可变约束和机械自适应结构的综合设计与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代生产及科学技术的发展,为提高机械系统的运动学、动力学性能与智能化水平,使机械自身对各种内部和外部不确定因素变化具有自调与自适应功能的机械结构,正日益成为机构学研究的热点。
     机械自适应结构,是指无需通过测控,仅仅依靠机械本身可以自动适应外部工作条件、对象、工作参数变化的一种机械结构,具有这种自适应结构的机械就称为了自适应机械。自适应机械一般都具有多自由度、变结构、变自由度的结构特征,且原始驱动件的数量都小于机械的自由度数量,一般为欠驱动机械系统。机械自适应结构,是一种基于可变约束的机械结构。是利用可变约束的可施加、可释放、可调、可控等结构特征,使机构自身具有自动调整和适应外部变化的功能的。
     具有自适应功能的机械已在工程实际中得到了广泛的应用。但对其共性的工作机理及其综合设计的理论与方法还缺乏系统的研究,对自适应机械尚缺乏较明确的定义与分类,制约了它的发展和应用创新。正是基于此需要,本论文对可变约束和机械自适应结构进行了较深入,系统的分析与研究。
     本论文的主要工作有:
     ①在详细分析机械中的可动联接与约束性质的基础上,基于广义约束及设计应用的观点,提出了运动约束和动力约束、内部约束和外部约束、基本约束和过约束以及常约束和可变约束的机械约束分类方法,分析了各类约束的基本性质和特征。并首次将机械中的可变约束分为可变运动约束、可变几何约束、力封闭约束和动力约束,列出了各种可变约束的特征表达式,指出了其可变、可调及可控因素,及可变约束的作用及应用范围。为自适应机械结构的分析与设计奠定了基础。
     ②在机械自调结构研究的基础上,通过对已有自适应功能的机械的深入分析,定义了:自适应机械,是指对其外部工作对象、环境、条件的不确定性和变化,无需通过测控,且不包含专门的控制机构,而是依靠机械本身的结构自动调整来实现对变化的自动适应,从而可靠地完成预期工作要求的机械装置。深入研究了自适应机械的工作机理,指出其“自适应”,实质上就是对机械的约束和自由度变化的自动适应。其自适应功能,根本上是基于可变约束结构的力、能特性及其参数的可变与可调控性,是通过对自由度的约束和释放,调整机械自身的结构特征来实现的。
     ③提出了按自适应机械的功能结构特征及其自动适应的对象来划分的两种自适应机械分类方法。重点针对变结构自适应机械、变自由度自适应机械和内力封闭自适应机械,阐明了其主要结构特征及自适应机理。并根据它们的共性特征,较系统地提出了自适应机械综合的要点,给出了自适应机械综合设计的一些基本原则和通用方法。
     ④针对内力封闭自适应机械多方案设计的需要,系统地完善了一种新的型综合方法—胚图支链法。以此为基础,研究并创新了一种基于全回路拓扑特性矩阵的运动链同构辨识法,综合出了自由度为0或-1的十杆(包括十杆)以下的运动链的全部独立构型。深入分析和研究内力封闭自适应机械设计的内容、方法和原则,提出了其方案设计及功能结构设计的程序以及一般原则和方法。并通过实例详细论述了其结构及尺寸设计的过程与方法。
     ⑤提出了一种以单自由度关节连动式仿人手指为基础的条件自适应手指设计方案。首先仿照人手指从伸直到握拳过程中三关节的相对位姿,综合其单自由度机构,再通过在原机构中增加一个条件自由度来提高和完善其自适应功能。对欠驱动3自由度手指机构的构型设计、关节可变约束的结构方案及获得条件自由度的方法进行了较深入的探讨。建立了欠驱动手指具有可变力(力矩)约束的准静力学模型;提出了按连动手指优化的参数,选定三个指节的尺寸,并以传动角最佳及握紧的中间状态为基本构型,以三个接触力相等为优化目标的综合方法。建立了优化目标函数,确定了优化参数,采用粒子群法进行优化,得到了多组可供优选的可行解。通过对虚拟样机仿真实验,论证了手指机构较强的自适应功能。
     ⑥在分析重钢高炉折叠式堵渣机功能结构特征的基础上,根据其自适应结构存在的主要问题,提出了采用两组槽销副加弹簧力封闭约束的可变自适应结构来代替原有的重锤—滚子—摆杆式力封闭高副结构,有效的提高了工作的稳定性和可靠性,完善了自适应功能。通过虚拟样机仿真试验结果表明本文设计方法是正确的、有效和可靠的。
     以上研究成果,对丰富和拓展现代机构学结构设计理论与方法,开拓自适应机械的创新设计方法及应用领域,提高我国自适应机械结构分析与设计的水平,具有重要的理论意义和工程实际价值。
As long as the development of modern manufacture and technology, to improve the kinematics, kinetics capability and level of intelligentization of mechanical system; the mechanical structure has self-adjustment and self-adaptability according to various interior and exterior uncertainty are becoming hotspots of mechanism scholars’investigation.
