sensors Journal,2009(9):616-624
    [41] Y M Desta. Fabrication of High Aspect Ratio Vibrating Cylinder MicrogyroscopeStructures by Use of The LIGA Process [D]. Louisiana State University,2005:128-133
    [42] D D Lynch, A Matthews, G T Varty. Innovative Mechanizations to OptimizeInertial Sensor for High or Low Rate Operations [C]. Symposium GyroTechnology, Stuttgart, Germany,1997:9.0~9.21
    [43] S F. Asokanthan, J Cho. Dynamic stability of ring-based angular rate sensors [J].Journal of Sound and Vibration.2006(295):572-583
    [44] A K Rourke, S McWilliam, C H J Fox. Frequency Trimming of A VibratingRing-based Multi-axis Rate Sensor [J]. Sound and Vibration,2005(280):495-530
    [45] A K Rourke, S McWilliam, C H J Fox. Multi-Mode Trimming of Imperfect Rings[J]. Sound and Vibration,2001(248):695-724
    [46] A K Rourke, S McWilliam, C H J Fox. Multi-Mode Trimming of Imperfect ThinRings Using Masses at Pre-selected Locations [J]. Sound and Vibration,2002(256):319-345
    [47] R Eley, C H J Fox, S McWilliam. Coriolis Coupling Effects on the Vibration ofRotating Rings[J]. Sound and Vibration,2000(280):459-480
    [48]刘广玉,樊尚春等.新型传感器技术及应用[M].北京:国防工业出版社,1995:44-46
    [49]樊尚春,刘广玉,王振均.变厚度轴对称壳谐振子振型的进动研究[J].仪器仪表学报,1991,12(4):421~426
    [50]刘长利.半球谐振陀螺仪振动的理论及有限元分析[D].沈阳:东北大学,2001
    [51]吕志清.半球谐振陀螺信号处理技术[J].中国惯性技术学报,2000,3:58~61.
    [52]吕志清.振动陀螺的模型方程[C].中国惯性技术学会第五届学术年会论文集,桂林,中国,2003:226~233
    [53]于伟.半球谐振陀螺的信号检测技术[D].哈尔滨:哈尔滨工业大学,2004
    [54]胡晓东,罗康俊,余波等.采用离子束技术对半球振子进行质量调平[C].中国惯性技术学会第五届学术年会论文集,桂林,中国,2003:247~252
    [55]张坤.半球陀螺加工用球头砂轮修整装置研制与修整工艺研究[D].哈尔滨:哈尔滨工业大学,2008
    [56]李子昂.半球陀螺谐振子的力学性能及振动特性分析[D].哈尔滨:哈尔滨工业大学,2007
    [57]梁嵬.半球陀螺仪谐振子振动特性及其结构研究[D].长春:长春理工大学,2008
    [58]高胜利.半球谐振陀螺的分析与设计[D].哈尔滨:哈尔滨工程大学,2008
    [59]雷霆.半球谐振陀螺控制技术研究[D].重庆:重庆大学,2006
    [60]倪受东,吴洪涛等.微型半球陀螺仪的误差源研究[J].传感器与微系统,2007,26(1):30~32
    [61]易康.半球谐振陀螺误差分析和滤波方法研究[D].长沙:国防科学技术大学,2005
    [62]付梦印,苏中,李擎.钟形振子式角速率陀螺[P].中国专利:101968359A,2011-02-09
    [63]王铎.理论力学[M].北京:高等教育出版社,2002:178~179
    [64]方同,薛璞.振动理论及应用[M].西安:西北工业大学出版社,1998:98~99.
