铈基金属氧化物催化氧化甲苯的形貌及尺寸效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的持续快速发展,发展与资源环境的矛盾日益突出,大气污染成了我国目前最突出的环境问题之一,很多工业过程中排放的挥发性有机废气就是一类主要气体污染物。催化氧化可将VOCs在较低的温度下转化为无害的CO_2和H_2O,是最有前景的处理方法之一,而催化剂的研发是催化氧化研究中的研究重点。
     CeO_2是一种重要的稀土氧化物,具有较高的储存与释放氧能力,因此被广泛应用于多相催化反应中。MnOx也是金属氧化物催化剂中对VOCs的氧化最具活性的催化剂之一,复合金属氧化物之间由于存在结构或电子间相互协同效应,其催化活性比相应的单一氧化物要高。基于以上观点,本研究以甲苯为目标污染物,合成不同形貌的CeO_2纳米材料,研究CeO_2在甲苯催化氧化过程中的形貌及尺寸效应,同时制备了MnOx-CeO_2复合氧化物纳米棒,并探讨了它们的催化氧化性能,以及对甲苯在催化剂上的氧化过程进行了简单的讨论。
     主要研究内容和结论如下:
     (1)开发了超声辅助水热法合成出CeO_2纳米棒。考察铈源、NaOH的浓度、水热反应的温度、时间、超声作用的时间等因素对形貌的形成及产率的影响。研究发现,除了硝酸铈之外,氯化铈、醋酸铈及硫酸铈能合成棒状形貌的纳米材料,相对高的NaOH浓度更有利于纳米棒的形成,同时证实了超声作用可以明显地提高纳米棒的产率。
     (2) CeO_2纳米颗粒可以改用硝酸铈为铈源而依照纳米棒的合成路线而制得,CeO_2纳米立方则可以改变水热反应温度和反应时间、提高NaOH溶液的浓度等条件的水热反应制备而得。在此基础上,考察了三种样品在催化氧化反应上的形貌效应,发现纳米棒由于主要暴露活性晶面(200)和(220)而表现出最优异的催化活性。
     (3)通过改变水热反应的时间及NaOH溶液的浓度,可以制备得不同直径及长度的CeO_2纳米棒,发现纳米棒的直径取决于NaOH溶液的浓度,直径随着碱的浓度的增加而单调递增,而长度除了受水热反应时间的影响之外,还受碱浓度的影响。通过考察不同长径比的纳米棒的催化氧化性能,发现纳米棒的催化活性与其直径之间存在密切关系,直径越小,活性越高,有着相似直径的纳米棒具有相似的活性。
     (4)在CeO_2纳米棒的研究基础上,在合成CeO_2的同时添加锰盐制备出不同比例的Mn-Ce复合氧化物纳米棒,通过考察它们的催化氧化性能优化出最佳比例的复合氧化物纳米棒,探讨了活性晶格氧在催化反应中所起的作用,并证实了催化剂具有优异的热稳定性。
     (5)利用原位透射红外光谱对CeO_2纳米棒和Mn0.85Ce0.15O_2纳米棒催化剂上甲苯的催化氧化过程进行了分析,初步地推测了甲苯的催化氧化历程。
With the development of economy, the confliction between the development andenvironment became more and more prominent The air pollution was one of the most seriousproblems. The VOCs (volatile organic compounds) were the main air pollutants from theindustry. Catalytic oxidation was one of the most promising methods to degrade the VOCs tothe harmless CO_2and water. And the research emphasis of catalytic oxidation was thedevelopment of the catalysts.
     Ceria was an important rare-earth metal oxide with high oxygen storage capacity, whichwas extensively applied in the heterogeneous catalytic reactions. MnOx was one of the mostactive catalysts for VOCs oxidation. The mixed metal oxides were generally more active thanthe single metal oxide due to their synergistic effect between their structures. On account ofthese viewpoints, various shapes of Ce-based nanomaterials were prepared and theirmorphology-dependent catalytic activities were studied. Furthermore, the comparison ofcatalytic activities between the hollow and solid polyhedral MnOx have been done as well.The main contents and conclusions are as follows:
     (1) Ceria nanorods were synthesized through ultrasonic-assisited hydrothermal reactionmethod with cerium acetate and NaOH solution. The effect of synthetic conditionson the shape and yield of nanorods products, including the cerium source, the baseconcentration, the temperature and time of hydrothermal reaction and theultrasonication time, were discussed. And the optimal conditions were obtained.
     (2) The ceria nanopartiacles were obtained by the same route of nanorods with thecerium nitrate. The nanocubes were prepared by changing temperature and time ofthe reaction and the base concentration. Then, it was found that the nanorods werethe most active one since they mainly exposed the active planes (200)and(220).
     (3)CeO_2nanorods with various aspect ratios were controllably synthesized. The lengthand diameter of CeO_2nanorods could be controlled by tuning the hydrothermalreaction time and the concentration of NaOH solution. The diameter was influencedonly by the concentration of NaOH solution. The length of the nanorods wasimpacted not only by the reaction time, but also by the concentration of NaOHsolution. The catalytic activities were related with the diameter of the nanorods.The smaller the diameter, the better the performance, and the samples with the similar diameter had the similar activity.
     (4) On the basis of the research on ceria nanorods, various content of Mn were addedinto ceria to form the nanorod-structured Mn-Ce mixed oxides. The best catalysthas been optimized. The effect of the active lattice oxygen and the stability of thecatalyst were both studied.
     (5) The mechanism for toluene oxidation has been deduced preliminarily through themeans of in situ FTIR.