     Self-adaptive structure of mechanism is a mechanical structure that mechanism can automatically adapt to exterior working conditions, objects, and parameters but need not test or control. The mechanism with such structure is called self-adaptive mechanism. The self-adaptive mechanism usually has structure characteristics of multi-degree of freedom, variable structure and variable freedom. Because the quantity of the original driving member is smaller than that of the mechanical freedom, it is usually a typical underactuation mechanism system. And, the self-adaptive structure is a mechanism structure based on variable constraints. It utilize the characteristics of the variable constraint which is able to be enforced, released, adapted and controlled, and makes the structure can be self-adapted to the exterior varieties.
     The self-adaptive mechanism is recently widely applied in practice. However, the lack of systematic research on its commonness working mechanism and theories and methods of integrative design, the lack of a specific definition and classification are badly restricting its application, development and innovation. Based on such demand, this thesis has deeply and systematic analysis and research on variable constraint and self-adaptive mechanism structure.
     The major tasks of this thesis are as follows:
     ①Based on the particular analysis of the relationship between movable join and constraint character, according to the general constraint and view of design and application, the thesis here advances the classifications of: the motion constraint and dynamical constraint; interior constraint and exterior constraint; basic constraint and extra-constraint; ordinary constraint and variable constraint. And characteristics of different constraints are analyzed. And for the first time, the variable constraint is classified to variable motion constraint; variable geometry constraint; Force closed constraint and dynamical constraint. Diversified constraint equations of variable constraint are listed; factors of variable, adjustable and controllable of the variable constraint structure are indicated; and functions and scopes of appliance of the variable constraint are specified. A foundation to analysis and design of self-adaptive mechanism structure settled.
     ②Based on the research about the self-adjustable mechanism structure, according to deep analysis of foregone self-adaptive mechanism, a concept is advanced here: the self-adaptive mechanism is that device which can automatically adapt to the change of exterior working conditions, objects, and parameters depends on the self-adjustment and realize the adapt to varieties, and dependably achieve the expected working requirements, without any testing and controlling and special control structure either. By research on the self-adaptive mechanism working mechanism, here indicates that the“self-adaptive”in fact means its self-adaptability for varieties of the mechanism constraint and freedom. Its self-adaptive functions are realized based on variability and adaptability of varieties parameters of variable constraint power and energy, via constraint or release for degree of freedom to adjust the mechanism structure for realization.
     ③According to the characteristics of function structure and objects to be adapted, two class methods of self-adaptive machines are advanced here. Mainly aimed at variable structure self-adaptive mechanism, variable freedom self-adaptive mechanism and internal-force-closed self-adaptive mechanism, the main structure characters and self-adaptive mechanism are set forth. According to their common characteristics, the main points of self-adaptive mechanism synthesis are particular discussed in the thesis and some basic principles and current methods of the synthesis designs of self-adaptive mechanism are brought forward also.
     ④To the question of the demand in different structure of internal-force-closed self-adaptive mechanism, a new method of type synthesis of kinematical chains is finished systematically, that is Contracted Graph and Subchain Method. Based on which, a method to detect isomorphism of kinematical chains based on the All-Loop-Link-Join-Matrix is researched and innovated, and all possible independence structures of less than 10 links (10 links included) with 0 or–1 DOF are brought forward .Here in-depth analysis and research for the design, methods and principles of internal-force-closed self-adaptive structure is done, and the design process and general principles and methods is are brought forward. And by instances the process and methods of its function and structure design is discussed also.
     ⑤In the thesis a conditional self-adaptive finger design method based on the apery finger of the single-degree of freedom arthrosis is forwarded. Firstly imitated the gesture of human fingers from unbend to make a fist, its single-degree mechanism is synthesised, and then add a conditional freedom in the original mechanism to advance and complete its self-adaptability. In the thesis, the method of structure synthesis; the variable constraint structure scheme of arthrosis; and how to obtain the conditional degree of freedom of 3-DOF underactuation finger mechanism are deeply discussed. And the kinetostatic analysis model having variable moment of underactuation finger is build up; the synthesis method according to parameter of optimization of fingers, and select three dimensions of the knuckle, take the best and medium condition of grasp of transmission angle to be the basic structure, take the three contact force to be equal as target of optimization is indicated. Fixed the parameter of optimization, the functions of optimization target is built up, and several conclusions for choice, throughing the Particle Swarm Optimization (PSO), are achieved. Via the simulation experiments of the dummy sample machine, the strong self-adaptive function of the finger mechanism is demonstrated.