    [65]曹志远.板壳振动理论[M].北京:中国铁道出版社.1989:1-3
    [66]屈维德,唐恒龄,张易群.机械振动手册[M].北京:机械工业出版社.2000:166-169
    [67]杨桂通.弹性动力学[M].北京:中国铁道出版社,1992:28-30
    [68]赵淳生.超声电机技术与应用[M].北京:科学出版社.2007:133-136
    [69]钱斌,杨世兴,盛美萍.封闭圆柱壳振动响应特性研究[J].机械科学与技术,2002,21(1):122~123
    [70]乐金朝,梁斌.变厚度圆柱壳的强度优化设计[J].计算力学学报,2002,19(4):414~418
    [71]徐烈姮.圆柱壳的半无矩理论分析[J].武汉理工大学学报,2004,26(1):72~75
    [72]陈继生,张勇.圆柱壳自由振动的有限元分析[J].机械设计与制造,2006,11:16~17
    [73] S M Hashemi, M J Richard. Free Vibrational Analysis of Axially LoadedBending-torsion Coupled Beam: A Dynamis Finite Element [J]. Computers andStructures,2000,(77):711~724
    [74] P W. Loveday. Analysis of Piezoelectric Ulstraonic Transducers Attached toWaveguides Using Waveguide Finite Elements [J]. IEEE Transactions onUltrasonic, Ferroelectrics, and Frequency Control,2004,54(10):2045~2051
    [75] J L Song, A L Dowson. Coupled Thermo-mechanical Finite-element Modeling ofHot Ring Rolling Process [J]. Journal of Materials Processing Technology2002,121:332-340
    [76]张朝晖. ANYSYS8.0结构分析及实例解析[M].北京:机械工业出版社.2005:182-184
    [77]席翔,陶溢,崔红娟.杯形波动陀螺的振动仿真分析和试验[J].机械设计与研究,2010,26(6):31~33
    [78]陶溢,席翔,肖定邦.杯形波动陀螺振型偏移角快速辨识方法[J].振动工程学报,2010,24(4):1~8.
    [79]张福学.压电晶体陀螺[M].北京:国防工业出版社,1981:4~5
    [80] Jan Soderkvist. Piezoelectric Beams and Vibrating Angular Rate Sensors [J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1991,38(3):271~280
    [81] Uehara H, Ohtsuka T, Inoue T, et al. Miniaturized Angular Rate Sensor withLaminated Quartz Tuning Fork [C]. Proceedings of the IEEE InternationalFrequency Control Symposium and Exposition, Vancouver, Canada, August29–31,2005:886~891
    [82]王矜奉,姜祖桐,石瑞大.压电振动[M].北京:科学出版社,1989:23-26
    [83]张福学.现代压电学(上册)[M].北京:科学出版社,2001.99~100
    [84] W B Bickford, E D Reddy. On the In-plane Vibration of Rotating Ring [J].Journal of Sound and Vibration,1985,101(1):13~22
    [85]刘森石.高等数学(下册)[M].长沙:国防科技大学出版社,2000:219~220
    [86] Timoshenko S. Theory of Plates and Shells[M]. Beijing: Science Press,2006:574-577
    [87]徐芝伦.弹性力学(上册)[M].北京:高等教育出版社,2006:122~125
    [88]单辉祖.材料力学[M].北京:高等教育出版社,2004:222-223
    [89] S F Asokanthan, J Cho. Dynamic Stability of Ring-based Angular Rate Sensors[J]. Journal of Sound and Vibration,2006,295:571~583
    [90] Yi Tao, X Xi, X Z Wu. A Novel Solid-state Wave Gyroscope [C]. Proceedings ofICMAE2010, Kuala Lumpur, Malaysia, Nov26-28,2010:1~10
    [91] Yi Tao, Xuezhong Wu, Dingbang Xiao, Yulie Wu, Hongjuan Cui, Xiang Xi,Bingjie Zhu. Design, Analysis and Experiment of a Novel Ring VibratoryGyroscope [J]. Sensors and Actuator A,2011,168(2):286~299.