引文
[1]中国人大网.环境保护部部长周生贤作国务院关于环境保护工作情况的报告.www.npc.gov.cn.2011年10月25
    [2] S.Krol,B.Zabiegala,J. Namiesnik. Monitoring VOCs in atmospheric air Ⅰ. On-line gasanalyzers TrAC[J]. In Analytical Chemistry,2010,29:1092-1100
    [3] Wei W, Wang S, Chatani S, et al. Emission and speciation of non-methane volatileorganic compounds from anthropogenic sources in China[J]. Atmospheric Environment.2008,42(2):4976-4988
    [4] Bo Y, Cai H, Xie S D. Spatial and temporal variation of historical anthropogenicNMVOCs emission inventories in China[J]. Atmospheric Chemistry and Physics.2008(8):7297-7316
    [5]韩志伟,张美根,胡非.生态NMHC对臭氧和PAN影响的数值模拟研究[J].环境科学学报.2002,3(5):273-278
    [6] Boeglin M L, Wessels D, Henshel D. An investigation of the relationship between airemissions of volatile organic compounds and the incidence of cancer in Indianacounties[J]. Environmental Research.2006,100(2):242-254
    [7]陈颖,叶代启,刘秀珍,吴军良,黄碧纯,郑雅楠.我国工业源VOCs排放的源头追踪和行业特征研究[J].中国环境科学,2012,32(1):48-55
    [8]《国务院办公厅转发环境保护部等部门关于推进大气污染联防联控工作改善区域空气质量指导意见的通知》(国办发[2010]33号)
    [9]《国务院关于加强环境保护重点工作的意见》(国发[2011]35号)
    [10]国务院关于印发国家环境保护“十二五”规划的通知国发〔2011〕42号
    [11]中国环境保护产业协会废气净化委员会.我国有机废气治理行业2010年发展综述[J].中国环保产业,2011,(8):8-15
    [12]栾志强,郝郑平,王喜芹.工业固定源VOCs治理技术分析评估[J].环境科学,2011,32(12):3476-3486
    [13]江梅,张国宁,魏玉霞,邹兰,张明慧.工业挥发性有机物排放控制的有效途径研究[J].环境科学,2011,32(12):3487-3490
    [14]张星,朱景洋,穆远庆.挥发性有机物污染控制技术研究进展.挥发性有机物污染控制技术研究进展[J].化学工程与装备,2011,(10):165-166
    [15]黎维彬,龚浩.催化燃烧去除VOCs污染物的最新进展[J].物理化学学,2010,26(4):885-894
    [16]谢小莉,杨合情,焦华等.-Fe2O3纳米立方体和纳米棒组装空心微球的可控合成及其磁学性能[J],中国科学,2008,38(7):595-606
    [17]X.Xie, Y.Li, Z.Liu, etc. Low-temperature oxidation of CO catalysed by Co3O4nanorods[J]. Nature,2009,458:746-749
    [18]郭子政,时东陆.纳米材料和器件导论[M].第2版,北京:清华大学出版社,2010:8-13
    [19]Lai S Y, Qiu Y F, Wang S J. Effects of the structure of ceria on the activity ofGold/ceriacatalysts for the oxidation of carbon monoxide and benzene[J]. Journal ofCatalysis,2006,237(2):303-313
    [20]何丽芳.二氧化铈纳米材料的制备及其对甲苯催化氧化的性能研究[D].广州:华南理工大学,2010年
    [21]Carrettin S, ConeePein P, Corma A, et al. Nanocrystalline CeO2increases the activity ofAu for CO oxidation by two orders of magnitude [J]. Angewandte Chemie InternationalEdition,2004,43(19):2538-2540
    [22]Whitesides G, Mathias J, Seto C. Moleeular self-assembly and nanochemistry-a chemicalstrategy for the synthesis of nanostruetures [J].Science,1991,254:1312-1319
    [23]Feldhein D L, Keating C D. Self-assembly of single electron transistors andrelativedevices [J]. Chemical Society Reviews,1998,27(1):1-12
    [24]Yong Li, Qiying Liu and Wenjie Shen, Morphology-dependent nanocatalysis: metalparticles[J]. Dalton Transactions,2011,40:5811-5826
    [25]R. Narayanan and M. A. El-Sayed, Changing Catalytic Activity during ColloidalPlatinum Nanocatalysis Due to Shape Changes: Electron-Transfer Reaction[J]. Journal ofThe American Chemical Society,2004,126:7194-7195
    [26]R. Narayanan and M. A. El-Sayed, Effect of Nanocatalysis in Colloidal Solution on theTetrahedral and Cubic Nanoparticle SHAPE: Electron-Transfer Reaction Catalyzed byPlatinum Nanoparticles[J]. Journal of Physical Chemistry B,2004,108:5726-5733
    [27]R. Narayanan and M. A. El-Sayed. Shape-Dependent Catalytic Activity of PlatinumNanoparticles in Colloidal Solution [J]. Nano Letter,2004,4:1343-1348
    [28]R. Narayanan and M. A. El-Sayed, Catalysis with Transition Metal Nanoparticles inColloidal Solution: Nanoparticle Shape Dependence and Stability[J]. Journal of PhysicalChemistry B,2005,109:12663-12676
    [29]M. A. Mahmoud, C. E. Tabor, M. A. El-Sayed, Y. Ding and Z. L. Wang, A NewCatalytically Active Colloidal Platinum Nanocatalyst: The Multiarmed Nanostar SingleCrystal[J]. Journal of The American Chemical Society,2008,130:4590-4591
    [30]K. M. Bratlie, C. J. Kliewer and G. A. Somorjai, In Situ Sum Frequency GenerationVibrational Spectroscopy Observation of a Reactive Surface Intermediate duringHigh-Pressure Benzene Hydrogenation[J]. Journal of Physical Chemistry B,2006,110:10051-10057
    [31]K. M. Bratlie, M. O. Montano, L.D. Flores, M. Paajanen and G. A. Somorjai, SumFrequency Generation Vibrational Spectroscopic and High-Pressure Scanning TunnelingMicroscopic Studies of Benzene Hydrogenation on Pt(111)[J]. Journal of The AmericanChemical Society,2006,128:12810-12816
    [32]K.M. Bratlie, C. J.Kliewer andG. A. Somorjai, Structure Effects of BenzeneHydrogenation Studied with Sum Frequency Generation Vibrational Spectroscopy andKinetics on Pt(111) and Pt(100) Single-Crystal Surfaces[J]. Journal of PhysicalChemistry B,2006,110:17925-17930
    [33]K. M. Bratlie, H. Lee, K. Komvopoulos, P. D. Yang and G. A. Somorjai, PlatinumNanoparticle Shape Effects on Benzene Hydrogenation Selectivity[J]. Nano Letters,2007,7:3097-3101
    [34]C. K. Tsung, J. N. Kuhn, W. Y. Huang, C. Aliaga, L. I. Hung, G. A. Somorjai and P. D.Yang, Sub-10nm Platinum Nanocrystals with Size and Shape Control: Catalytic Studyfor Ethylene and Pyrrole Hydrogenation[J]. Journal of The American Chemical Society,2009,131:5816-5822
    [35]J. N. Kuhn, W. Y. Huang, C. K. Tsung, Y. W. Zhang and G. A. Somorjai, StructureSensitivity of Carbon Nitrogen Ring Opening: Impact of Platinum Particle Size frombelow1to5nm upon Pyrrole Hydrogenation Product Selectivity over MonodispersePlatinum Nanoparticles Loaded onto Mesoporous Silica[J]. Journal of The AmericanChemical Society,2008,130:14026-14027
    [36]J. C. Serrano-Ruiz, A. L′opez-Cudero, J. Solla-Gull′on, A. Sep′ulveda-Escribano, A.Aldaz and F. Rodr′guez-Reinoso, Hydrogenation of alpha, beta unsaturated aldehydesover polycrystalline,(111) and (100) preferentially oriented Pt nanoparticles supported oncarbon[J]. Journal of Catalysis,2008,253:159-166