     ⑥Based on the analysis of the function structure of stopper from ChongQing Steel Co., Ltd., according to the main problems of its self-adaptive structure, the variable adaptive structure of two slotting-pin pair with spring force closed constraint to replace the original force closed Higher-pair structure of hammer—roller—wobbly pole are designed in the thesis. Tthe working stability and dependability of stopper are improved, and completes the self-adaptive function is completed also. The testing result from experiments of the dummy sample machine indicates that the design method of this thesis is correct, effective and dependable.
     The research achievements upon have very important theory significance and project actual value in enriching and developing the design theories and methods of modern mechanism structure; developing innovative design methods and field of self-adaptive machine; advancing the analysis and design level of self-adaptive machine structure of our country.
引文
[1]温诗铸,黎明主编.机械学发展战略研究[M].北京:清华大学出版社,2003.1.
    [2]邹慧君,蓝朝辉,王石刚等.机械学的研究现状、发展趋势和应用前景[J].机械工程学报,1999,35(5):1~4.
    [3] Harashima,F.,Tomizuka,M.,Fukuda,T.“Mechatronics-‘What is it,Why,and How?’An Editorial”[C]. IEEE/ASME Transactions on Mechatronics,1996,Vol.1 (1):1~4.
    [4] Jay R.,Alan N,Durney,Craig C..Design of Mechatronic Systems With Aliased Plant Modes[C].IEEE/ASME Transactions on Mechatronics, 1998,Vol.3(2): 144-152.
    [5] Keys,L.K.,Parks,C.M.,Mechartonics,systems,elements,and technology:a perspective[C]. IEEE Transactions on Components,Hybrids,and Manufacturing Technology, 1991,Vol.14(3):457~461.
    [6]田志斌.现代机械运动系统概念设计原理与应用研究[D].上海:上海交通大学,2001.
    [7]邹慧君,廖武.机电一体化系统概念设计的基本原理[J].机械设计与研究,1999,(3):. 24-28.
    [8]张春林.高等机构学[M].北京:北京理工大学出版社,2005:10-15.
    [9]邹慧君,田永利,郭为忠.现代机构学的形成、基本内容和应用前景[J].机械设计与研究,2002,18(2):10~13.
    [10]邹慧君,李瑞琴,郭为忠等.机构学10年的研究成果和发展展望[J].机械工程学报,2003,39(12):22~30.
    [11]张启先,张玉茹.我国机械学研究的新进展与展望[J].机械工程学报,1996,32(4):1-4.
    [12]杨廷力.机构学理论研究进展[J].机械工程学报, 1995.3l.2:1-24.
    [13]路甬祥.工程设计的发展趋势和未来[J].机械工程学报,1997,33(1):1~8.
    [14]刘川禾,杨廷力,刘毅.变拓扑机构理论的基本问题[J].机械工程学报,2005,41(8):56-62.
    [15]翁海珊.生物型机械设计系统[J].机械设计,1997 ,14 (3) : 38 -41.
    [16]魏东,翁海珊,陈立周.基于遗传机理的机构构型设计系统的研究[J].机械设计,2003,20(6):9-11.
    [17]张策.机械动力学[M].北京:高等教育出版社:2000.
    [18]张策,黄永强等著.弹性连杆机构的分析与设计[M] .北京:机械工业出版社,1997.
    [19]余跃庆,李哲著.现代机械动力学[M].北京:北京工业大学出版社,1998.
    [20]严世榕.现代机械中的动力学问题[J].机电技术,2004,27(B10):15-17.
    [21]高峰.机构学研究现状与发展趋势的思考[J].机械工程学报,2005,41(8):3-17.
    [22] Hubak.V,Eder.W.E.Design Science[M].London:Springer,1996.
    [23] Suh.N.P.Axiomatic Design:Advance and Applications[M].Oxford:Oxford Press,2000.
    [24] Pahl.G,Beitz.W.Engineering Design:A Systematic Approach[M].2nd editon.London:Springer-Verlag,1996.
    [25] Altshuller.G.The Innovation Algorithm,TRIZ,Systematic Innovation and Technical Greativity[M]. Worcester:Technical Innovation Center,Inc,1999.