    [92] R R Craig.结构动力学[M].北京:人民交通出版社,1996:275~278
    [93] M Ansari, E Esmailzadeh, N Jalili. Coupled Vibration and Parameter SensitivituAnslysis of Rocking-mass Vibrating Gyroscopes [J]. Sound and Vibration,2009,(327):564-583
    [94] M Esmaeili, N.Jalili, M. Durali. Dynamic Modeling and Performance Evaluationof A Vibrating Microgyroscope Under General Support Motion [J]. Journal ofSound and Vibration,2007,(301):146–164.
    [95] R Clough, J Penzien.结构动力学[M].北京:高等教育出版社,2006:108~110
    [96]谢立强.基于剪应力检测的新型石英微陀螺关键技术研究[D].长沙:国防科技大学,2010:49~51
    [97]肖定邦,侯占强,满海鸥.微陀螺闭环驱动方法[J].国防科技大学学报,2009,31(3):116~120
    [98] S Park, R Horowitz. Adaptive Control for the Conventional Mode of Operation ofMEMS Gyroscopes [J]. Journal of Microelectromechanical Systems,2003,12(2):101~108
    [99] R Leland. Adaptive Control of MEMS Gyroscopes Using Lyapunov Methods [J].IEEE Transcations on Control Systems Technology,2006,19(5):2230~2235
    [100]刘鸿文.材料力学[M].北京:高等教育出版社,2004:123~125
    [101]孙世贤.理论力学[M].长沙:国防科技大学出版社,1997:123~125
    [102]李芊,李晓莹,常洪龙.振动式微机械陀螺驱动控制电路研究[J].传感技术学报,2006,19(5):2230-2235
    [103] Leland R. Adaptive Control of a MEMS Gyroscope Using Lyapunov Methods [J].IEEE Transactions on Control Systems Technology,2006,14(2):278~283
    [104]肖定邦.新型蝶翼式微陀螺关键技术研究[D].长沙:国防科技大学,2009:40~42
    [105]刘玲玲,田文杰,张福学.压电石英加速度传感器稳定性研究[J].压电与声光,2007,(2):45~49
    [106] Wang Z Y. Effect of Transverse Force on the Performance of Quartz ResonatorForce Sensors [J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,2004,51(4):470~476
    [107]吕志清.半球谐振陀螺在宇宙飞船上的应用[J].压电与声光,1999,21(5):349~353
    [108]张骥华.功能材料及其应用[M].北京:机械工业出版社,2009:133~136
    [109]陈复民,李国俊,苏德达.弹性合金[M].上海:上海科学技术出版社,1986:48~51
    [110]郭卫民,谭军,黄水清. FeNiCo高温恒弹性合金特性研究[J].功能材料,2005,8(36):1210~1212
    [111]刘艳美,谭廷昌,赵宗彦.铁磁恒弹性合金性能时间稳定研究[J].金属功能材料,2003,10(6):22~26
    [112]中国机械工程学会热处理学会.热处理手册[M].北京:机械工业出版社,2008:775~776
    [113] Special Metals Corporation. NI-SPAN-C alloy902Specifications [EB/OL],www.specialmetals.com,2004
    [114]胡晓东,罗康俊,余波等.采用离子束技术对半球振子进行质量调平[C].中国惯性技术学会第五届学术年会,桂林,中国,2003:247~252
    [115]张冲,殷东平.一种薄壁零件的制造工艺技术[J].电子工艺与技术,2008,29(1):40~42
    [116] X W Liu, K Cheng, D Webb.Prediction of Cutting Force Distribution and itsInfluence on Dimensional Accuracy in Peripheral Milling[J]. InternationalJournal of Machine Tools&Manufacture,2002:791~800
    [117]席翔.杯形波动陀螺的结构设计与精度分析[D].长沙:国防科技大学.2010:36-42
    [118]王志刚,何宁,武凯.薄壁零件加工变形分析及控制方案[J].中国机械工程,2002,13(2):114~117
    [119]曹岩,董爱民,李云龙.航空薄壁零件数控铣削加工仿真与误差控制[J].机床与液压,2008,36(9):30~36
    [120] A M Madni, L E Costlow, Smith M W. The uGyro: A Quartz MEMS AutomotiveGyroscope [C]. Proceedings of SAE World Congress, Detroit, USA, April3–6,2006:246~249