    [37]Wei-Ping Zhou, Meng Li, Christopher Koenigsmann, Chao Ma, Stanislaus S. Wong,Radoslav R. Adzic,Morphology-dependent activity of Pt nanocatalysts for ethanoloxidation in acidic media: Nanowires versus nanoparticles[J]. Electrochimica Acta,2011,56:9824-9830
    [38]B. Tardy, C. Noupa, C. Leclercq, J. C. Bertolini, A. Hoareau, M.Treilleux, J. P. Faure andG. Nihoul, Catalytic hydrogenation of1,3-butadiene on Pd particles evaporated oncarbonaceous supports: Particle size effect[J]. Journal of Catalysis,1991,129:1-11
    [39]G.Tourillon, A. Cassuto, Y. Jugnet, J. Massardier and J. C. Bertolini, Buta-1,3-diene andbut-1-ene chemisorption on Pt(111), Pd(111), Pd(110) and Pd50Cu50(111) as studied byUPS, NEXAFS and HREELS in relation to catalysis[J]. Faraday Transaction.,1996,92:4835-4841
    [40]M. M. Telkar, C. V. Rode, R. V. Chaudhari, S. S. Joshi and A.M. Nalawade,Shape-controlled preparation and catalytic activity of metal nanoparticles forhydrogenation of2-butyne-1,4-diol and styrene oxide[J]. Applied Catalysis A,2004,273:11-19
    [41]R. Ma and N. Semagina, Nanoparticle Shape Effect Study as an Efficient Tool to Revealthe Structure Sensitivity of Olefinic Alcohol Hydrogenation[J]. Journal of PhysicalChemistry C,2010,114:15417-15423
    [42]J. Watt, S.Cheong,M. F. Toney, B. Ingham, J. Cookson, P. T. Bishop and R. D.Tilley,Ultrafast Growth of Highly Branched Palladium Nanostructures for Catalysis[J]. ACSNano,2010,4:396-402
    [43]J. D. Hoefelmeyer, K. Niesz, G. A. Somorjai and T. D. Tilley, Radial Anisotropic Growthof Rhodium Nanoparticles[J]. Nano Letters,2005,5:435-438
    [44]N. Zettsu, J.M.McLellan, B.Wiley, Y. Yin, Z. Y. Li and Y. N. Xia, Synthesis, stability,and surface plasmonic properties of rhodium multipods, and their use as substrates forsurface-enhanced Raman scattering[J]. Angewandte Chemie-international Edition,2006,45:1288-1292
    [45]S. M. Humphrey, M. E. Grass, S. E. Habas, K. Niesz, G. A. Somorjai and T. D. Tilley,Rhodium Nanoparticles from Cluster Seeds: Control of Size and Shape by PrecursorAddition Rate[J]. Nano Letters,2007,7:785-790
    [46]S. Ghosh, M. Ghosh and C. N. R. Rao, Nanocrystals, Nanorods and other Nanostructuresof Nickel, Ruthenium, Rhodium and Iridium prepared by a Simple SolvothermalProcedure[J]. Journal of Cluster Science,2007,18:97-111
    [47]Y. W. Zhang, M. E. Grass, J. N. Kuhn, F. Tao, S. E. Habas, W. Y. Huang, P. D. Yangand G. A. Somorjai, Highly selective synthesis of cataytically active monodisperserhodium nanocubes[J]. Journal of The American Chemical Society,2008,130:5868-5869
    [48]S. Kundu, K.Wang and H. Liang, Photochemical Generation of Catalytically ActiveShape Selective Rhodium Nanocubes[J]. Journal of Physical Chemistry C,2009,113:18570-18577
    [49]Q. Yuan, Z. Y. Zhou, J. Zhuang and X. Wang, Tunable Aqueous Phase Synthesis andShape-Dependent Electrochemical Properties of Rhodium Nanostructures[J]. InorganicChemistry,2010,49:5515-5521
    [50]K. Jang, H. J. Kim and S. U. Son, Low-Temperature Synthesis of Ultrathin RhodiumNanoplates via Molecular Orbital Symmetry Interaction between Rhodium Precursors[J].Chemistry of Materials,2010,22:1273-1275
    [51]H. Zhang, X. H Xia, W. Y. Li, J. Zeng, Y. Q. Dai, D. R. Yang and Y.N.Xia, FacileSynthesis of Five-fold Twinned, Starfish-like Rhodium Nanocrystals by EliminatingOxidative Etching with a Chloride-Free Precursor[J].Angewandte Chemie-internationalEdition,2010,49:5296-5300
    [52]K. H. Park, K. Jang, H. J. Kim and S. U. Son, Near-monodisperse tetrahedral rhodiumnanoparticles on charcoal: The shape-dependent catalytic hydrogenation of arenes[J].Angewandte Chemie-international Edition,2007,46:1152-1155
    [53]J. R. Renzas, Y. W. Zhang, W. Y. Huang and G. A. Somorjai, Rhodium NanoparticleShape Dependence in the Reduction of NO by CO[J]. Catalysis Letters,2009,132:317-322
    [54]M. J. P. Hopstaken, W. J. H. van Gennip and J. W. Niemantsverdriet, Reactions betweenNO and CO on rhodium (111): an elementary step approach[J]. Surface Science,1999,433/435:69-73
    [55]M. J. P. Hopstaken and J.W. Niemantsverdriet, Structure sensitivity in the CO oxidationon rhodium: Effect of adsorbate coverages on oxidation kinetics on Rh(100) and Rh(111)[J]. Journal of Chemical Physics,2000,113:5457-5465
    [56]P. Christopher and S. Linic, Engineering Selectivity in Heterogeneous Catalysis: AgNanowires as Selective Ethylene Epoxidation Catalysts[J]. Journal of The AmericanChemical Society,2008,130:11264-11265
    [57]P. Christopher and S. Linic, Shape-and Size-Specific Chemistry of Ag Nanostructures inCatalytic Ethylene Epoxidation[J]. ChemCatChem,2010,2:78-83
    [58]R. Xu, D. S.Wang, J. T. Zhang and Y.D. Li, Shape-dependent catalytic activity of silvernanoparticles for the oxidation of styrene[J]. Chemistry-An Asian Journal,2006,1:888-893
    [59]R. J. Chiment ao, I. Kirm, F. Medina, X. Rodr′guez, Y.Cesteros, P. Salagre and J. E.Sueiras, Different morphologies of silver nanoparticles as catalysts for the selectiveoxidation of styrene in the gas phase[J]. Chemisrty Communications,2004,12:846-847
    [60]X. Y. Liu, A. Klust, R. J. Madix and C. M. Friend, Structure Sensitivity in the PartialOxidation of Styrene, Styrene Oxide, and Phenylacetaldehyde on Silver SingleCrystals[J]. Journal of Physical Chemistry C,2007,111:3675-3679
    [61]L. Zhou and R. J. Madix, Strong structure sensitivity in the partial oxidation of styrene onsilver single crystals[J]. Surface Science,2009,603:1751-1755