    [26] Yan.H.S.Creative Design of Mechanical Device[M].Singapore:Springer-Verlag,1998.
    [27] Roth.K.Konstruieren mit Konstruktionskatalogen.2nd edition[M].Berlin:Springer-Verlag,1994.
    [28] Karni.R,Kaner.M.Teaching Innovative Conceptual Design of Systems in the Service Sector[J]. Te-chnological Forecasting and Social Change,2000,64:225~240.
    [29]温诗铸,丁建宁.微型机械设计基础研究[J].机械工程学报,2000,36(7):39~42.
    [30]马香峰主编.机器人机构学[M].北京:机械工业出版社,1991.
    [31] (日)牧野洋,(中)谢存禧等.空间机构及机器人机构学[M].北京:机械工业出版社,1987.
    [32] Carlisle Brian . Robot Mechanisms[C] . Proceedings of the 2000 IEEE International Conference on Robotics and Automation,San Fancisco 2000:701~708.
    [33]蔡自兴.机器人学的发展趋势和发展战略[J].中南工业大学学报,2000,31(专辑):1~5.
    [34]蔡自兴.智能控制及移动机器人研究进展[J].中南大学学报,2005,36(5):721~726.
    [35]李学荣.新机器机构的创造发明——机构综合[M] .重庆:重庆出版社,1988.
    [36]高峰,刘辛军.并联机器人机构设计理论发展趋势[J].机器人,2000(8)50~55.
    [37]黄真.并联机器人机构学基础理论的研究[J].中南工业大学学报,2000,30(专辑):15~18.
    [38]高峰.并联机器人应用及其机构创新[J].机械设计与研究,2000(增刊):147~148.
    [39]黄真,孔令富等.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [40]温熙森,邱静,陶俊勇.机电系统分析动力学及其应用[M].北京:科学出版社,2003.8.
    [41]朱友民,江裕金.机械原理[M].重庆大学出版社,1986.6.
    [42] (民主德国)Volmer J主编,孙可宗等译.机构学教程[M].北京:高等教育出版社,1990.
    [43] (美)Shigley J E等著,聂新译.机械原理与机构学[M].重庆:科学技术文献出版社重庆分社,1987.
    [44]黄茂林,秦伟.机械原理[M].北京:机械工业出版社,2002.
    [45] (俄)奥佐尔著,唐炜柏,黄茂林,王鸿恩译.机械原理教程[M].重庆:重庆大学出版社,1992.
    [46]秦伟.基于约束的自调机械结构理论与工程设计研究[D].重庆:重庆大学,1999.
    [47]安培文.平面连杆机构的过约束及自调机构的分析与设计研究[D].重庆:重庆大学,2003.5.
    [48]李太福.基于平面约束不确定性的机械系统稳健性设计研究[D].重庆:重庆大学,2004.5.
    [49]孙桓,傅则绍.机械原理(第六版) [M] .北京:高等教育出版社,2001.5.
    [50] (德国)K.洛克(Kurt Luck),K.-H.莫德勒(Karl-Heinz Modler).孔建益译,机械原理(分析综合优化) [M].北京:机械工业出版社,2003.9.
    [51]韩建友.高等机构学[M].北京:机械工业出版社,2004.
    [52]符炜.机构设计学[M].长沙:湖南大学出版社,2001.
    [53]Решетов.Л.Н.Самоустанавливающиесямеханазмы[M].Москва:Машиностроение,1985.
    [54]Преников.А.С.Механазмыоптимальнойструктуры[M].Москва:Машиностроение,1994.
    [55] Luck.K,Model.K.H.Burmester theory for four-bar-band mechanisms[J].ASME J.of Mech-hanical Design,1995(117):129~133.
    [56]张启先.空间机构的分析与综合(上册) [M].北京:机械工业出版社,1984.
    [57] Johnson R C著,陆国贤,丁怡等译.机械设计综合[M].北京:机械工业出版社,1987.
    [58]飞嶋浩等.多自由度可调机构に関する研究[C].日本机械学会论文集,54卷482号(昭63~10).
    [59]曾励.连杆行星齿轮过约束机构的研究[D].重庆:重庆大学,1997.
    [60]安培文,黄茂林.平面机构过约束的研究进展[J].机械设计与制造工程,2002,5:2~6.
    [61]安培文,黄茂林.平面闭链机构中过约束分析的研究与应用[J].机械设计,2002,7:18~22.