    [121] A M Madni. Full Circle Commercialization of a Dual-Use Micromachined QuartzRate Sensor Technology [C]. Proceedings of IEEE Sensors Conference, Irvine,USA, October30-November3,2005:523~526
    [122] Calif L. New Inertial Sensor Uses Quartz Crystal Technology [J]. Aviation Week&Space Technology,1992,136(24):101~102
    [123] B D Nordall. Quartz fork technology may replace in gyros[J]. Aviation Week&Space Technology.1994,140(17):50~53
    [124] Randall Jaffe, Michael Carroll, Phillip Carter, Asad M. Madni. Miniature MEMSQuartz IMU for Aerospace and Defense Applications [C]. Proceedings of the16th International Technical Meeting of the Satellite Division of the Institute ofNavigation, Portland, USA, September9-12,2003:2840~2850
    [125]找明磊,王春雷,钟维烈.溶胶-凝胶法制备Bi0.5Na0.5TiO3陶瓷及其电学特性[J].物理学报,2003,52(1):229~232
    [126] N Soyama, K Maki, S Mori. Preparation of PZT Thin Films for Low VoltageApplication by Sol-gel Method [J]. Applications of Ferroelectrics,2000,(2):611~615
    [127] C K Kao, J S Kao, C H Tsai. Fabrication of Pb(Zr, Ti)O/Sub3/Optical WaveguideDevices on Silica Substrate by Metallo-organic Decomposition [J]. Lasers andElectro-Optics,2003,(2):569~573
    [128] H Funakubo, K Nagashima. Ferroelectric Property Improvement ofPb(ZrxTix-1)O3Films by Source Gas Puls-introduced MOCVD [J]. Applicationsof Ferroelectrics,2000,(1)67~72
    [129]刘秦,林殷茵,吴小清. PZT薄膜为图形的制作精度的研究[J].压电与声光,1998,20(6):411~413
    [130]娄利飞,杨银堂,李跃进.用于微传感器中PZT压电薄膜的制备和图形化[J].压电与声光,2008,30(4):453~455
    [131] M Bale, R E Palmer. Deep Plasma Etching of Piezoelectric PZT with SF6[J].Journal of Sci Technology B,2001,19(6):2020~2025.
    [132]严沾谋,游敏,郑小玲.胶粘剂弹性模量对间隙接头应力和强度的影响[J].航空学报,2007,28(1):253~255
    [133]谭平.粘贴式压电陶瓷作动器主动控制研究[J].南京理工大学学报,2005,29(6):698~699
    [134] Z D Guan, A G Wu, J Wang. Study on ASTM Shear-loaded Adhesive Lap Joints[J], Chinese Journal of Aeronautics,2004,17(2):79~86
    [135]王光庆,沈润杰,郭吉丰.超声波电动机胶粘技术及其对定子特性的影响[J].机械工程学报,2001,42(9):91~96
    [136]石斌,胡敏强,朱壮瑞.粘结层对超声马达定子振动特性的影响[J].中国电机工程学报,2001,21(7):72~77
    [137] J Wallaschek. Contact Mechanics of Piezowlwctric Ultrasonic Motors [J]. SmartMaterial and Structure,1998,(7):369~381
    [138]朱炳杰,陶溢,吴宇列.杯形波动陀螺压电片粘结胶层对谐振子振动特性的影响规律研究[J].传感技术学报,2011,24(9):1248~1252
    [139] A K Rourke, S McWilliam, C H J Fox. Frequency Trimming of a VibratingRing-based Multi-axis Rate Sensor [J]. Journal of Sound and Vibration,2005,280:495~530
    [140] S McWilliam, J Ong, C H J Fox. On the Statistics of Natural Frequency Splittingfor Rings With Random Mass Imperfections [J]. Journal of Sound and Vibration,2005,279:453~470