    [62] M. Reza Hormozi-Nezhad, Mehdi Jalali-Heravi, Hossein Robatjazi, HeshmatollahEbrahimi-Najafabadi. Controlling aspect ratio of colloidal silver nanorods using responsesurface methodology[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects.393(2012)46-52
    [63]Yoshiko Takenaka, Hiroyuki Kitahata. High-aspect-ratio gold nanorods synthesized in asurfactant gel phase[J]. Chemical Physics Letters,2009,467:327-330
    [64] Hsiang-Yang Wu, Wan-Ling Huang, and Michael H. Huang. Direct High-YieldSynthesis of High Aspect Ratio Gold Nanorods[J]. Crystal Growth&Design,2007,7:831-835
    [65]Hsiang-Yang Wu, Hsin-Cheng Chu, Tz-Jun Kuo, Chi-Liang Kuo, and Michael H. Huang.Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid[J].Chemistry of Materials,2005,17:6447-6451
    [66]Susie Eustis and Mostafa El-Sayed, Aspect Ratio Dependence of the EnhancedFluorescence Intensity of Gold Nanorods: Experimental and Simulation Study[J]. Journalof Physical Chemistry B,2005,109:16350-16356
    [67]Takeshi Morita, Eiichi Tanaka, Yukihiro Inagaki, Hiroyasu Hotta, Rie Shingai,Yoshikiyo Hatakeyama, Keiko Nishikawa, Hiromi Murai, Hirofumi Nakano, andKazuyuki Hino. Aspect-Ratio Dependence on Formation Process of Gold NanorodsStudied by Time-Resolved Distance Distribution Functions[J]. Journal of PhysicalChemistry C,2010,114:3804-3810
    [68]Xiaoshan Kou, Shuzhuo Zhang, Chia-Kuang Tsung, Zhi Yang, Man Hau Yeung, Galen D.Stucky, Lingdong Sun, Jianfang Wang, and Chunhua Yan. One-Step Synthesis ofLarge-Aspect-Ratio Single-Crystalline Gold Nanorods by Using CTPAB and CTBABSurfactants[J]. Chemistry of European Journal,2007,13:2929-2936
    [69]Won Min Park, Yun Suk Huh, Won Hi Hong. Aspect-ratio-controlled synthesis ofhigh-aspect-ratio gold nanorods in high-yield[J]. Current Applied Physics,2009,9:e140-e143
    [70]S. Kundu, S. Lau and H. Liang, Shape-Controlled Catalysis by CetyltrimethylammoniumBromide Terminated Gold Nanospheres, Nanorods, and Nanoprisms[J]. Journal ofPhysical Chemistry C,2009,113:5150-5156
    [71]Edgar González, Jordi Arbiol, Víctor F. Puntes,Carving at the Nanoscale: SequentialGalvanic Exchange and Kirkendall Growth at Room Temperature[J]. Science,2011,334:1377-1380
    [72]胡寒梅,邓崇海,朱绍峰等.无模板微波辅助合成多孔氧化锌纳米球及其光致发光[J],功能材料,2010,10(41):1796-1799
    [73]李小东,郭新春,刘浩梅等.高分散度Fe3O4纳米球的粒径控制合成及磁性能[J],功能材料,2009,7(40):1233-1236
    [74]Sun Xiaoming, Liu Junfeng, Li Yadong. Use of carbonaceous polysaccharidemicrospheres as templates for fabricating metal oxide hollow spheres [J]. Chemistry ofEuropean Journal,2006,12(7):2039
    [75]Yu Jiaguo,Liu Wen,Yu Huogen,et al,A One-Pot Approach to HierarchicallyNanoporous Titania Hollow Microspheres with High Photocatalytic Activity[J]. CrystalGrowth&Design,2008,8(3):930-934
    [76]Zhao Jianzhi,Tao Zhanliang,Liang Jing,et al,Facile Synthesis of Nanoporous-MnO2Structures and Their Application in Rechargeable Li-Ion Batteries[J]. Crystal Growth&Design,2008,8(8):2799-2805
    [77]Sun Jin Q,Wang Ji S,Wu Xiu C,et al,Novel Method for High-Yield Synthesis of RutileSnO2Nanorods by Oriented Aggregation[J]. Cystal Growth&Design,2006,6(7):1584-1587
    [78]Wang Wenzhong,Ling Ao,Synthesis and Optical Properties of Mn3O4Nanowires byDecomposing MnCO3Nanoparticles in Flux[J]. Crystal Growth&Design,2008,8(1):358-362
    [79]Fan Hai,Zhang Yuanguang,Zhang Maofeng,et al,Glucose-Assisted Synthesis of CoTeNanotubes in Situ Templated by Te Nanorods[J]. Crystal Growth&Design,2008,8(8):2838-2841
    [80]Li Jingwei; Song Can; Liu Shantang. Catalytic Oxidation of Chlorobenzene over MnO2Nanorods with Different Phase Structures[J]. Acta Chimica Sinica,2012,70:2347-2352
    [81]Song, Jaejin; Baek, Seonghoon; Lee, Jonghyuck. Role of OH-in the low temperaturehydrothermal synthesis of ZnO Nanorods[J]. Journal Of Chemical Technology AndBiotechnology,2008,83:345-350
    [82]Bonil Koo; Jongnam Park; Yukyeong Kim. Simultaneous phase-and size-controlledsynthesis of TiO2Nanorods via non-hydrolytic sol-gel reaction of syringe pump deliveredprecursors[J]. Journal of Physical Chemistry B,2006,110:24318-23
    [83]Prabhakar Rai, Yun-Su Kim, Hyeon-Min Song, Min-Kyung Song, Yeon-Tae Yu. Therole of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2Gases[J].Sensors and Actuators B,2012,165:133-142
    [84]Yan Youguo,Zhou Lixia,Zhang Ye,et al,Large-Scale Synthesis of In2O3NanocubesUnder Nondynamic Equilibrium Model[J]. Crystal Growth&Design,2008,8(9):3285-3289
    [85]Dewei Chu,Yoshitake Masuda,Tatsuki,et al,Formation and Photocatalytic Applicationof ZnO Nanotubes Using Aqueous Solution[J]. Langmuir,2010,26(4):2811-2815
    [86]Yang, Kaikun; Xu, Congkang; Huang, Liwei. Low-Temperature Solution Synthesis ofZinc Oxide Nanotubes[J]. Synthesis and Reactivity in Inorganic Metal-Organic andNano-Metal Chemistry,2013,43:1501-1505
    [87]Yu Qingqing; Chu Chenglin; Lin Pinghua. Fabrication of TiO2Nanotube Arrays by aTwo-Step Anodic Oxidation[J]. Rare Metal Materials and Engineering,2011,40:201-205
    [88]Karthik Shankar, James I. Basham, Nageh K. Allam, Oomman K. Varghese, Gopal K.Mor, Xinjian Feng, Maggie Paulose, Jason A. Seabold, Kyoung-Shin Choi, and Craig A.Grimes. Recent Advances in the Use of TiO2Nanotube and Nanowire Arrays forOxidativePhotoelectrochemistry[J]. Journal of Physical Chemistry C,2009,113:6327-6359
    [89]许淑燕,张培培,熊杰.氧化锌纳米纤维的制备及其光催化性能[J],纺织学报,2011,32(3):15-20
    [90]常艳兵,氧化锌纳米带的合成及应用研究[J],曲靖师范学院学报,2010,29(6):39-43
    [91]张翔晖,王月娇,韩祥云,氧化锡纳米带的制备和光致发光性能研究[J],纳米加工工艺,2009,6(1):18-22
    [92]嵇天浩,侯少凡,杜海燕,六方相WO3纳米带的制备与表征[J],无机化学学报,2009,25(5):818-822
    [93]Shi Liang,Xu Yeming,and Li Quan,et al,Controlled Growth of Lead Oxide Nanosheets,Scrolled Nanotubes and Nanorods[J]. Crystal Growth&Design,2008,8(10):3521-3525