    [62]安培文,任亨斌.平面机构中的过约束[J].宁夏工程技术,2002,1(2):113~116.
    [63]贺镇,黄茂林.平面闭链六杆机构的自调结构及允差的研究[J].中国机械工程,2005,22(16):1978~1982.
    [64]安培文,黄茂林.基于自调的平面曲柄摇杆机构运动副的合理配置[J].机械科学与技术,2003,22(5):772~775.
    [65]安培文,邵金龙,黄茂林.理论平面过约束分析及无过约束自调结构设计[J].重庆大学学报,2004,27(11):15~17.
    [66]秦伟,黄茂林等.制造误差对过约束机构性能影响的研究[J].中国机械工程,2002,13(15):1327~1331.
    [67]李太福,黄茂林,杜力等.基于运动副自由度优化配置的机构自调性设计研究[J].中国机械工程,2003,14(23):2049~2052.
    [68]安培文,黄茂林.无过约束自调机构允差分析的一种精确方法[J].重庆大学学报,2003,26(1):1~3.
    [69]安培文,黄茂林.平面连杆机构的自调及其允差的分析研究[J].中国机械工程,2002,13(23):2040~2044.
    [70]杜力.可调双输出函数发生机构及其自调结构的设计[D].重庆:重庆大学,2007.
    [71]莫建清,黄茂林,杜力等.自适应机构的综合方法[J].中国机械工程,2004,15(18):1661-1665.
    [72]贺镇.多回路及自适应机构自调结构设计的研究与工程实践[D].重庆:重庆大学,2006.
    [73] Howell L L ,Midha A. A Loop-Closure Theory for the Analysis and Synthesis of Complaint Mechanisms[J]. Transactions of the ASME, 1996, 118(3): 121~125.
    [74] Huang C. and Roth B., Dimensional Synthesis of Closed-Loop Linkages to Match Force and Position Specifications[J]. Transactions of the ASME, 1993, 115(6): 194~198.
    [75]莫建清.自调自适应机构及其分析与综合[D].重庆:重庆大学,2004.
    [76]颜鸿森.机械装置的创造性设计[M].北京:机械工业出版社,2002.7.
    [77] VDI.Gesellschaft Etwicklung Konstruktion Vertrieb. Mechanical Devices for Automation Equipment Grippers for Manipulators and Industrial Robots[C].VD12740, 1995
    [78]马履中,沈钰.变自由度机械分析与应用[J].江苏理工大学学报,1997, 18(3): 72~77.
    [79]曲志刚,李瑰贤.基于蜕变因子控制的机构构态转换原理及应用[J].机械工程学报, 2005, 41(2): 41~45.
    [80]曲志刚,安子君等.变自由度机构的功能及应用研究[J].机械传动,2001, 25(2): 6~8.
    [81]李林,张监.变自由度机构的分析和应用[J].山东轻工业学院学报,1994,8(3):42~45.
    [82] Rakic, M.,“Multifingered Robot Hand With Self-Adaptability,”[J] Rob. Comp.-integ. Manuf. 1989, 3(2) :269-276.
    [83] Gosselin C. M., Laliberte T. Underactuated Mechanical Finger with Return Actuation[P]. United States Patent: US5762390.
    [84] Birglen, L., Gosselin, C.M., 2004,“Optimal Design of 2-Phalanx Underactuated Fingers,”[C]. Proc. Intl.Conf. Intel.Manip. Grasp., Genova, Italy, pp. 110-116.
    [85] Birglen, L., and Gosselin, C.,Geometric Design of Three-Phalanx Underactuated Fingers[J]. Transactions of ASME.2006,Vol.128:356-364.
    [86] Dechev N., Cleghorn W. L. Multiple Finger Passive Adaptive Grasp Prosthetic Hand[J]. Mechanism and Machine Theory, 2001,3: 1157~1173.
    [87] Laliberte T., Gosselin C. M. Simulation and Design of Underactuated Mechanical Hands[J]. Mechanism and Machine Theory, 1998,2: 39~57.
    [88] Laliberte T., Gosselin C. M. Development of a Three-DOF Underactuated Finger[J]. Mechanism and Machine Theory, 2000,2: 40~58.
    [89] Laliberte T., Birglen, L., Gosselin C. M. Underactuation in Robotic Grasping Hands[J]. Machine Intelligence & Robotic Control 2002,Vol.4(3):1-11.
    [90]张文增,陈强等.高欠驱动的拟人机器人多指手[J].清华大学学报(自然科学版),2004, 44(5): 587~600.
    [91]张文增,陈强,孙振国.拟人机器人手的设计与实践[J].机械工程学报,2005,41(5):123-126.