    [141] A K Rourke, S McWilliam, C H J Fox. Multi-mode Trimming of Impefect ThinRings Using Masses at Pre-selected Location [J]. Journal of Sound and Vibration,2002,256(2):319~345
    [142] Yi Tao, Xiang Xi, Dingbang Xiao, Yingqi Tan, Hongjuan Cui, Xuezhong Wu.Precision Balance Method for Cupped Wave Gyro Based on Cup-bottomTrimming [J]. Chinese Journal of Mechanical Engineering,2012,25(1):63~70
    [143] J Soderkvist. An analysis of space-dependent electric fields used in excitingflexural vibrations of piezoelectric beams [J]. Measurement Science andTechnology,1990,1(8):731~737
    [144] J Soderkvist. Electric Equivalent Circuit for Flexural Vibrations in PiezoelectricMaterials [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and FrequencyControl,1990,37(6):577~586
    [145]王矜奉,姜祖桐,石瑞大.压电振动[M].北京:科学出版社,1989:117~119
    [146]温熙森,邱静,陶俊勇.机电系统分析动力学及其应用[M].北京:科学出版社,2003:306~307
    [147]李欣业,张明路.机械振动[M].北京:清华大学出版社,2009:158-159
    [148] A M Madni, L A Wan. A Microelectromechanical Quartz Rotational Rate Sensorfor Inertial Applications[C]. Proceedings of IEEE Aerospace ApplicationsConference, Aspen, USA, February3-10,1996:315~332.
    [149] R Dorf, R Bishop. Modern Control Systems [M].北京:高等教育出版社,2001:218~219
    [150] Benjamin C Kuo. Automatic Control Systems (Eighth Edition)[M].北京:高等教育出版社,2004:230~240
    [151] S Chang, M Chia, P Castill. An Electroformed CMOS Integrated Angular RateSensor [J]. Sensors and Actuators A,1998,(66):138~143
    [152]方玉明,李普,茅盘松.双框架硅微型机械振动陀螺仪鲁棒控制研究[J].仪器仪表学报,2005,26(6):591~596
    [153]高胜利,吴简彤,张福勇.力平衡半球谐振陀螺的信号检测[J].船舶工程,2006,28(2):17~19
    [154] S. Kotru, A. Highsmith, J. Zhong, V. Rincon, J.E. Jackson, P. Ashley, FeasibilityStudy of A Micromachined Single-axis Vibratory Gyroscope Using PiezoelectricPNZT Thin Films for Actuation and Sensing [J]. Smart Materials and Structures.2010,(19):085001-085011
    [155] S Franco.基于运算放大器和模拟集成电路的电路设计[M].西安:西安交通大学出版社,2004
    [156] IEEE Std1431-2004. IEEE Standard Specification Format Guide and TestProcedure for Coriolis Vibratory Gyros [S]. IEEE Aerospace and ElectronicSystems Society,2004:1~79
    [157] IEEE Std952-1997. IEEE Standard Specification Format Guide and TestProcedure for Single-Axis Interferometric Fiber Optic Gyros [S]. IEEEAerospace and Electronic Systems Society,1997:62~73
    [158]郑露滴,汤全安,章燕申.环形激光陀螺误差测试及估计[J].航空学报,2001,22(01):57~60
    [159]王海,陈家斌,黄威.光纤陀螺随机漂移测试及分析[J].光学技术,2004,30(5):623~624
    [160] A Matthews, D A Bauer. Hemispherical Resonator Gyro Noise Reduction forPrecision Spacecraft Pointing [J]. Advances in the Astronautical Sciences,Guidance and Control,1996,92:83~100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700