    [94]Xia Feng,Kang Junyong,Inami Wataru,et al,ZnO Films Grown on Si Substrates withAu Nanocrystallites as Nuclei[J]. Crystal Growth&Design,2007,7(3):564-568
    [95]刘亚南,刘强春,戴建明.水热合成法制备Fe3O4纳米片及表征[J].显微与测量,2010,7(1):64-68
    [96]荆飞飞,周德凤,杨国程.单晶MoO3纳米片:静电纺丝法制备及光催化活性[J].无机化学学报,2011,27(3):527-532
    [97]Jungsun Paek, Chang Hoon Lee, Jiyoung Choi, Sung-Yool Choi, Ansoon Kim, JuWook Lee, and Kwangyeol Lee, Gadolinium Oxide Nanoring and Nanoplate:Anisotropic Shape Control[J]. Crystal Growth&Design,2007,7(8):1378-1380
    [98]Won Seok Seo,Jae Ha Shim,Sang Jun Oh,et al,Phase-and Size-Controlled Synthesisof Hexagonal and Cubic CoO Nanocrystals[J]. Journal of The American ChemicalSociety,2005,127:6188-6189
    [99]张维维,Cu2O纳米立方体和银-硅核壳结构的合成[M],硕士学位论文,吉林大学,2006
    [100]Jia Li,Yu Shi,Cai Qiang,et al,Patterning of Nanostructured Cuprous Oxide bySurfactant-Assisted lectrochemical Deposition[J]. Crystal Growth&Design,2008,8(8):2652-2659
    [101]Hao Li, Shijun Liao. Synthesis of flower-like Co microcrystals composed of Conanoplates in water/ethanol mixed solvent [J]. Journal of Physics D-Applied Physics,2008,41:065004
    [102]Zhu H.T.,Luo J.,Yang H.X.,et al. Birnessite-type MnO2Nanowalls and Their MagneticProperties[J].Journal of Physical Chemistry C,2008,112:17089-17094
    [103]Geng B.Y.,Ma J.Z.,You J.H,Controllable Synthesis of Single-Crystalline Fe3O4Polyhedra Possessing the Active Basal Facets[J]. Crystal Growth&Design,2008,8(5):1443-1447
    [104]Shen Liming,Bao Ningzhong,Kazumichi Yanagisawa,et al,Controlled Synthesis andAssembly of Nanostructured ZnO Architectures by a Solvothermal Soft ChemistryProcess[J]. Crystal Growth&Design,2007,7(12):2742-2748
    [105]Zhu Pengli,Zhang Jingwei,Wu Zhishen,et al,Microwave-Assisted Synthesis ofVarious ZnO Hierarchical Nanostructures:Effects of Heating Parameters of MicrowaveOven[J]. Crystal Growth&Design,2008,8(9):3148-3153
    [106]Shi Xixi,Pan Lingling,Chen Shuoping,et al,Zn(II)-PEG300Globules as SoftTemplate for the Synthesis of Hexagonal ZnO Micronuts by the Hydrothermal ReactionMethod[J]. Langmuir,2009,25(10):5940-5948
    [107]李红星,几种形貌可控半导体纳米材料的合成及其光电性质研究[M].博士学位论文,湖南大学,2010
    [108]Teyeb Ould-Ely, Dario Prieto-Centurion, A. Kumar, W. Guo, William V. Knowles,Subashini Asokan, Michael S. Wong, I. Rusakova,|Andreas Lu¨ttge, and Kenton H.Whitmire, Manganese(II) Oxide Nanohexapods: Insight into Controlling the Form ofNanocrystals[J]. Chemistry of Materials,2006,18:1821-1829
    [109]李霞章,氧化铈基纳米材料的介孔结构合成,形貌控制及其性质研究[M].江苏大学,2009
    [110]周艳慧,杨晓峰,董相廷,王进贤,刘桂霞.不同形貌纳米CeO2的制备最新研究进展[J].中国稀土学报,2008,26(3):257-266
    [111]Jie Li, Abul Kalam, Ayed Sad Al-Shihri, Qingmei Su, Guo Zhong, Gaohui Du.Monodisperse ceria nanospheres: Synthesis, characterization, optical properties, andapplications in wastewater treatment[J]. Materials Chemistry and Physics,2011,130:1066-1071
    [112] Wei-Qiang Han, Lijun Wu, Yimei Zhu, et al. Formation and Oxidation State ofCeO2-xNanotubes[J]. Journal of The American Chemical Society,2005,127:12814-12815
    [113] Chengchun Tang,Yoshio Bando, Baodan Liu, et al. Cerium Oxide NanotubesPrepared from Cerium Hydroxide Nanotubes[J]. Advanced Materials,2005,17:3005-3009
    [114] Kebin Zhou,Zhiqiang Yang,Sen Yang,et al. Highly Reducible CeO2Nanotubes[J].Chemistry of Materials,2007,19:1215-1217
    [115]Kai-Lu Yu, Guo-Ling Ruan, Yu-Heng Ben, Ji-Jun Zou,Convenient synthesis of CeO2nanotubes[J]. Materials Science and Engineering B,2007,139:197-200
    [116]Guozhu Chen, Sixiu Sun, Xun Sun, Weiliu Fan, and Ting You, Formation of CeO2Nanotubes from Ce(OH)CO3Nanorods through Kirkendall Diffusion[J]. InorganicChemistry2009,48:1334-1338
    [117]Guozhu Chen, Caixia Xu, Xinyu Song, Wei Zhao, Yi Ding, and Sixiu Sun,InterfaceReaction Route to Two Different Kinds of CeO2Nanotubes[J]. Inorganic Chemistry2008,47:723-728
    [118]Jian-Jun Miao, Hui Wang, Yu-Ru Li, Jian-Min Zhu, Jun-Jie Zhu,Ultrasonic-inducedsynthesis of CeO2nanotubes[J]. Journal of Crystal Growth,2005,281:525-529
    [119]M Boehme, G Fu, E Ionescu andWEnsinger, Cerium (IV) oxide nanotubes prepared bylow temperature deposition at normal pressure[J]. Nanotechnology,2011,22:065602
    [120]杨儒,郭亮.纳米管状结构立方萤石型CeO2的合成[J].无机化学学报,2004,20(2):152-158
    [121]Wei Wang, Jane Y. Howe, Yuan Li, Xiaofeng Qiu, David C. Joy, M. ParansParanthaman, Mitchel J. Doktyczde and Baohua Gu,A surfactant and template-freeroute for synthesizing ceria nanocrystals with tunable morphologies[J]. Journal ofMaterials Chemistry,2010,20:7776-7781
    [122]Mai Haoxin, Sun Lingdong, Zhang Yawen, Si Rui, Feng Wei,Zhang Hongpeng, LiuHaichao, Yan Chunhua. Shape-selective synthesis and oxygen storage behavior ofceria nanopolyhedra, nanorods, and nanocubes [J]. Journal of Physical Chemistry B,2005,109:24380-24385
    [123]V. D. Araujo, W. Avansi, H. B. de Carvalho, M. L. Moreira, E. Longo, C. Ribeiro andM. I. B. Bernardi, CeO2nanoparticles synthesized by a microwave-assistedhydrothermal method: evolution from nanospheres to nanorods[J]. CrystEngComm,2012,14:1150
    [124]Qiang Wu, Fan Zhang, Pei Xiao, Haisheng Tao, Xizhang Wang, and Zheng Hu,GreatInfluence of Anions for Controllable Synthesis of CeO2Nanostructures: From Nanorodsto Nanocubes[J]. Journal of Physical Chemistry C,2008,112:17076-17080
    [125]Suresh C. Kuiry, Swanand D. Patil, Sameer Deshpande, and Sudipta Seal,SpontaneousSelf-Assembly of Cerium Oxide Nanoparticles to Nanorods through SupraaggregateFormation[J]. Journal of Physical Chemistry B,2005,109(15):6936-6939
    [126]Ning Du, Hui Zhang, Bingdi Chen, Xiangyang Ma, and Deren Yang,Ligand-freeSelf-Assembly of Ceria Nanocrystals into Nanorods by Oriented Attachment at LowTemperature[J]. Journal of Physical Chemistry C,2007,111:12677-12680