    [92]叶军.欠驱动多指节机器人手的抓取力分析[J].机械,2001,26(6): 6~10.
    [93]叶军.欠驱动多指节机器人手的运动学分析[J].机器人,1999,6: 649~652.
    [94]厉春元.多关节手指机构[J].现代机械,2001,(1):82~84.
    [95]李端玲,戴建生,张启先.基于构态变换的变胞机构结构综合[J].机械工程学报,2002,38(7):12~16.
    [96] Dai J S, Zhang Q X. Metamorphic Mechanisms of Their Configuration Models[J]. Chinese J. of Mechanical Engineering, 2000,13(3): 212~218.
    [97] Dai J S. and Rces Jones.J. Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds[J]. J. of Mechanical Design, Transaction of AMSE, 1999, 121(3): 375~382.
    [98]戴建生,丁希仑,邹慧君.变胞原理和变胞机构类型[J].机械工程学报,2005, 41(6): 7~12.
    [99]高馨,王生泽.变结构四杆机构的设计[J].中国纺织大学学报,1998,24(4): 36~39.
    [100]侯悦民,杨润泽.一种自调节夹紧机构物设计及其异构体.河北工业科技,1998,15(2): 8~12.
    [101]骆敏舟,梅涛,汪小华.形状自适应欠驱动三关节机器人手指设计[J].计算机辅助设计与图形学报,2005,17(2),p353~358.
    [102]骆敏舟,梅涛等.多关节欠驱动机器人手爪包络抓取稳定性分析与仿真[J],光学精密工程,2004,12(5),p511~517.
    [103]史土财,高晓辉等.欠驱动自适应机器人手的研制[J].机器人,2004,26(6):496~501.
    [104]楼鸿棣,邹慧君主编.高等机械原理[M].北京:高等教育出版社,1990.
    [105]白师贤等编著.高等机构学[M].上海:上海科学技术出版社,1988
    [106] (俄)K.B.弗罗洛夫著,张作毅,第永安,金孚文待译,机械原理[M].北京:高等教育出版社,1997.
    [107] J.L.Luo,M.L.Huang,Q. Wen.Constraints in Machinery and Self-adaptive Mechanism[C]. Proceedings of the International Conference on Mechanical Transmissions.chongqing,2006.1.
    [108]孟宪源,姜琪.机构构型与应用[M].北京:机械工业出版社,2004.3.
    [109]钟瑜.新型非摩擦连续作用无级变速器的分析与设计[D].重庆:重庆大学,2007.
    [110]蒙建波,梁锡昌.智能机械概论[J].科学(中文版) ,1995,6:61-61.
    [111]马治国,闻邦椿.智能机械结构研究现状及展望[J].振动与冲击,1998,17(4):1-4.
    [112]单绍福,王树明,张燕等.智能化技术在工程机械上的应用[J].工程机械,2005,11:3-7.
    [113]朱剑英.机械工程智能化的发展思路与对策[J].南京师大学报(工程技术版) ,2001,1(4):1-6.
    [114]罗金良,黄茂林,文群.自适应运动链的构型综合及应用研究[J].机械设计与研究,2006,5:33-37.
    [115]田娜,丁希仑,戴建生.一种新型的变结构轮/腿式探测车机构设计与分析[J].机械设计与研究,2004年增刊.
    [116]杨长牛.内力封闭自适应机械的分析与综合[D].重庆:重庆大学,2006.5.
    [117]黄真,丁华锋.机构的结构类型综合综述[J].燕山大学学报,2003,27(3):189~192.
    [118] Jensen, Preben W. Classical and modern mechanisms for engineers and inventors[P]. New York: M. Dekker, c1991
    [119]张美麟,张晔,杨治义.单自由度平面闭链机构构型方法研究[J].中国工程科学,2002,4(6):5~8.
    [120]杨廷力.机械系统基本理论-机构学运动学动力学[M].北京:机械工业出版社,1996.3.
    [121] A.C.RAO, Jagadeesh Anne,Topology based characteristics of kinematic chains, work space, rigidity, input-joint and isomorphism[J],Mech.Mach.Theeory,Vol.33,No.5,p625~638,1998.
    [122] T.S. Mruthyunjaya. Kinematic structure of mechanisms revisited[J]. Mech.Mach.Theory, 38(2003): 279–320.
    [123] Zongyu Chang , Ce Zhang, Yuhu Yang, et al. A new method to mechanism kinematic chain isomorphism identification[J] .Mech.Mach.Theory, (2002), 37: 411–417.