    [127]Dengsong Zhang, Hongxia Fu, Liyi Shi, Chengsi Pan, Qiang Li, Yuliang Chu, andWeijun Yu,Synthesis of CeO2Nanorods via Ultrasonication Assisted by PolyethyleneGlycol[J]. Inorganic Chemistry,2007,46:2446-2451
    [128]Lai Yan, Ranbo Yu, Jun Chen, and Xianran Xing, Template-Free HydrothermalSynthesis of CeO2Nano-octahedrons and Nanorods: Investigation of the MorphologyEvolution[J]. Crystal Growth&Design,2008,8(5):1474-1477
    [129]Nuo Xu, Junwei Ye, Yunbang Tang, Changzhong Man, Guolong He, He Ye, GuilingNing, Solvent assisted morphology-controlled synthesis of CeO2micro/nanostructures[J]. Materials Letters,2012,82:199-201
    [130]Zhaoxia Zhang, Lina Wang, Min Shao, Yili Guo, Guangliang Chen, Jianzhong Shao,Guoqing Zhang,Synthesis and characterisation of CeO2nanoparticles and rods[J].Micro&Nano Letters,2012,7(8):770-772
    [131]Anwar Ahniyaz, Yasuhiro Sakamoto, and Lennart Bergstrom, Tuning the Aspect Ratioof Ceria Nanorods and Nanodumbbells by a Face-Specific Growth and DissolutionProcess[J]. Crystal Growth&Design,2008,8(6):1798-1800
    [132]Ajay S. Karakoti, Satyanarayana V. N. T. Kuchibhatla, Donald R. Baer, SuntharampillaiThevuthasan, Dean C. Sayle, and Sudipta Seal, Self-Assembly of Cerium OxideNanostructures in Ice Molds[J]. Small,2008,4(8):1210-1216
    [133]Reyoy, Michelle N., Scott, Robert W. J., Grosvenor, Andrew P. Ceria Nanocubes:Dependence of the Electronic Structure on Synthetic and Experimental Conditions[J].Journal Of Physical Chemistry C,2013,117:10095-10105
    [134]Yang, Zhiqiang; Zhou, Kebin; Liu, Xiangwen. Single-crystalline ceria nanocubes:size-controlled synthesis, characterization and redox property[J]. Nanotechnology,2007,18:185606-185610
    [135]Kuen-Song Lin and Sujan Chowdhury, Synthesis, Characterization, and Application of1-D Cerium Oxide Nanomaterials: A Review[J]. International Journal of MolecularSciences,2010,11:3226-3251
    [136] Vantomme A., Yuan Z.Y., Du G., Su B.L. Surfactant-assisted large-scale preparation ofcrystalline CeO2nanorods[J]. Langmuir,2005,21:1132-1135
    [137] Wang Z.L., Feng X. Polyhedral shapes of CeO2nanoparticles[J]. Journal of PhysicalChemistry B,2003,107:13563-13566
    [138]Terribile D., Trovarelli A., Llorca J., De Leitenburg C., Dolcetti G. The synthesis andcharacterization of mesoporous high-surface area ceria prepared using a hybridorganic/inorganic route[J]. Journal of Catalysis,1998,178:299-308
    [139]Yan L., Xing X., Yu R., Deng J., Chen J., Liu G. Facile alcohothermal synthesis oflarge-scale ceria nanowires with organic surfactant assistance[J]. Journal ofPhysics-Condensed Matter,2007,390:59-64
    [140]Yang R., Guo L. Synthesis of cubic fluorite CeO2nanowires[J]. Journal of MaterialsScience,2005,40:1305-1307
    [141]Pan C., Zhang D., Shi L. CTAB assisted hydrothermal synthesis, controlled conversionand CO oxidation properties of CeO2nanoplates, nanotubes, and nanorods[J]. Journal ofSolid State Chemistry,2008,181:1298-1306
    [142]Kuiry S.C., Patil S.D., Deshpande S., Seal S. Spontaneous self-assembly of ceriumoxide nanoparticles to nanorods through supraaggregate formation[J]. Journal ofPhysical Chemistry B,2005,109:6936-6939
    [143]La R.J., Hu Z.A., Li H.L., Shang X.L., YangY.Y. Template synthesis of CeO2orderednanowire arrays[J]. Material Science and Engineering A,2004,368:145-148
    [144]Wu G.S., Xie T., Yuan X.Y., Cheng B.C., Zhang L.D. An improved sol-gel templatesynthetic route to large-scale CeO2nanowires[J]. Materials Research Bulletin,2004,39:1023-1028
    [145]Fu Y., Wei Z.D., Ji M.B., Li L., Shen, P.K., Zhang, J. Morphology-controllable synthesisof CeO2on a Pt electrode[J]. Nanoscale Research Letters,2008,3:431-434
    [146] Pan C., Zhang D., Shi L., Fan J. Template-free synthesis, controlled conversion, and COoxidation properties of CeO2nanorods, nanotubes, nanowires, and nanocubes[J].European Journal of Inorganic Chemistry,2008,15:2429-2436
    [147]Huang P.X., Wu F., Zhu B.L., Gao X.P., Zhu H.Y., Yan T.Y., Huang W.P., Wu S.H., SongD.Y. CeO2nanorods and gold nanocrystals supported on CeO2nanorods as catalyst[J].Journal of Physical Chemistry B,2005,109:19169-19174
    [148]Xin-Song Huang, Hao Sun, Lu-Cun Wang, Yong-Mei Liu, Kang-Nian Fan, Yong Cao,Morphology effects of nanoscale ceria on the activity of Au/CeO2catalysts forlow-temperature CO oxidation[J]. Applied Catalysis B: Environmental,2009,190:224-232
    [149]Laura Torrente-Murciano, Alexander Gilbank, Bego na Puertolas, Tomas Garcia,Benjamin Solsona, David Chadwick, Shape-dependency activity of nanostructuredCeO2in the total oxidation of polycyclic aromatic hydrocarbons[J]. Applied Catalysis B:Environmental,2013,132-133:116-122
    [150]Qiguang Dai, Hao Huang, Yu Zhu, Wei Deng, Shuxing Bai, Xingyi Wang, GuanzhongLu, Catalysis oxidation of1,2-dichloroethane and ethyl acetate over ceria nanocrystalswith well-defined crystal planes[J]. Applied Catalysis B: Environmental,2012,117-118:360-368
    [151]Lin Feng, Dat Tien Hoang, Chia-Kuang Tsung, Wenyu Huang, Sylvia Hsiao-Yun Lo,Jennifer B. Wood, Hungta Wang, Jinyao Tang, and Peidong Yang,Catalytic Propertiesof Pt Cluster-Decorated CeO2Nanostructures[J]. Nano Research,2011,4(1):61-71
    [152]Dengsong Zhang, Fuhuan Niu, Tingting Yan, Liyi Shi, Xianjun Du, Jianhui Fang, Ceriananospindles: Template-free solvothermal synthesis and shape-dependent catalyticactivity[J]. Applied Surface Science,2011,257:10161-10167
    [153]Kebin Zhou, Xun Wang, Xiaoming Sun, Qing Peng, Yadong Li,Enhanced catalyticactivity of ceria nanorods from well-defined reactive crystal planes[J]. Journal ofCatalysis,2005,229:206-212