    [124]李树军,宋桂秋等.用拓扑特性矩阵辩识运动链的同构体及机架变换研究[J].机械工程学报,2002,38(1):149~153.
    [125]李瑰贤,张培玉,刘俐平等.含高副平面运动链的同构识别[J].哈尔滨工学大学学报,1996,28(1):90-96.
    [126]楼世博等.图论及其应用[M].北京:人民邮电出版社,1982.
    [127]肖位枢.图论及其算法[M].北京:航空工业出版社,1993.
    [128]罗金良,黄茂林,文群.内力封闭自适应机构初始运动链综合的胚图支链法[J].中国机械工程,2007,18(12):1470-1474.
    [129]罗金良,黄茂林,文群.基于全回路拓扑特性矩阵运动链同构的辨识[J].重庆大学学报(自然科学版),2007,30(1):6-9.
    [130]阿瑟.G.厄尔地曼,乔治.N.桑多尔[美]著.庄细荣,党祖祺译.机构设计[M].北京:高等教育出版社,1992.
    [131]乔治.N.桑多尔,阿瑟.G.厄尔地曼[美]著.庄细荣,杨上培译.高等机构设计[M].北京:高等教育出版社,1993.
    [132]阿烈克山德罗夫著,寿子明译.起重运输机械的制动器[M].机械工业出版社,1957.
    [133] MSC.Software著,刑俊文,陶永忠译.MSC.ADAMS/View高级培训教程[M].北京:清华大学出版社,2004.
    [134]郑建荣编著.ADAMS——虚拟样机技术入门与提高[M].北京:机械工业出版社.2001
    [135]徐灏主编.机械设计手册[M].第二版,第4卷,北京:机械工业出版社,2001.
    [136] Okada, T. Computer Control of Multijointed Finger System for Precise Object-Handling[C]. IEEE Transactions on System, Man and Cybernetics, 1982:12(3), 289-299.
    [137] Salisbury, J. K., Craig, J. J. Articulated Hands: Force Control and Kinematic Issues[C]. The International Journal of Robotics Research , 1982:Vol. 1(1), 4-17.
    [138] Bonivento C, Melchiorri C. Towards Dextrous Manipulation with the UB-hand II[C]. Proc. 12th IFAC World Congress,Sydney,Australia,1993.
    [139] Jacobsen, S. C., Iversen, E. K., Knutti, D. F., et al. Design of the Utah/MIT Dextrous Hand[C]. Proc. of the IEEE Intl. Conf. on Robotics and Automation, San Francisco, USA, 1986:1520-1532.
    [140] Caffaz A., Cannata G. The Design and Development of the DIST-hand Dextrous Gripper[C]. Proc. of the IEEE Intl. Conf. on Robotics and Automation, Leuven,Belgium, 1998:2075-2080.
    [141] Liu, H., Meusel, P., Butterfass, J., et al. DLR's Multisensory Articulated Hand Part I-II[C]. Proceedings of the IEEE International Conference on Robotics and Automation , Leuven, Belgium, 1998: 2087-2093.
    [142] Butterfass J., Grebenstein M., Liu, H., et al. DLR-Hand II: Next Generation of a Dextrous Robot Hand[C]. Proc. of the IEEE Intl. Conf. on Robotics and Automation, Seoul, Korea, 2001: 109-114.
    [143] Diftler, M. A. and Ambrose, R. O. Robonaut: A Robotic Astronaut Assistant[C]. Proceedings of the 6th International Symposium on Articial Intelligence and Robotics and Automation in Space: i-SAIRAS 2001 , Canadian Space Agency, St-Hubert,QC, Canada, 2001:18-22.
    [144]王国庆,李大寨,钱夕康等.新型三指灵巧机械手的研究[J].机械工程学报,1997, 3:71-75.
    [145]杨磊,高晓辉,何平等.HIT机器人灵巧手基于关节位置/力矩控制[J].电机与控制学报,2005,9(3):275-279.
    [146]刘伊威,金明河. DL R /H IT仿人机器人灵巧手的设计[J].机械制造,2006,44(507):32-35.
    [147] Akin D. L., Carignan C. R., Foster A. W. Development of a Four-Fingered Dexterous Robot End Effector For Space Operations[C]. Proceedings of the IEEE International Conference on Robotics and Automation , Washington,DC, USA, 2002:2302-2308.
    [148] Biagiotti L., Melchiorri C., Vassura G. Control of a Robotic Gripper for Grasping Objects in No-Gravity Conditions[C]. Proceedings of the IEEE International Conference on Robotics and Automation , Seoul, Korea, 2001:1427-1432.