    [154]Fuhuan Niu, Dengsong Zhang, Liyi Shi, Xiaoqiang He, Hongrui Li, Hailing Mai,Tingting Yan, Facile synthesis, characterization and low-temperature catalyticperformance of Au/CeO2nanorods[J]. Materials Letters,2009,63:2132-2135
    [155]Lianjun Liu, Yuan Cao, Wenjing Sun, Zhijian Yao, Bin Liu, Fei Gao, Lin Dong,Morphology and nanosize effects of ceria from different precursors on the activity forNO reduction[J]. Catalysis Today,2011,175:48-54
    [156]Tana, Milin Zhang, Juan Li, Huaju Li, Yong Li, Wenjie Shen,Morphology-dependentredox and catalytic properties of CeO2nanostructures: Nanowires, nanorods andnanoparticles[J]. Catalysis Today,2009,148:179-183
    [157]Leandro Gonza′lez-Rovira, Jose′M. Sa′nchez-Amaya, Miguel Lo′pez-Haro, Eloy delRio, Ana B. Hungr′a, Paul Midgley, Jose′J. Calvino, Seraf′n Bernal, and F. JavierBotana. Single-Step Process To Prepare CeO2Nanotubes with Improved CatalyticActivity[J]. Nano Letters,2009,9:1395-1400
    [158]Yujuan Zhang, Lei Zhang, Jiguang Deng, Hongxing Dai, and Hong He, ControlledSynthesis, Characterization, and Morphology-Dependent Reducibility ofCeria-Zirconia-Yttria Solid Solutions with Nanorod-like, Microspherical,Microbowknot-like, and Micro-octahedral Shapes[J]. Inorganic Chemistry2009,48:2181-2192
    [159]Yucheng Du, Shuli Shi, Hong He, Hongxing Dai, Fabrication and characterization ofCe0.7Zr0.3O2nanorods having high specific surface area and large oxygen storagecapacity[J]. Particuology,2011,9:63-68
    [160]Rodolfo O. Fuentes, Leandro M. Acun a, Mar′a G. Zimicz, Diego G. Lamas, J. G.Sacanell, A. Gabriela Leyva, and Richard T. Baker, Formation and Structural Propertiesof Ce-Zr Mixed Oxide Nanotubes[J]. Chemistof Materials2008,20:7356-7363
    [161]Lin Xu, Hongwei Song, Biao Dong, Yu Wang, Jiansheng Chen, and Xue Bai,Preparation and Bifunctional Gas Sensing Properties of Porous In2O3-CeO2BinaryOxide Nanotubes[J]. Inorganic Chemistry,2010,49:10590-10597
    [162]Ying-Chen Chen, Kuei-Bo Chen, Chi-Shen Lee, and M. C. Lin, Direct Synthesis ofZr-Doped Ceria Nanotubes[J]. Journal of Physical Chemistry C,2009,113:5031-5034
    [163]Dan Yang, Lei Wang, Yangzhao Sun, and Kebin Zhou, Synthesis of One-DimensionalCe1-xYxO2-x/2(0    [164]Chhu, C H Xia, Fwang, M Zhou, P F Yin And X Y Han, Synthesis of Mn-doped CeO2nanorods and their application as humidity sensors[J]. Bulletin Material Science,2011,34:1033-1037
    [165]Tao Yang, Dingguo Xia, Self-combustion synthesis and oxygen storage properties ofmesoporous gadolinia-doped ceria nanotubes[J]. Materials Chemistry andPhysics,2010,123:816-820
    [166] Guozhu Chen, Federico Rosei, and Dongling Ma. Interfacial Reaction-DirectedSynthesis of Ce-Mn Binary Oxide Nanotubes and Their Applications in CO Oxidationand Water Treatment[J]. Advanced Functional Materials.2012,22:3914-3920
    [167]李娟,塔娜,申文杰等.纳米尺度CeO2在多相催化反应中的形貌效应[J].催化学报,2008,29(9):823-830
    [168] Kaneko K, Inoke K, Freitag B, et al. Structural and Morphological Characterizationof Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesis[J]. Nano Letters,2007,2:421-425
    [169]Zhou K,Wang X,Sun X, et al. Enhanced catalytic activity of ceria nanorods fromwell-defined reactive crystal planes[J]. Journal of Catalysis,2005,229:206-212
    [170]Sayle D C,Maicaneanu S A,Watson G W. Atomistic Models for CeO2(111),(110), and(100) Nanoparticles, Supported on Yttrium-Stabilized Zirconia[J]. Journal of TheAmerican Chemical Society,2002,124:11429-11439
    [171]Baudin M,Wjcik M, Hermansson K. Dynamics, structure and energetics of the (111),(011) and (001) surfaces of ceria[J]. Surface Science,2000,468:51-61
    [172] ZhouK B, LiY D. Catalysis Based on Nanocrystals with Well-DefinedFacets[J].Angewandte Chemie-international Edition,2012,51:602-613
    [173]Yan L, Yu R B, Chen J, et al. Template-free hydrothermal synthesis of CeO2nano-octahedrons and nanorods: Investigation of the morpholog evolution[J]. CrystalGrowth&Design,2008,8:1474-1477
    [174]Quan Yuan, Hao-Hong Duan, Le-Le Li, Ling-Dong Sun, Ya-Wen Zhang, Chun-HuaYan. Controlled synthesis and assembly of ceria-based nanomaterials[J]. Journal ofColloid and Interface Science,2009,335:151-167
    [175]Dengsong Zhang, Chengsi Pan, Liyi Shi, Lei Huang, Jianhui Fang, Hongxia Fu. Ahighly reactive catalyst for CO oxidation: CeO2nanotubes synthesized using carbonnanotubes as removable templates[J]. Microporous and Mesoporous Materials,2009,117:193-200
    [176] Guozhu Chen, Fenfen Zhu,a Xuan Sun, Sixiu Suna and Ruiping Chen Benign synthesisof ceria hollow nanocrystals by a template-free method[J]. CrystEngComm,2011,13:2904-2908
    [177] A. G. Macedo, S. E. M. Fernandes, A. A. Valente, R. A. S. Ferreira, L.D. Carlos, J.Rocha, Catalytic Performance of Ceria Nanorods in Liquid-Phase Oxidations ofHydrocarbons with tert-Butyl Hydroperoxide[J]. Molecules,2010,15:747-765
    [178]Dengsong Zhang, Fuhuan Niu, Tingting Yan, Liyi Shi, Xianjun Du, Jianhui Fang. Ceriananospindles: Template-free solvothermal synthesis and shape-dependent catalyticactivity[J]. Applied Surface Science,2011,257:10161-10167
    [179] Q. Wu, F. Zhang, P. Xiao. Great Influence of Anions for Controllable Synthesis of CeO2Nanostructures: From Nanorods to Nanocubes[J]. Journal of Physical ChemistryC,2008,112:17076-17080
    [180] Pol, V. G.,Palchik, O.,Gedanken, A.,Felner, I. Synthesis of Europium Oxide Nanorodsby Ultrasound Irradiation[J]. Journal of Physical Chemistry B,2002,106:9737-9743
    [181]Zhang F, Wan Y, Shi Y F, et al. Ordered Mesostructured Rare-Earth Fluoride NanowireArrays with Upconversion Fluorescence[J]. Chemistry of Materials,2008,20(11):3778-3784.
    [182]Sun M J, Zou G J, Xu S, et al. Nonaqueous synthesis, characterization and catalyticactivity of ceria nanorods [J]. Materials Chemistry and Physics,2012,134(2-3):912-920
    [183]Z.L. Wu, M.J. Li, J. Howe, H. M. Meyer, S. H. Overbury, Probing Defect Sites on CeO2Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2Adsorption[J]. Langmuir,2010,21:16595-16606
    [184]何丽芳,廖银念,陈礼敏,等.纳米CeO2催化氧化甲苯的形貌效应研究[J].环境科学学报,2013,33(9):2412-2421
    [185]C. R. Xiong, X. Y. Deng, J. B. Li. Preparation and photodegradation activity of highaspect ratio rutile TiO2single crystal nanorods[J]. Applied Catalysis B: Environmental,2010,94:234-240
    [186]G. Cheng, J. Y. Chen, H. Z. Ke, et al. Synthesis, characterization and photocatalysis ofSnO2nanorods with large aspect ratios[J]. Material Letters,2011,65:3327-3329
    [187]A. Kumar, A. K. Srivastava, P. Tiwari, R. V. Nandedkar. The effect of growthparameters on the aspect ratio and number density of CuO nanorods[J]. Journal ofPhysics-Condensed Matter,2004,16:8531-8543
    [188]H. S. Choi, M. Vaseem, S. G. Kim, Y. H. Im, Y. B. Hahn. Growth of high aspect ratioZnO nanorods by solution process: Effect of polyethyleneimine[J]. Journal of SolidState Chemistry,2012,189:25-31
    [189] X. Wang, Y.D. Li. Synthesis and Characterization of Lanthanide HydroxideSingle-Crystal Nanowires[J]. Angewandte Chemie-international Edition,2002,24:4790-4793
    [190]Z.G. Yan and C.H. Yan, Controlled synthesis of rare earth nanostructures[J]. Journal ofMaterial Chemistry,2008,18:5046-5059
    [191]P. Burroughs, A. Hammett, A.F. Orchard, G. Thornton, Satellite structure in the X-rayphotoelectron spectra of some binary and mixed oxides of lanthanum and cerium[J].J.C.S. Dalton1976,1686-1698
    [192]H. F. Li, G.Z. Lu, Q.G. Dai. Efficient low-temperature catalytic combustion oftrichloroethylene over flower-like mesoporous Mn-doped CeO2microspheres[J].Applied Catalysis B: Environmental,2011,102:475-483
    [193]C. T. Campbell, C. H. F. Peden, Oxygen Vacancies and Catalysis on Ceria Surfaces[J].Science,2005,309:713-714
    [194]X. W. Liu, K. B. Zhou, L. Wang, B. Y. Wang, Y. D. Li. Oxygen Vacancy ClustersPromoting Reducibility and Activity of Ceria Nanorods[J]. Journal of The AmericanChemical Society2009,131:3140-3141
    [195]M. koda, M. Cabala, I. Matolínová, K.C. Prince, T. Skála, F. utara, et al. Interactionof Au with CeO2(111): A photoemission study[J]. Journal of Chemical Physics,2009,130:034703-034710
    [196]M.M. Natile, G. Boccaletti, A. Glisenti. Properties and Reactivity of NanostructuredCeO2Powders: Comparison among Two Synthesis Procedures[J]. Chemistry ofMaterials,2005,17:6272-6286
    [197]J.M. Du, L. Fu, Z.M. Liu, B.X. Han, Z.H. Li, Y.Q. Liu, et al. Facile Route to SynthesizeMultiwalled Carbon Nanotube/Zinc Sulfide Heterostructures: Optical and ElectricalProperties[J]. Journal of Physical Chemistry B,2005,109:12772-12776
    [198]P. Dutta, S. Pal, M. S. Seehra, Y. Shi, E. M. Eyring, R. D. Ernst. Concentration ofCe3+and Oxygen Vacancies in Cerium Oxide Nanoparticles[J]. Chemistry of Materials,2006,18:5144-5146
    [199]B. Murugan, A. V. Ramaswamy. Defect-Site Promoted Surface Reorganization inNanocrystalline Ceria for the Low-Temperature Activation of Ethylbenzene[J]. Journalof The American Chemical Society,2007,129:3062-3063
    [200]F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei.Electron Localization Determines Defect Formation on Ceria Substrates[J]. Science2005,309:752-755
    [201]S. Deshpande, S. Patil, S. Kuchibhatla, S. Seal, Size dependency variation in latticeparameter and valency states in nanocrystalline cerium oxide[J]. Applied Physics Letters,2005,87:133113-133113-3
    [202] SantosVP, PereiraMFR, FigueiredoJL. The role of lattice oxygen on the activity ofmanganese oxides towards the oxidation of volatile organic compounds[J]. AppliedCatalysis B,2010,99:353-363
    [203] BastosSST, OrfaoJJM, FreitasMMA,et al. Manganese oxide catalysts synthesized byexotemplating for the total oxidation of ethanol[J]. Applied Catalysis B,2009,93:30-37
    [204] WangXY, KangQ, LiD. Catalytic combustion of chlorobenzene overMnOx-CeO2mixed oxide catalysts[J]. Applied Catalysis B: Environmental2009,86:166-175
    [205] LiHJ, QiGS, Tana. Low-temperature oxidation of ethanol over a Mn0.6Ce0.4O2mixedoxide[J]. Applied Catalysis B: Environmental2011,103:54-61
    [206]D.Q. Yu, Y. Liu, Z.B. Wu, Low-temperature catalytic oxidation of toluene overmesoporous MnOx-CeO2/TiO2prepared by sol-gel method[J]. Catalysis Communication,2010,11:788-791
    [207] M. A. Langell, F. Gevrey, M. W. Nydegger, Surface composition of MnxCo1xO solidsolutions by X-ray photoelectron and Auger spectroscopies[J]. Applied Surface Science,2000,153:114-127
    [208]F. Esch, S. Fabris, L. Zhou, Electron Localization Determines Defect Formation onCeria Substrates[J]. Science,2005,309:752-755
    [209]Y.G. Yin, W.Q. Xu, R. Deguzman, S.L. Suib, C.L. Oyoung, Studies of Stability andReactivity of Synthetic Cryptomelane-like Manganese Oxide Octahedral MolecularSieves[J]. Inorganic Chemistry1994,33:4384-4389
    [210] H. Chen, A. Sayari, A. Adnot, F. Larachi, Composition-activity effects of Mn-Ce-Ocomposites on phenol catalytic wet oxidation[J]. Applied Catalysis B: Environmental2001,32:195-204
    [211]B. Levasseur, S. Kaliaguine, Effects of iron and cerium inLa1yCeyCo1xFexO3perovskites as catalysts for VOC oxidation[J]. Applied Catalysis B:Environmental2009,88:305-314
    [212]F. Arena, T. Torre, C. Raimondo, A. Parmaliana, Structure and redox properties of bulkand supported manganese oxide catalysts[J]. PhysChemChemPhys,2001,3:1911-1917
    [213]R. Li, J.T. Ma, J.L. Xu, X. Zhou, Z.X. Su, React. Studies on the surface oxygen speciesand the catalytic activity for co oxidation of La1-xSrxCo1-xMnxO3, a perovskite-typeoxides catalyst[J]. Reaction Kinetics and Catalysis Letters.2000,70:363-370
    [214]G. Pacchioni, Oxygen vacancy: The invisible agent on oxide surfaces[J].ChemPhysChem,2003,4:1041-1047
    [215]D. Delimaris, T. Ioannides, VOC oxidation over MnOx-CeO2catalysts prepared by acombustion method[J]. Applied Catalysis B: Environmental2008,84:303-312
    [216]H.Y. Shang, C.G. Liu, Y.M. Chai, Study of adsorption behavior of dibenzothiophene onthe surface of CoMo/CNT catalyst[J]. Acta Chimica Sinica,2004,62:888-894
    [217]M. Horie, K. Fujita, H. Kato, S. Endoh, K. Nishio, L. K. Komaba, et al. Association ofthe physical and chemical properties and the cytotoxicity of metal oxide nanoparticles:metal ion release, adsorption ability and specific surface area[J]. Metallomics,2012,4:350-360
    [218]C. Cellier, V. Ruaux, C. Lahousse, P. Grange, E.M. Gaigneaux, Extent of theparticipation of lattice oxygen from-MnO2in VOCs total oxidation: Influence of theVOCs nature[J]. Catalysis Today,2006,117:350-355
    [219]Song Sun,Jianjun Ding, Jun Bao, Chen Gao. Photocatalytic degradation of gaseoustoluene on Fe-TiO2under visible light irradiation: A study on the structure, activity anddeactivation mechanism[J]. Applied Surface Science,2012,258:5031-5037
    [220]Hisahiro Einaga, Keisuke Mochiduki and Yasutake Teraoka. Photocatalytic OxidationProcesses for Toluene Oxidation over TiO2Catalysts[J]. Catalysts,2013,3:219-231
    [221]Mo J H, Zhang Y P, Xu Q J, et al. Determination and risk assessment ofolueneby-products resulting from photocatalytic oxidation of toluene [J]. AppliedCatalysis B: Environmental,2009,89(3-4):570-576
    [222] Yunbing He, Zebao Rui, Hongbing Ji. In situ DRIFTS study on the catalytic oxidationof toluene over V2O5/TiO2under mild conditions[J]. Catalysis Communications,2011,14:77-81
    [223]俞丹青.钛基催化剂催化氧化苯系物有机废气的研究[D].博士学位论文,杭州:浙江大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700