    [149] Figliolini G. , Ceccarelli M. A Novel Articulated Mechanism Mimicking the Motion of Index Fingers[J]. Robotica , Vol. 20,2002:13-22.
    [150]郭卫东,李继婷,苏文魁等.自适应抓持手指机构的设计研究[C].2003年中国机械工程学会年会论文集.北京:机械工业出版社.2003.
    [151]郭卫东,李继婷,张玉茹.自适应抓持仿人手的抓持能力分析[J].机械设计与研究,2000,20(3):35-37.
    [152] Huang Hai , Jiang Li , Liu Hong, et al. The Mechanical Design and Experiments of HIT/DLR Prosthetic Hand[C]. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics,Kunming, China,2006:896-901.
    [153] Zhao D.W. , Jiang L. , Liu H., et al. Development of a Multi-DOF Anthropomorphic Prosthetic Hand[C]. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China,2006:878-883.
    [154]张纪元.机构学中实数同伦法[J] .上海海运学院学报,1999, 20(2):1-5.
    [155]李立,陈永.用同伦迭代法进行平面Stephenson III型六杆机构的函数发生器综合[J] .机械传动,1999, 23(2):1-4.
    [156]刘安心,杨廷力.机械系统运动学[M].北京:中国石化出版社,1999.
    [157] Kennedy J, Eberhart R C. Particle Swarm Optimization[C]. IEEE International Conference on Neural Networks IV, Piscataway,NJ: IEEE Service Center,1995: 1942- 1948.
    [158] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C]. Nagoya, Japan, Piscataway, NJ: IEEE Service Center, 1995, 39~43.
    [159] Shi Y, Eberhart R C. A modified particle swarm optimizer [ C ] . IEEE International Conference of Evolutionary Computation , Anchorage , Alaska , May 1998:69-73.
    [160] Clerc M.The swarm and queen:towards a deterministic and adaptive particle swarm optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation,1999:1951- 1957.
    [161] Brskar S, Suganthan P N. A Novel Concurrent Particle Swarm Optimization[C]. Proceedings of the 2004 Congress on Evolutionary Computation. NJ: IEEE Press, 2004. 792- 796.
    [162]张丽平.粒子群优化算法的理论及实践[D] .杭州:浙江大学,2005.
    [163]杨维,李歧强.粒子群优化算法综述[J] .中国工程科学,2004,6(5):87- 94.
    [164] Fukuyama Y. Fundamentals of particle swarm techniques[C]. IEEE Power EngineeringSociety , 2002. 45~51.
    [165] Tandon V. Closing the gap between CAD/ CAM and optimized CNC end milling [ D ] . Indianapolis : (Master’s thesis) Purdue School of Engineering and Technology , Indiana University Purdue University ,2001.
    [166]陈长忆,叶永春.基于粒子群算法的非线性方程组求解[J].计算机应用与软件,2006,23(5):137-139.
    [167]王书亭,王战江.粒子群优化算法求解非线性问题的应用研究[J].华中科技大学学报(自然科学版),2005,33(12):4-7.
    [168]候志荣,吕振肃.基于MATLAB的粒子群优化算法及其应用[J].计算机仿真,2003,20(10):67-69.
    [169] Parsopoulos K E , Plagianakos V P , Magoulas G D ,et al. Improving particle swarm optimizer by function“stretching”[ C ] . Hadjisavvas N , Pardalos P.Advances in Convex Analysis and Global Optimization. The Netherlands : Kluwer Academic Publishers ,2001. 445~457
    [170] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [C]. Preceedings of the IEEE Conference on Evolutionary Computationa, ICEC, Vol.1:84- 88.
    [171] Birglen, L., and Gosselin, C., On the Force Capabilities of Underactuated Fingers[C].Proc. IEEE Intl. Conf.Rob. Aut., Taipei, Taiwan, 2003,1139-1145.
    [172] Birglen, L., and Gosselin, C., Kinetostatic Analysis of Underactuated Fingers[C]. IEEE Trans. Rob. Aut., 2004,20(2):211-221.
    [173]罗金良,黄茂林,文群.自适应堵渣机的自调结构设计与实践[J].中国机械工程,2008.19(4):451-456.
    [174]罗金良,黄茂林,文群.基于ADAMS变结构堵渣机的仿真分析与优化[J].系统仿真学报,2008,20(1):237-241.
    [175]罗金良,黄茂林,文群.高炉堵渣机的结构分析与优化[J].北京科技大学学报,2008.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700